

Safety Safety Safety Safety Safety Safety Safety Safety Safety Safety

Applicant: Elatec GmbH Zeppelinstraße 1 82178 Puchheim Tel.: +49 89 5529961-0

Test report no.:

210697-AU01+W06 for: Elatec GmbH RFID reader / writer module TWN4 MultiTech Nano M

according to:

RSS-102

Page 2 of 21

Accreditation:

FCC test firm accreditation expiration date: 2021-05-30 MRA US-EU, FCC designation number: DE0010 FCC registration number: 97268 BnetzA-CAB-02/21-02/5 Valid until 2023-11-26

Recognized until 2023-03-16 by the Department of Innovation, Science and Economic Development Canada (ISED) as a recognized testing laboratory CAB identifier: DE0011 Company number: 3472A

Location of Testing:

Element Materials Technology Straubing GmbH Tel.: +49 9421 56868-0 Fax: +49 9421 56868-100 Email: info.straubing@element.com Gustav-Hertz-Straße 35 94315 Straubing, Germany

The technical accuracy is guaranteed through the quality management of Element Materials Technology Straubing GmbH.

Table of contents

1	Sur	mmary of test results	5		
2	Tes	st regulations	6		
		uipment under test (EUT)			
	-	General information			
	3.2	Photographs of EUT	7		
		st results			
	4.1	Canada	9		
5	Equ	uipment calibration status	19		
6	Measurement uncertainty				
7	Rev	vision history	21		
		-			

List of pictures

Picture 1: Setup of magnetic field test at a measurement distance of 0 cm	10
Picture 2: Setup of electric field test at a measurement distance of 0 cm	11

List of tables

Table 1: EUT used for testing	9
Table 2: Support equipment used for testing	
Table 3: Electric field strength reference levels	
Table 4: Magnetic field strength reference levels	12
Table 5: Limb exposure limit relaxation	13
Table 6: Electrical field strength at a distance of 0 cm, nerve stimulation of the body, USB	15
Table 7: Magnetic field strength at a distance of 0 cm, nerve stimulation of the body, USB	15
Table 8: Electrical field strength at a distance of 0 cm, nerve stimulation of the body, RS232	15
Table 9: Magnetic field strength at a distance of 0 cm, nerve stimulation of the body, RS232	15
Table 10: Result of SAR test exclusion, exposure to the head and body	18

Page 5 of 21

1 Summary of test results

IC standard	Requirement	Page	Result
RSS-102 Issue 5, section 2.5.1	Frequency range 3 kHz up to 10 MHz	9	Passed
RSS-102 Issue 5, section 2.5.1	SAR test exclusion, except 3 kHz – 10 MHz	16	Passed

Straubing, December 15, 2021

Riedel m YC 07

Jennifer Riedel B. Eng. Radio Test Engineer

Lamad Graph

Konrad Graßl Department Manager Radio

2 Test regulations

Standard	Title
RSS-102 Issue 5 (March 19, 2015) Amendment 1 (February 2, 2021)	Spectrum Management and Telecommunications Radio Standards Specification Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
SPR-002 Issue 1 (September 2016)	Spectrum Management and Telecommunications Supplementary Procedure Supplementary Procedure for Assessing Compliance with RSS-102 Nerve Stimulation Exposure Limits
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz
Notice 2016-DRS001 September 20, 2016 Updated July 2020	Applicability of Latest FCC RF Exposure KDB Procedures and Other Procedures
KDB 447498 D01 v06	Mobile and portable devices RF Exposure procedures and equipment authorisation policies, October 23, 2015.
IEEE C95.3-2002 (R2008) Approved December 11, 2002 Reaffirmed June 12, 2008	IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz–300 GHz
KDB 680106 D01 May 31, 2013 (published by the Federal Communications Commission FCC)	RF Exposure Considerations for Low Power Consumer Wireless Power Transfer Applications
OET Bulletin 65, 65A, 65B Edition 97-01, August 1997	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

3 Equipment under test (EUT)

3.1 General information

Product type: RFID reader / writer module				odule
Model Name:	TWN4 I	MultiTech	Nano	Μ
Serial number:	N/A			
Manufacturer:	Elatec (GmbH		
Version:	Hardwa	are:	В	
	Softwar	re:	TWN	4-B1.08-NKF3.22-CONT1.11-PI
Short description:		a RFID rezion a RFID re		writer module operating at the frequencies z.
FCC ID:	WP5TV	VN4F21		
IC certification number:	7948A-	A-TWN4F21		
RF technology 1:				
Technology type:	RFID			
Operating frequency:	125 kH	z		
Antenna types:	Loop ar	ntenna		
	🗆 deta	chable		imes not detachable
RF technology 2:				
Technology type:	RFID			
Operating frequency:	13.56 M	lHz		
Antenna types:	Loop ar	ntenna		
	□ detac			⊠ not detachable
Power supply:		oply by US al voltage:		RS232
Exposure tier:	\boxtimes	Head		
	\boxtimes	Body		
		Limbs		
		other		
		See app	ropriate	e results
Separation distance:	\boxtimes	≤ 20 cm		
		> 20 cm		
		See app	ropriate	e results
Evaluated against exposure	\boxtimes	General	public	use
limits:		Controlle	ed use	

3.2 Photographs of EUT

See Annex B of test report 210697-AU01+W04 of test laboratory Element Materials Technology Straubing GmbH.

4 Test results

This clause gives details about the test results as collected on page 5.

The climatic conditions are recorded during the tests. It is ensured that the climatic conditions are within the following ranges:

Ambient temperature	Ambient humidity	Ambient pressure
15°C to 35°C	30 % to 75 %	86 kPa to 106 kPa

4.1 Canada

4.1.1 Frequency range 3 kHz up to 10 MHz

Requirement: Basic standard:	RSS-102 Issue 5, section 2.5.1 SPR-002 IEEE C95.3				
Performed by:	Jennifer Riedel B. Eng.	Date of test:	December 6, 2021		
Result (Note 1):	⊠ Test passed	□ Test not passed			

Note(s):

1. For information about measurement uncertainties see page 20.

4.1.1.1 Test configuration

Device	Type designation	Serial or inventory no.	Manufacturer
RFID reader / writer module	TWN4 MultiTech Nano M	N/A	Elatec GmbH

Table 1: EUT used for testing

Device	Type designation	Serial or inventory no.	Manufacturer
Reference board	T4NR V1.01		Elatec GmbH
RFID-tag	125 kHz		Elatec GmbH
Power supply for RS232	AC adapter	NLD300050W1U3	Shenzhen Nalin Elec. Tech. Co., Ltd.
Laptop	Lifebook A531	E001053	FUJITSU
Power supply for laptop	AC adapter	E001053	FUJITSU

Table 2: Support equipment used for testing

4.1.1.2 Mode of operation

The EUT was continuously searching for the tag at 125 kHz.

4.1.1.3 Test equipment


Туре	Designation	Manufacturer	Inventory no.
Exposure level tester with magnetic field probe 100 cm ²	ELT-400 with BN 2300/90.10	Narda Safety Test Solutions GmbH	E00276
Broadband field meter	NBM-550	Narda Safety Test Solutions GmbH	E00900
Electric field probe	EF0691	Narda Safety Test Solutions GmbH	E00902

4.1.1.4 Test setup

Picture 1: Setup of magnetic field test at a measurement distance of 0 cm

Picture 2: Setup of electric field test at a measurement distance of 0 cm

4.1.1.5 Limits

According to note 5 in section 2.5.1 of RSS-102:

Transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in section 4 of RSS-102. Therefore, these limits apply irrespective of the separation distance between the user or bystanders and the device.

The exposure limits in section 4 of RSS-102 are adopted from Health Canada's Safety Code 6.

According to section 2.1 of Safety Code 6:

Limits for internal electric field strength are intended to prevent the occurrence of nerve stimulation (NS). At frequencies between 3 kHz and 10 MHz, basic restrictions for internal electric field strength in excitable tissues as shown in table 1 of Safety Code 6 (i.e. table 2 of RSS-102) shall not be exceeded. For conditions where the determination of internal electric field strength is not possible or practical (e.g. by measurement or modelling), external unperturbed field strength assessment shall be carried out and the reference levels outlined in section 2.2 of Safety Code 6 shall be respected.

For transmitters operating between 3 kHz and 10 MHz, the requirements of table 4 and table 6 in section 4 of RSS-102 apply which are adopted from table 3 and table 4 of Safety Code 6, section 2.2:

Electric Field Strength Reference Levels						
		Reference Level				
Frequency Range (MHz)	Reference Level Basis	Uncontrolled Environment	Controlled Environment	Reference Period		
0.003 – 10	NS	83	170	Instantaneous (Note 1)		

 Table 3: Electric field strength reference levels

Magnetic Field Strength Reference Levels						
Reference Level (H _{RL}), (A/m, RMS)						
Frequency Range (MHz)	Reference Level Basis	Uncontrolled Environment	Controlled Environment	Reference Period (minutes)		
0.003 – 10	NS	90	180	Instantaneous (Note 1)		

 Table 4: Magnetic field strength reference levels

Notes:

1 At no point in time shall the RMS values for electric- and magnetic-fields exceed the reference levels with an instantaneous reference period in table 3 and table 4. In the case of RF fields with amplitude modulation, the RMS value during the maximum of the modulation envelope shall be compared to the reference level.

According to section 6.5 of SPR-002:

The basic restrictions are based on internal induced electric field or SAR. The relationship between the induced field and that of the exposure area is proportional; thus, in cases where the limbs are the primary point of exposure, the induced field would be less than that induced in the trunk of the human body.

When assessing compliance at the compliance distance, where limb exposure is the primary exposed condition, the following table may be used for relaxation of the RSS-102 nerve stimulation reference levels.

Exposure condition	Relaxation factor
Whole Body / Torso / Head	1.0
Leg	1.5
Arm	2.5
Hand / foot	5.0

Table 5: Limb exposure limit relaxation

A second exposure evaluation must be taken at the distance at which the trunk of the body would rest in relation to the device under test.

4.1.1.6 Test procedure

The RF exposure test is performed by the direct measurement method using a Broadband probe as described in clause 6.6.1.1 of the supplementary procedure SPR-002.

To find the worst case emissions, the field probe is moved over all sides of the EUT at the separation distances as noted in clause 4.1.1.7 while observing the display of the field meter. At the worst case position, the final value is measured and recorded.

According to section 3.2 of RSS-102, RF exposure evaluation of devices shall be made in accordance with the latest version of IEEE C95.3. Definition 3.95 in clause 3 of IEEE C95.3 specifies the separation distance applied to the measurement of electric and magnetic fields as the "distance between a source and the nearest point on the probe sensing elements".

4.1.1.7 Test results

RF technology 1:	
Application:	RFID
Operation frequency range:	125 kHz
Antenna model	Loop antenna
Antenna connector:	none
Antenna type:	internal
	not detachable
Environment:	Uncontrolled
Primary exposure condition:	Whole Body

Note(s):

- 1. Premeasurements were performed to determine the worst case which is documented below.
- 2. The worst case emission occurred without tag.

Frequency (kHz)	Measured value (V/m)	Relaxation factor	Limit (V/m)	Ratio of limit	Result
125	5.34	1.0	83	0.06	Passed

Table 6: Electrical field strength at a distance of 0 cm, nerve stimulation of the body, USB

Frequency (kHz)	Measured value (A/m)	Relaxation factor	Limit (A/m)	Ratio of limit	Result
125	0.59	1.0	90	0.007	Passed

Table 7: Magnetic field strength at a distance of 0 cm, nerve stimulation of the body, USB

Note(s):

- 1. Premeasurements were performed to determine the worst case which is documented below.
- 2. The worst case emission occurred without tag.

Frequency (kHz)	Measured value (V/m)	Relaxation factor	Limit (V/m)	Ratio of limit	Result
125	5.43	1.0	83	0.07	Passed

Table 8: Electrical field strength at a distance of 0 cm, nerve stimulation of the body, RS232

Frequency (kHz)	Measured value (A/m)	Relaxation factor	Limit (A/m)	Ratio of limit	Result
125	0.60	1.0	90	0.007	Passed

Table 9: Magnetic field strength at a distance of 0 cm, nerve stimulation of the body, RS232

4.1.2 SAR test exclusion, except 3 kHz – 10 MHz

Requirement:	RSS-102 Issue 5, section 2.5.1				
Reference:	n/a				
Performed by:	Jennifer Riedel B. Eng.	Date of test:	December 7, 2021		
Result:	⊠ Limits kept	\Box Limits not kept			

4.1.2.1 Exemption Limits for Routine Evaluation – SAR Evaluation

According RSS 102 clause 2.5.1:

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.

Frequency	Exemption Limits (mW)						
(MHz)	At separationAt separationdistance ofdistance of≤5 mm10 mm		At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm		
≤300	71 mW	101 mW	132 mW	162 mW	193 mW		
450	52 mW	70 mW ·	88 mW	106 mW	123 mW		
835	17 mW	30 mW	42 mW	55 mW	67 mW		
1900	7 mW	10 mW	18 mW	34 mW	60 mW		
2450	4 mW	7 mW	15 mW	30 mW	52 mW		
3500	2 mW	6 mW	16 mW	32 mW	55 mW		
5800	1 mW	6 mW	15 mW	27 mW	41 mW		

Frequency	Exemption Limits (mW)						
(MHz)	At separation At separation		At separation At separation		At separation		
	distance of	distance of	distance of	distance of	distance of		
	30 mm	35 mm	40 mm	45 mm	≥50 mm		
≤300	223 mW	254 mW	284 mW	315 mW	345 mW		
450	141 mW	159 mW	177 mW	195 mW	213 mW		
835	80 mW	92 mW	105 mW	$117 \mathrm{mW}$	130 mW		
1900	99 mW	153 mW	225 mW	316 mW	431 mW		
2450	83 mW	123 mW	173 mW	235 mW	309 mW		
3500	86 mW	124 mW	170 mW	225 mW	290 mW		
5800	56 mW	$71 \mathrm{mW}$	85 mW	97 mW	106 mW		

⁴ The exemption limits in Table 1 are based on measurements and simulations of half-wave dipole antennas at separation distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

⁵ Transmitters operating between 0.003-10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in Section 4.

Page 17 of 21

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in Table 1, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt from the SAR evaluation.

4.1.2.2 Results

RF technology 2:

The following data are based on applicants document: Test report 210697-AU01+W05 of the test laboratory Element Materials Technology Straubing GmbH

Application:	RFID
Operating frequency:	13.56 MHz
Antenna model	Loop antenna
Antenna connector:	none
Antenna type:	internal
	not detachable
Maximum field strength:	45.22 dBµV/m at 30 m
Information related to Exposure:	
Tune-up tolerance (according to the manufacturer):	1 dB
Separation distance:	< 5 mm
Exposure tier:	general public
Power averaging over time:	

Separation distance (mm)	Channel frequency (MHz)	ERP + tolerance (dBm)	ERP + tolerance (mW)	Limit 1-g SAR (mW)	Ratio of limit	Result
5	13.56	-28.94	0.0013	71.00	0.00002	Passed

Table 10: Result of SAR test exclusion, exposure to the head and body

EIRP is calculated using the formula of ANSI C63.10-2013 clause 9.5:

EIRP = E + 20log(d) - 104.7

Where: EIRP = equivalent isotropically radiated power in dBm E = electric field strength in $dB\mu V/m$ d = measurement distance in meters (m)

5 Equipment calibration status

Description	Modell number(s)	Serial number(s)	Inventory number(s)	Last calibration	Next calibration
Exposure level tester with magnetic field probe 100 cm ²	ELT-400 with BN 2300/90.10	B-0087 B-0102	E00276	2020-11	2022-11
Broadband field meter with magnetic field probe	NBM-550 with HF3061	H-0015 D-0595	E00900 E00901	2021-03	2023-03
Broadband field meter with electric field probe	NBM-550 with EF0691	H-0015 H-0318	E00900 E00902	2021-03	2023-03

Page 20 of 21

Test	Frequency range	Equipment used	Expanded uncertainty	U _{Limit}	k=
Magnetic field	1 Hz – 10 kHz	ELT 400 + probe	± 28.147 %	+58.% / -37 %	2
Magnetic field	10 kHz – 400 kHz	ELT 400 + probe	± 28.147 %	+41.% / -30 %	2
H-field	300 kHz – 800 kHz	NBM 550 + HF3061	± 25.602 %	+41.% / -30 %	2
H-field	800 kHz – 1 MHz	NBM 550 + HF3061	± 25.245 %	+41.% / -30 %	2
H-field	1 MHz – 30 MHz	NBM 550 + HF3061	± 25.245 %	+41.% / -30 %	2
E-field	100 kHz – 1 MHz	NBM 550 + EF0691	± 28.467 %	+41.% / -30 %	2
E-field	1 MHz – 30 MHz	NBM 550 + EF0691	± 27.324 %	+41.% / -30 %	2
E-field	30 MHz – 1 GHz	NBM 550 + EF0691	± 27.324 %	+100.% / -50 %	2
E-field	1 GHz – 4 GHz	NBM 550 + EF0691	± 30.244 %	+100.% / -50 %	2
E-field	4 GHz – 6 GHz	NBM 550 + EF0691	± 32.150 %	+100.% / -50 %	2
Contact current	0 Hz – 110 MHz	EZ 17	+41.25 % / -29.21.%	+100.% / -50 %	2

6 Measurement uncertainty

Note(s):

1. The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. For a confidence level of 95 % the coverage factor k is 2.

- 2. The values of the measurement uncertainty as listed above are equal to or lower than the required ones stated in table 3 of EN 62369-1 2009 and listed as (U_{Limit}) in the table above.
- 3. Simple acceptance is applied as the decision rule while keeping the specified limits (U_{ETSI}) for the expanded measurement uncertainty (i.e. Test Uncertainty Ratio TUR \geq 1:1). That means, compliance is based on the recorded level by the lab irrespective of the expanded measurement uncertainty value but with a limitation to it.

4. All used test instrument as well as the test accessories are calibrated at regular intervals.

7 Revision history

Revision	Date	Issued by	Description of modifications
0	2021-12-15	Jennifer Riedel B. Eng.	First edition

Template: RF_FCC_IC_Human Exposure_V1.3