

DATE: 03 June 2009

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report for Visonic Ltd.

Equipment under test:

Fully Supervised Wireless Alarm Control System

Powermax Express

E. Ever, Documentation

Written by: Written by:

Approved by: University

E. Ever, Test Engineer

Approved by:

I. Raz, EMC Laboratory Manager

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for Visonic Ltd.

Fully Supervised Wireless Alarm Control System

Powermax Express

FCC ID: WP3PMEXPRESS

IC ID: 1467C-PMEXPRESS

03 June 2009

This report concerns: Original Grant: x

Class I change: Class II change:

Equipment type: Part 15 Security/Remote Control Transceiver

47CFR15 Section 15231 (a-d)

Measurement procedure used is ANSI C63.4-2003.

Application for Certification Applicant for this device:

prepared by: (different from "prepared by")

Ishaishou Raz Arik Elshtein
ITL (Product Testing) Ltd. Visonic Ltd.
Kfar Bin Nun Tel Aviv
D.N. Shimshon 99780 Habarzel 24
Israel Israel 69710

e-mail Sraz@itl.co.il Tel: +936-03-6456789

e-mail: aelshtein@visonic.com

TABLE OF CONTENTS

1.	GENERAL IN	IFORMATION	5
		dministrative Information	
		st of Accreditations	
		oduct Description	
		est Methodology	
		est Facility	
		easurement Uncertainty	
2.		ABELING	
3.	SYSTEM TES	ST CONFIGURATION	ç
		stification	
		JT Exercise Software	
		pecial Accessories	
		quipment Modifications	
	3.5 Co	onfiguration of Tested System	
4.	CONDUCTED	O AND RADIATED MEASUREMENT TEST SET-UP PHOTO	10
5.	CONDUCTED	DEMISSION DATA	12
	5.1 Te	est Specification	12
		est Procedure	
		easured Data	
		est Instrumentation Used, Conducted Measurement	
6.		ACTOR CALCULATION	
	6.1 Te	est Instrumentation Used	18
7.	PERIODIC O	PERATION	19
		pecification	
		equirements	
		esults	
	7.1 Te	est Instrumentation Used	22
8.	FIELD STREI	NGTH OF FUNDAMENTAL	23
		est Specification	
		est Procedure	
		easured Data	
		est Instrumentation Used, Field Strength of Fundamental	
9.	SPURIOUS R	ADIATED EMISSIONS, 9 KHZ – 30 MHZ	28
		est Specification	
		est Procedure	
		easured Dataeast Instrumentation Used, Radiated Measurements	
		eld Strength Calculation	
		•	
10.	10.1 Te	ADIATED EMISSIONS, 30 – 3500 MHZest Specification	31
		est Procedure	
		est Data	
		t Instrumentation Used	
		t Instrumentation Used	
11.	INTERMODII	LATION	3/
		est Specification	
		est Procedure	
		est Data	
	11.4 Te	est Instrumentation Used	37

12.	BANDWIE	OTH	38
	12.1	Test procedure	38
	12.2	Results table	40
		Test Equipment Used	
13.	COMPAR	ISON REQUIREMENTS FCC WITH INDUSTRY CANADA	42
14.	APPENDI	X B - CORRECTION FACTORS	43
	14.1	Correction factors for CABLE	43
	14.2	Correction factors for CABLE	44
	14.3	Correction factors for CABLE	45
	14.4	Correction factors for CABLE	46
	12.6	Correction factors for LOG PERIODIC ANTENNA	47
		Correction factors for LOG PERIODIC ANTENNA	
	14.6	Correction factors for BICONICAL ANTENNA	49
	14.7	Correction factors for BICONICAL ANTENNA	50
	14.8	Correction factors for Double-Ridged Waveguide Horn	51
	14.9	Correction factors for Horn Antenna	52
	14.10	Correction factors for Horn Antenna	53
		Correction factors for ACTIVE LOOP ANTENNA	

1. General Information

1.1 Administrative Information

Manufacturer: Visonic Ltd.

Manufacturer's Address: Habarzel 24

Tel Aviv

Israel 69710

Tel: +936-03-6456789 Fax: +936-03-6456788

Manufacturer's Representative: Arik Elshtein

Equipment Under Test (E.U.T): Fully Supervised Wireless Alarm

Control System

Equipment Model No.: Powermax Express

Equipment Serial No.: Not Designated

Date of Receipt of E.U.T: 04/02/2009

Start of Test: 04/02/2009

End of Test: 17/03/2009

Test Laboratory Location: I.T.L (Product Testing) Ltd.

Kfar Bin Nun, ISRAEL 99780

Test Specifications: FCC Part 15 Sub-part C

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), Registration No. 90715.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-1350, R-1285.
- 5. Industry Canada (Canada), IC File No.: 46405-4025; Site No. IC 4025B-1.
- 6. TUV Product Services, England, ASLLAS No. 97201.
- 7. Nemko (Norway), Authorization No. ELA 207.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

The PowerMax Express is a user and installer-friendly, 29-zone fully-supervised wireless control system. The PowerMax Express includes an optional partition feature. Partitioning allows you to have up to four independently controllable areas with different user codes assigned to each partition. A partition can be armed or disarmed regardless of the status of the other partitions within the system.

Arming Modes: AWAY, HOME, AWAY-INSTANT, HOMEINSTANT, LATCHKEY, FORCED, BYPASS.

Alarm Types: Silent alarm, siren alarm (future option) or sounder (internal) alarm, in accordance with zone attributes.

Siren Signals: Continuous (intrusion / 24 hours / panic); triple pulse - pause - triple pulse (fire).

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4: 2003. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The radiated emissions tests were performed at I.T.L.'s testing facility at Kfar Bin-Nun, Israel. This site is a FCC listed test laboratory (FCC Registration No. 90715, date of listing August 22, 2006).

I.T.L.'s EMC Laboratory is also accredited by A2LA, certificate No. 1152.01.

1.6 Measurement Uncertainty

Conducted Emission

The uncertainty for this test is ± 2 dB.

Radiated Emission

The Open Site complies with the ± 4 dB Normalized Site Attenuation requirements of ANSI C63.4-2003. In accordance with Paragraph 5.4.6.1 of this standard, this tolerance includes instrumentation calibration errors, measurement technique errors, and errors due to site anomalies.

2. Product Labeling

Figure 1. FCC Label

Figure 2. Location of Label on EUT

3. System Test Configuration

3.1 Justification

Radiated emission screening was performed in 3 orthogonal orientations. The worst case orientation was the vertical position.

3.2 EUT Exercise Software

Manufacturing software was used for the tests.

3.3 Special Accessories

No special accessories were needed.

3.4 Equipment Modifications

No modifications were needed in order to achieve compliance

3.5 Configuration of Tested System

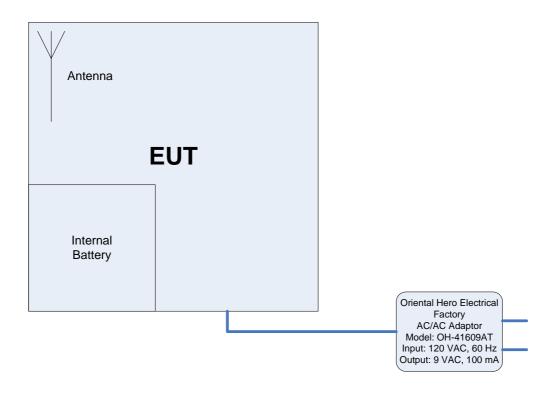


Figure 3. Configuration of Tested System

4. Conducted and Radiated Measurement Test Set-up Photo

Figure 4. Conducted Emission Test

Figure 5. Radiated Emission Test

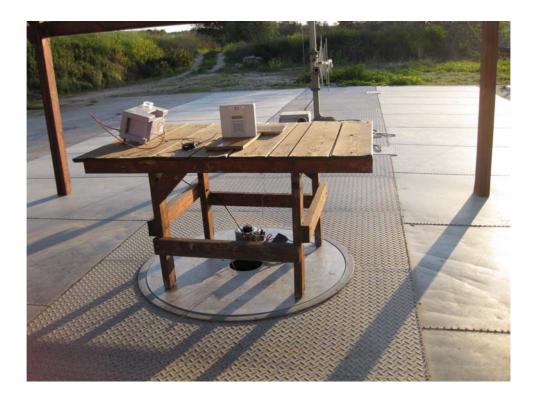


Figure 6. Inter-modulation Radiated Emission Test

5. Conducted Emission Data

5.1 Test Specification

F.C.C., Part 15, Subpart C

5.2 Test Procedure

The E.U.T operation mode and test set-up are as described in Section 3.1. In order to minimize background noise interference, the conducted emission testing was performed inside a shielded room, with the E.U.T placed on an 0.8 meter high wooden table, 0.4 meter from the room's vertical wall.

The E.U.T was powered from 115 V AC / 60 Hz via a 50 Ohm / 50 μ Hn Line Impedance Stabilization Network (LISN) on the phase and neutral lines. The LISN's were grounded to the shielded room ground plane (floor), and were kept at least 0.8 meters from the nearest boundary of the E.U.T

The center of the E.U.T AC cable was folded back and forth, in order to form a bundle less than 0.40 meters and a total cable length of 1 meter.

The emission voltages at the LISN's outputs were measured using a computerized receiver, complying with CISPR 16 requirements. The specification limits are loaded to the receiver via a 3.5" floppy disk and are displayed on the receiver's spectrum display.

A frequency scan between 0.15 and 30 MHz was performed at 9 kHz I.F. band width, and using peak detection.

The spectral components having the highest level on each line were measured using a quasi-peak and average detector.

5.3 Measured Data

JUDGEMENT: Passed by 29.3 dB

The margin between the emission levels and the specification limit is, in the worst case, 29.3 dB for the phase line at 3.99 MHz and 29.3 dB at 3.99 MHz for the neutral line.

The EUT met the F.C.C. Part 15, Subpart C specification requirements.

The details of the highest emissions are given in *Figure 7* to *Figure 8*.

TEST PERSONNEL:

Tester Signature: Www Eve Date: 22/04/2009

Typed/Printed Name: E. Ever

Conducted Emission

E.U.T Description Fully Supervised Wireless

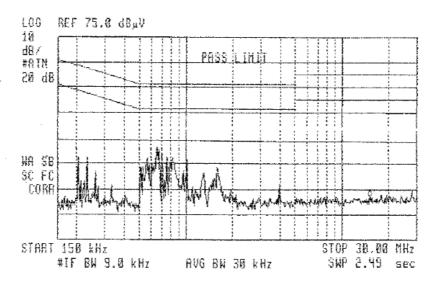
Alarm Control System

Type Powermax Express

Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C

Lead: Phase


Detectors: Peak, Quasi-peak, Average

15:03:43 FEB 04, 2009

ACTV DET: PEAK

MERS DET: PERK OF AUG

14.99 MHz 12.81 dB V

Signal Number	Frequency (MHz)	Peak (dBuV)	QP (d8uV)		Av Delta L 2 (d8)	Corr (dB)
†	0.242694	12.9	10.3	-51.7	-51.2	0.0
2	0.450973	27.5	6.3	-50.6	-47.2	0.0
3	0.859705	12.8	7.2	-48.8	-44.8	0.0
4	1.354615	20.4	15.8	-40.2	-38.1	0.0
5	3.999959	21.6	18.8	-37.2	-29.3	0.0
6	10 490321	i i d	E A	_CZ G	- A Q Q	a a

Figure 7. Detectors: Peak, Quasi-peak, AVERAGE.

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

Conducted Emission

E.U.T Description Fully Supervised Wireless

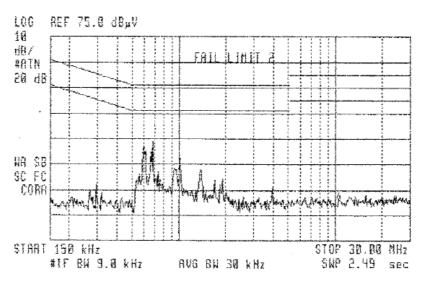
Alarm Control System

Type Powermax Express

Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C

Lead: Neutral


Detectors: Peak, Quasi-peak, Average

15:12:09 FEB 04, 2009

ACTV DET: PEAK

MERS DET: PERK QP RVG MKR 10.40 MHz

11.04 ժBաՄ

Signal	Frequency	Peak	QP	QP Delta	Av Delta	Corr
Number	(MHz)	(dBuV)	(ปรินปิ)	L 1 (d8)	L Z (d8)	(성당)
· · · · · · · · · · · · · · · · · · ·						
Ì	0.203793	18.2	-1.8	-65.3	-62.9	0.0
2	0.450967	13.5	7.8	-49.3	-48.0	Ø.Ø
3	0.659701	12.0	7.4	-48.8	-44.7	0.0
4	1.354613	12.0	5.7	-49.3	-45.5	0.0
5	3.999959	21.4	18.8	-37.2	-29,3	0.0
Ð	10.480321	11.2	8.4	-53.6	~49.8	0.0

Figure 8. Detectors: Peak, Quasi-peak, AVERAGE

Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

5.4 Test Instrumentation Used, Conducted Measurement

Instrument	Manufactur	Model	Serial No.	Last Calibration	Period
	er			Date	
LISN	Fischer	FCC-LISN-2A	127	March 3, 2009	1 Year
LISN	Fischer	FCC-LISN-2A	128	March 3, 2009	1 Year
EMI Receiver	HP	85422E	3906A00276	November 17, 2008	1Year
RF Filter Section	HP	85420E	3705A00248	November 16, 2008	1Year
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

6. Average Factor Calculation

- 1. Transmission pulse duration = 713usec
- 2. Burst duration = 1.05msec
- 3. Time between bursts = 805msec , >100ms

4. Average Factor =
$$20 \log \left[\frac{\text{Pulse duration}}{\text{Pulse period}} \right]$$

Average Factor =
$$20 \log \left[\frac{0.713}{1.05} \right] = -3.36 dB$$

4 17:55:32 FEB 0B, 2009

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKRA 713.00 µsec .54 dB

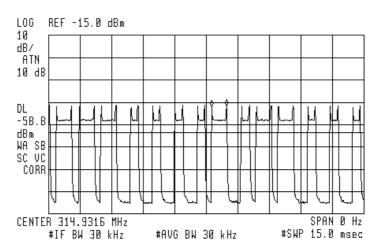


Figure 9. Transmission pulse duration = 713usec

4 17:57:32 FEB 0B, 2009

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKRA 1.0500 msec .00 dB

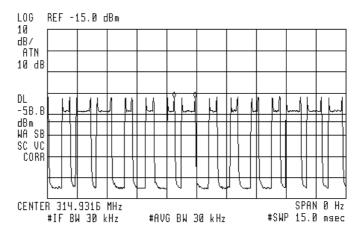


Figure 10. Burst duration = 1.05 msec

4 17:43:40 FEB 0B, 2009

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKRA 156.87 msec -.49 dB

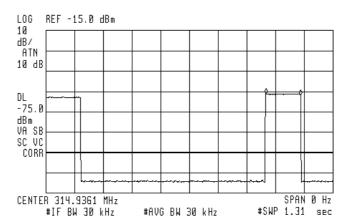


Figure 11. Time between bursts = 156.87msec , >100ms

6.1 Test Instrumentation Used

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
Spectrum Analyzer	НР	8592L	3826A01204	March 5, 2008	1 Year
Antenna Bioconical	ARA	BCD 235/B	1041	March 23, 2008	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	November 06, 2008	1 year
Antenna-Log Periodic	A.H.System	SAS-200/511	253	January 29, 2009	2 years
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A

7. Periodic Operation

7.1 Specification

F.C.C., Part 15, Subpart C, Section 15.231(a)

7.2 Requirements

Requirement	Rationale	Verdict
Continuous transmissions are not permitted.	N/A	Complies
A manually operated transmitter shall be deactivated within not more than 5 seconds after releasing the switch.	N/A	Complies
An automatically operated transmitter shall cease operation within 5 seconds after activation.	See plots in Figure 12 to Figure 14	Complies
Periodic transmissions at regular predetermined intervals are not permitted.	N/A	Complies
Polling or supervised transmissions to determine system integrity of transmitter used in security or safety applications shall not exceed more than 2 seconds per hour.	See plots in Figure 12 to Figure 14	Complies

7.3 Results

JUDGEMENT: Passed

The EUT met the FCC Part 15, Subpart C, Section 15.231(a) specification requirements.

TEST PERSONNEL:

Tester Signature: Www Eve Date: 22/04/2009

Typed/Printed Name: E. Ever

Periodic Operation

E.U.T Description Fully Supervised Wireless Alarm

Control System

Type Powermax Express
Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(a)

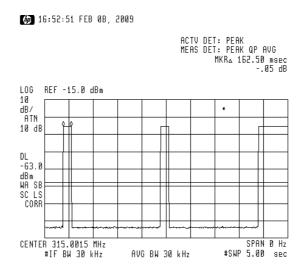


Figure 12. Automatically operated transmission Pulse 1 (162.50 msec)

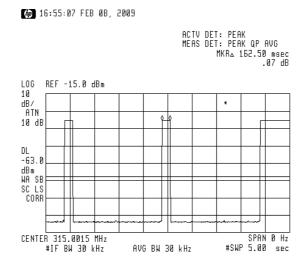


Figure 13. Automatically operated transmission Pulse 2 (162.50 msec.)

Periodic Operation

E.U.T Description Fully Supervised Wireless Alarm

Control System

Type Powermax Express
Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(a)

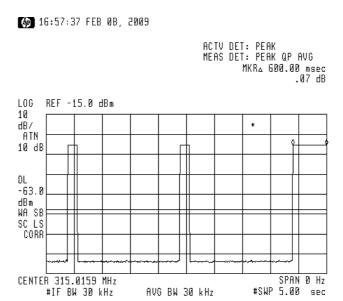


Figure 14. Automatically operated transmission Pulse 3 (600.00 msec.)

Total transmission time in 5 seconds [162.5 msec + 162.5 msec +600 msec = 925 msec.]

Supervised transmissions (3 Pulses during transmission = 925 msec in 1 hour)

Note: See Section 1.3 Product Description for further alarm operation details.

7.1 Test Instrumentation Used

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
Spectrum Analyzer	HP	8592L	3826A01204	March 5, 2008	1 Year

8. Field Strength of Fundamental

8.1 Test Specification

F.C.C., Part 15, Subpart C, Section 15.231(b)

8.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

The E.U.T. was placed on a non-conductive table, 0.8 meters above the O.A.T.S. ground plane.

The EMI receiver was set to the E.U.T. Fundamental Frequency (315 MHz) and Peak Detection.

The turntable and antenna mast were adjusted for maximum level reading on the EMI receiver.

The measurement was performed for vertical and horizontal polarizations of the test antenna.

The average result is:

Peak Level($dB\mu V/m$) + E.U.T. Duty Cycle Factor, in 100msec time window (dB)

8.3 Measured Data

JUDGEMENT: Passed by 2.5 dB

The EUT met the FCC Part 15, Subpart C, Section 15.231(b) specification requirements.

The details of the highest emissions are given in *Figure 15* to *Figure 17*.

TEST PERSONNEL:

Tester Signature: Tester Signature: Date: 22/04/2009

Typed/Printed Name: E. Ever

Field Strength of Fundamental

E.U.T Description Fully Supervised Wireless Alarm

Control System

Type Powermax Express
Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Horizontal/Vertical

Test Distance: 3 meters Detector: Peak

Freq.	Pol.	Peak Amp	Average Factor	AVG Result	AVG Specification	Margin
(MHz)	V/H	$(dB\muV/m)$	(dB)	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)
315.00	Н	76.5	-3.36	73.1	75.6	-2.5
315.00	V	67.0	-3.36	63.6	75.6	-12.0

Figure 15. Field Strength of Fundamental. Antenna Polarization: HORIZONTAL/VERTICAL.

Detector: Peak

Notes:

- 1. Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.
- 2. "Peak Amp." ($dB\mu V/m$) included the "Correction Factors".
- 3. "Correction Factors" (dB) = Test Antenna Correction Factor(dB) + Cable Loss.
- 4. "Average Factor = 20 log [(burst duration/100msec)*Num of burst within 100msec)]= 20 log [(0.713/1.05)]= -3.36
- 5. "Average Result" ($dB\mu V/m$)=Peak Amp. ($dB\mu V/m$)+D.C.F. (dB)

Field Strength of Fundamental

E.U.T Description Fully Supervised Wireless Alarm

Control System

Type Powermax Express
Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Horizontal

Test Distance: 3 meters Detectors: Peak, Quasi-peak, Average

4 16:44:16 FEB 19, 2009

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 315.000 MHz 76.4B dΒμV/m

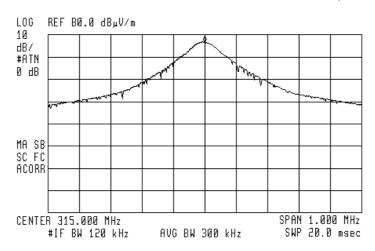


Figure 16. Field Strength of Fundamental. Antenna Polarization: HORIZONTAL.

Detectors: Peak, Quasi-peak, Average

Field Strength of Fundamental

E.U.T Description Fully Supervised Wireless Alarm

Control System

Type Powermax Express
Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C, 15.231(b)

Antenna Polarization: Vertical

Test Distance: 3 meters Detectors: Peak, Quasi-peak, Average

4 16:38:46 FEB 19, 2009

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 315.000 MHz 67.02 dB₄V/m

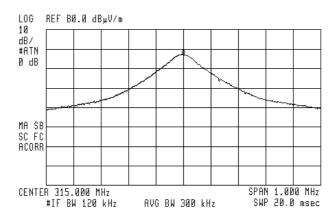


Figure 17. Field Strength of Fundamental. Antenna Polarization: VERTICAL.

Detectors: Peak, Quasi-peak, Average

8.4 Test Instrumentation Used, Field Strength of Fundamental

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	НР	85422E	3906A00276	November 17, 2008	1 year
RF Section	НР	85420E	3705A00248	November 16, 2008	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	November 06, 2008	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

9. Spurious Radiated Emissions, 9 kHz – 30 MHz

9.1 Test Specification

9 kHz-30 MHz, FCC, Part 15, Subpart C, Section 209

9.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3.1.

The frequency range 9 kHz-30 MHz was scanned.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 9 kHz-30MHz, the loop antenna was rotated on its vertical axis. The antenna height (center of loop) was 1 meter at a distance of 10 meters.

9.3 Measured Data

JUDGEMENT: Passed

The EUT was tested and it met the requirements of the FCC Part 15, Subpart C, specification.

No signals emanating from the EUT were found in this range.

TEST PERSONNEL:

Tester Signature: <u>The Superior of the Superio</u>

Typed/Printed Name: E. Ever

9.4 Test Instrumentation Used, Radiated Measurements

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	НР	85422E	3906A00276	November 17, 2008	1 year
RF Section	НР	85420E	3705A00248	November 16, 2008	1 year
Active Loop Antenna	EMCO	6502	9506-2950	October 15, 2008	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A

9.5 Field Strength Calculation

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

$$FS = RA + AF + CF$$

FS: Field Strength [dB\u00e4v/m]

RA: Receiver Amplitude [dBµv]

AF: Receiving Antenna Correction Factor [dB/m]

CF: Cable Attenuation Factor [dB]

Example: $FS = 30.7 \text{ dB}\mu\text{V}$ (RA) + 14.0 dB (AF) + 0.9 dB (CF) = 45.6 dB μV

No external pre-amplifiers are used.

10. Spurious Radiated Emissions, 30 – 3500 MHz

10.1 Test Specification

30 - 3500 MHz, F.C.C., Part 15, Subpart C

10.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3. See Section 3.1 Justification of the System Test Configuration concerning the E.U.T. orientation for this test.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3. The signals from the list of the highest emissions were verified and the list was updated accordingly.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 2.9 - 6 GHz, a spectrum analyzer including a low noise amplifier was used. The test distance was 3 meters. During peak measurements, the I.F. bandwidth was 1 MHz, and video bandwidth 3 MHz. During average measurements, the I.F. bandwidth was 1 MHz and video bandwidth was 100 Hz.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. Verification of the E.U.T emissions was based on the following methods: turning the E.U.T on and off; using a frequency span less than 10 MHz; observation of the signal level during turntable rotation. (Background noise is not affected by the rotation of the E.U.T.)

The emissions were measured at a distance of 3 meters.

10.3 Test Data

JUDGEMENT: Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C, specification.

No harmonics of the fundamental frequency were found in the frequency range of 30 MHz to 3500 MHz

TEST PERSONNEL:

Tester Signature: <u>University</u> Date: 22/04/2009

Typed/Printed Name: E. Ever

10.4 Test Instrumentation Used

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	НР	85422E	3906A00276	November 17, 2008	1 year
RF Section	НР	85420E	3705A00248	November 16, 2008	1 year
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	November 2, 2007	1 Year
Spectrum Analyzer	HP	8592L	3826A01204	March 5, 2008	1 Year
Antenna Bioconical	ARA	BCD 235/B	1041	March 23, 2008	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	November 06, 2008	1 year
Antenna-Log Periodic	A.H.System	SAS-200/511	253	January 29, 2009	2 years
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	НР	LaserJet 2200	JPKGC19982	N/A	N/A

11. Intermodulation

11.1 Test Specification

3rd Order Product

11.2 Test Procedure

The E.U.T was placed on a remote-controlled turntable on the open area test site. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in *Figure 6*.

The E.U.T. was configured to operate with both the RF Section and the GSM functioning. The RF Section operated at 315 MHz and the GSM operated at 850 MHz with the base station simulator P/N.

The emissions below 2.9 GHz were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range above 2.9 GHz, a spectrum analyzer including a low noise amplifier was used. During peak measurements, the I.F. bandwidth was 1 MHz, and video bandwidth 3 MHz. During average measurements, the I.F. bandwidth was 1 MHz and video bandwidth was 100 Hz.

The receiver and/or spectrum analyzer center frequency was set to the frequencies of the 3rd order intermodulation products, resulting from the transmitters' operation frequencies.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. Verification of the E.U.T emissions was based on the following methods: turning the E.U.T on and off; using a frequency span less than 10 MHz; observation of the signal level during turntable rotation. (Background noise is not affected by the rotation of the E.U.T.)

The emissions were measured at a distance of 3 meters.

11.3 Test Data

JUDGEMENT: Passed by 35.4 dB

The EUT met the requirements of the F.C.C. Part 15, Subpart C, specification.

The margin between the emission level and the specification limit was 35.4 dB in the worst case at the frequency of 1572.86 MHz, vertical polarization.

TEST PERSONNEL:

Tester Signature: Date: 22/04/2009

Typed/Printed Name: E. Ever

Intermodulation

E.U.T Description Fully Supervised Wireless

Alarm Control System

Type Powermax Express
Serial Number: Not Designated

Specification: FCC Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 30 MHz to 5000 MHz

Antenna: 3 meters distance Detectors: Peak, Quasi-peak

Frequency	Antenna Polarity	Peak Amp	Specification	Margin
(MHz)	(H/V)	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)
629.88	Н	30.6	74.0	-43.4
945.14	Н	35.3	74.0	-39.7
629.88	V	30.6	74.0	-43.4
944.96	V	36.1	74.0	-37.9
1258.89	V	37.8	74.0	-36.2
1572.86	V	38.6	74.0	-35.4

Figure 18. Radiated Emission. Antenna Polarization: VERTICAL/HORIZONTAL.

Detectors: Peak, Quasi-peak

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

[&]quot;Peak Amp" includes correction factor.

[&]quot;Correction Factor" = Antenna Factor + Cable Loss

11.4 Test Instrumentation Used

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	НР	85422E	3906A00276	November 17, 2008	1 year
RF Section	НР	85420E	3705A00248	November 16, 2008	1 year
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	November 2, 2007	1 Year
Spectrum Analyzer	НР	8592L	3826A01204	March 5, 2008	1 Year
Antenna Bioconical	ARA	BCD 235/B	1041	March 23, 2008	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	November 06, 2008	1 year
Antenna-Log Periodic	A.H.System	SAS-200/511	253	January 29, 2009	2 years
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	НР	LaserJet 2200	JPKGC19982	N/A	N/A

12. Bandwidth

12.1 Test procedure

The transmitter unit operated with normal modulation. The spectrum analyzer was set to 30 kHz resolution BW and center frequency of the transmitter fundamental. The spectrum bandwidth of the transmitter unit was measured and recorded. The BW was measured at 20 dBc points.

The EUT was set up as shown in Figure 3, and its proper operation was checked. The transmitter occupied bandwidth was measured with the EMI receiver as frequency delta between reference points on the modulation envelope.

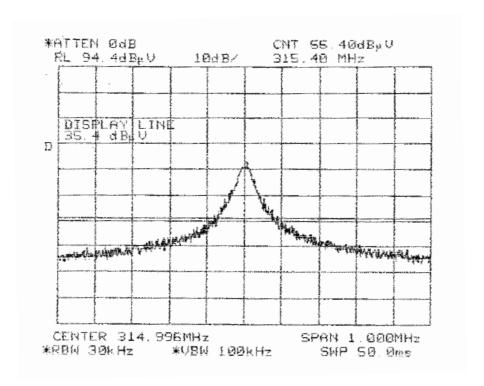


Figure 19 F_{Center}

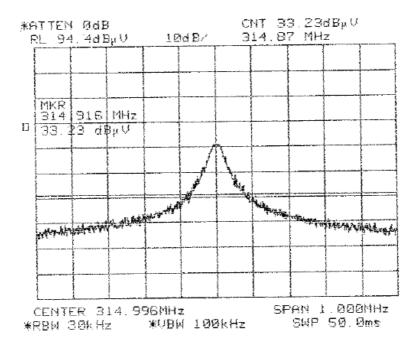


Figure 20 F_{Low}

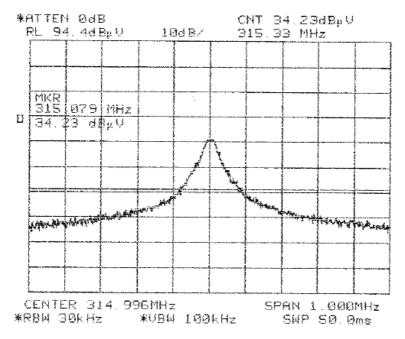


Figure 21 F_{High}

12.2 Results table

E.U.T Description: Fully Supervised Wireless Alarm Control System

Model: Powermax Express Serial Number: Not Designated

Specification: F.C.C. Part 15, Subpart C: (15.231(c))

Bandwidth	Specification	Margin
Reading	(1)	
(kHz)	(kHz)	(kHz)
163	< 787	-624

Figure 22 Bandwidth

JUDGEMENT: Passed by 624 kHz

TEST PERSONNEL:

Tester Signature: <u>Quan Grae</u> Date: 22/04/2009

Typed/Printed Name: E. Ever

(1) 0.25% of the E.U.T. fundamental frequency, Section 15.231(c).

12.3 Test Equipment Used.

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	НР	85422E	3906A00276	November 17, 2008	1 year
RF Section	НР	85420E	3705A00248	November 16, 2008	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	November 06, 2008	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	НР	LaserJet 2200	JPKGC19982	N/A	N/A

13. Comparison requirements FCC with Industry Canada

EUT	FCC Specification	According FCC Standard	IC Standard
Powermax Express	Periodic Operation	FCC Part 15.231 (a)(1-5)	RSS- 210 Section 2.6 Annex 1, A1.1.1
	Field Strength at Fundamental	FCC Part 15.231 (b)	RSS- 210 Annex 1 A1.1.2, Section 2.6
	Spurious Emissions and Intermodulation	FCC Part 15.231 (b)	RSS- 210 Section 2.6 Annex 1 A1.1.2
	Bandwidth	FCC Part 15.231 (c)	RSS- 210 Section 2.6 Annex 1 A1.1.3

14. APPENDIX B - CORRECTION FACTORS

14.1 Correction factors for

CABLE

from EMI receiver to test antenna at 3 meter range.

FREQUENCY (MHz)	CORRECTION FACTOR (dB)
10.0	0.3
20.0	0.6
30.0	0.8
40.0	0.9
50.0	1.1
60.0	1.2
70.0	1.3
80.0	1.4
90.0	1.6
100.0	1.7
150.0	2.0
200.0	2.3
250.0	2.7
300.0	3.1
350.0	3.4
400.0	3.7
450.0	4.0
500.0	4.3
600.0	4.7
700.0	5.3
800.0	5.9
900.0	6.3
1000.0	6.7

FREQUENCY	CORRECTION FACTOR
(MHz)	(dB)
1200.0	7.3
1400.0	7.8
1600.0	8.4
1800.0	9.1
2000.0	9.9
2300.0	11.2
2600.0	12.2
2900.0	13.0

- 1. The cable type is RG-214.
- 2. The overall length of the cable is 27 meters.
- 3. The above data is located in file 27MO3MO.CBL on the disk marked "Radiated Emission Tests EMI Receiver".

14.2 Correction factors for

CABLE

from EMI receiver to test antenna at 3 meter range.

FREQUENCY	CORRECTION
	FACTOR
(GHz)	(dB)
1.0	1.2
2.0	1.6
3.0	2.0
4.0	2.4
5.0	3.0
6.0	3.4
7.0	3.8
8.0	4.2
9.0	4.6
10.0	5.0
12.0	5.8

- 1. The cable type is RG-8.
- 2. The overall length of the cable is 10 meters.

14.3 Correction factors for CABLE

from spectrum analyzer to test antenna above 2.9 GHz

FREQUENCY	CORRECTION FACTOR	FREQUENCY	CORRECTION FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	1.9	14.0	9.1
2.0	2.7	15.0	9.5
3.0	3.5	16.0	9.9
4.0	4.2	17.0	10.2
5.0	4.9	18.0	10.4
6.0	5.5	19.0	10.7
7.0	6.0	20.0	10.9
8.0	6.5	21.0	11.2
9.0	7.0	22.0	11.6
10.0	7.5	23.0	11.9
11.0	7.9	24.0	12.3
12.0	8.3	25.0	12.6
13.0	8.7	26.0	13.0

- 1. The cable type is SUCOFLEX 104 E manufactured by SUHNER.
- 2. The cable is used for measurements above 2.9 GHz.
- 3. The overall length of the cable is 10 meters.

14.4 Correction factors for

CABLE

from EMI receiver to test antenna at 10 meter range.

FREQUENCY	CORRECTION
	FACTOR
(MHz)	(dB)
10.0	0.3
20.0	0.8
30.0	0.9
40.0	1.2
50.0	1.4
60.0	1.6
70.0	1.8
80.0	1.9
90.0	2.0
100.0	2.1
150.0	2.6
200.0	3.2
250.0	3.8
300.0	4.2
350.0	4.6
400.0	5.1
450.0	5.3
500.0	5.6
600.0	6.3
700.0	7.0
800.0	7.6
900.0	8.0
1000.0	8.7

FREQUENCY	CORRECTION
	FACTOR
(MHz)	(dB)
1200.0	9.8
1400.0	10.0
1600.0	11.3
1800.0	12.2
2000.0	13.1
2300.0	14.5
2600.0	15.9
2900.0	16.4

- 1. The cable type is RG-214.
- 2. The overall length of the cable is 34 meters.
- 3. The above data is located in file 34M10MO.CBL on the disk marked "Radiated Emissions Tests EMI Receiver".

12.6 Correction factors for LOG PERIODIC ANTENNA Type LPD 2010/A at 3 and 10 meter ranges.

Distance of 3 meters

Distance of	
FREQUENCY	AFE
(MHz)	(dB/m)
200.0	9.1
250.0	10.2
300.0	12.5
400.0	15.4
500.0	16.1
600.0	19.2
700.0	19.4
800.0	19.9
900.0	21.2
1000.0	23.5

Distance of 10 meters

FREQUENCY	AFE
(MHz)	(dB/m)
200.0	9.0
250.0	10.1
300.0	11.8
400.0	15.3
500.0	15.6
600.0	18.7
700.0	19.1
800.0	20.2
900.0	21.1
1000.0	23.2

- 1. Antenna serial number is 1038.
- 2. The above lists are located in file number 38M3O.ANT for a 3 meter range, and file number 38M100.ANT for a 10 meter range.
- 3. The files mentioned above are located on the disk marked "Radiated Emission Test EMI Receiver".

14.5 Correction factors for

LOG PERIODIC ANTENNA Type SAS-200/511 at 3 meter range.

FREQUENCY	ANTENNA
	FACTOR
(GHz)	(dB)
1.0	24.9
1.5	27.8
2.0	29.9
2.5	31.2
3.0	32.8
3.5	33.6
4.0	34.3
4.5	35.2
5.0	36.2
5.5	36.7
6.0	37.2
6.5	38.1

FREQUENCY	ANTENNA
	FACTOR
(GHz)	(dB)
7.0	38.6
7.5	39.2
8.0	39.9
8.5	40.4
9.0	40.8
9.5	41.1
10.0	41.7
10.5	42.4
11.0	42.5
11.5	43.1
12.0	43.4
12.5	44.4
13.0	44.6

- 1. Antenna serial number is 253.
- 2. The above lists are located in file number SAS3M0.ANT for a 3 meter range.
- 3. The files mentioned above are located on the disk marked "Antenna Factors".

14.6 Correction factors for

BICONICAL ANTENNA Type BCD-235/B, at 3 meter range

EDEOLIENOV	A F.F.
FREQUENCY	AFE
(MHz)	(dB/m)
20.0	19.4
30.0	14.8
40.0	11.9
50.0	10.2
60.0	9.1
70.0	8.5
80.0	8.9
90.0	9.6
100.0	10.3
110.0	11.0
120.0	11.5
130.0	11.7
140.0	12.1
150.0	12.6
160.0	12.8
170.0	13.0
180.0	13.5
190.0	14.0
200.0	14.8
210.0	15.3
220.0	15.8
230.0	16.2
240.0	16.6
250.0	17.6
260.0	18.2
270.0	18.4
280.0	18.7
290.0	19.2
300.0	19.9
310	20.7
320	21.9
330	23.4
340	25.1
350	27.0

- 1. Antenna serial number is 1041.
- 2. The above list is located in file 19BC10M1.ANT on the disk marked "Radiated Emissions Tests EMI Receiver".

14.7 Correction factors for

Type BCD-235/B, 10 meter range

FREQUENCY (MHz)	AFE (dB/m)
30.0	12.1
40.0	10.6
50.0	10.6
60.0	8.9
70.0	8.5
80.0	9.6
90.0	9.4
100.0	9.6
110.0	10.3
120.0	10.7
130.0	12.6
140.0	12.7
150.0	12.7
160.0	13.8
170.0	13.7
180.0	14.9
190.0	13.4
200.0	13.1
210.0	14.0
220.0	14.5
230.0	15.8
240.0	16.0
250.0	16.6
260.0	16.7
270.0	18.3
280.0	18.5
290.0	19.3
300.0	20.9

- 1. Antenna serial number is 1041.
- 2. The above list is located in file 41BC10M1.ANT on the disk marked "Radiated Emissions Tests EMI Receiver".

14.8 Correction factors for Double-Ridged Waveguide Horn Model: 3115, S/N 29845 at 3 meter range.

FREQUENCY	ANTENNA FACTOR	ANTENN A Gain	FREQUENCY	ANTENNA FACTOR	ANTENNA Gain
(GHz)	(dB 1/m)	(dBi)	(GHz)	(dB 1/m)	(dBi)
1.0	24.8	5.4	10.0	38.8	11.4
1.5	26.1	7.6	10.5	38.9	11.8
2.0	28.6	7.7	11.0	39.0	12.1
2.5	29.8	8.4	11.5	39.6	11.8
3.0	31.4	8.4	12.0	39.8	12.0
3.5	32.4	8.7	12.5	39.6	12.5
4.0	33.7	8.6	13.0	40.0	12.5
4.5	33.4	9.9	13.5	39.8	13.0
5.0	34.5	9.7	14.0	40.2	13.0
5.5	35.1	9.9	14.5	40.6	12.9
6.0	35.4	10.4	15.0	41.3	12.4
6.5	35.6	10.8	15.5	39.5	14.6
7.0	36.2	10.9	16.0	38.8	15.5
7.5	37.3	10.4	16.5	40.0	14.6
8.0	37.7	10.6	17.0	41.4	13.4
8.5	38.3	10.5	17.5	44.8	10.3
9.0	38.5	10.8	18.0	47.2	8.1
9.5	38.7	11.1			

14.9 Correction factors for

Horn Antenna Model: SWH-28 at 1 meter range.

AFE	Gain
(dB/m)	(dB1)
40.3	16.1
40.3	16.3
40.3	16.1
40.3	16.3
40.4	16.8
40.5	16.4
40.5	16.6
40.5	16.7
40.6	16.4
	(dB /m) 40.3 40.3 40.3 40.3 40.4 40.5 40.5

14.10 Correction factors for

Horn Antenna Model: V637

FREQUENCY	AFE	Gain
(GHz)	(dB/m)	(dB1)
26.0	43.6	14.9
27.0	43.7	15.1
28.0	43.8	15.3
29.0	43.9	15.5
30.0	43.9	15.8
31.0	44.0	16.0
32.0	44.1	16.2
33.0	44.1	16.4
34.0	44.1	16.7
35.0	44.2	16.9
36.0	44.2	17.1
37.0	44.2	17.4
38.0	44.2	17.6
39.0	44.2	17.8
40.0	44.2	18.0

14.11 Correction factors for ACTIVE LOOP ANTENNA Model 6502 S/N 9506-2950

	Magnetic	Electric
FREQUENCY	Antenna	Antenna
	Factor	Factor
(MHz)	(dB)	(dB)
.009	-35.1	16.4
.010	-35.7	15.8
.020	-38.5	13.0
.050	-39.6	11.9
.075	-39.8	11.8
.100	-40.0	11.6
.150	-40.0	11.5
.250	-40.0	11.6
.500	-40.0	11.5
.750	-40.1	11.5
1.000	-39.9	11.7
2.000	-39.5	12.0
3.000	-39.4	12.1
4.000	-39.7	11.9
5.000	-39.7	11.8
10.000	40.2	11.3
15.000	-40.7	10.8
20.000	-40.5	11.0
25.000	-41.3	10.2
30.000	42.3	9.2