

Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel Tel. +972 4628 8001 Fax. +972 4628 8277

E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47CFR part 15 subpart C §15.247 (FHSS) and subpart B, RSS-247 Issue 2:2017, RSS-Gen Issue 5:2019, ICES-003 Issue 6:2016

FOR:

Visonic Ltd.

Power-G Modem LP Module

Model: Power-G Modem LP

FCC ID: WP3PGMODEMLP

IC: 1467C-PGMODEMLP

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	Changes made in EUT	5
6.4	Transmitter characteristics	6
7	Transmitter tests according to 47CFR part 15 subpart C and RSS-247 requirements	7
7.1	20 dB bandwidth	7
7.2	Carrier frequency separation	10
7.3	Number of hopping frequencies	12
7.4	Average time of occupancy	14
7.5	Peak output power	17
7.6	Field strength of spurious emissions	21
7.7	Antenna requirements	32
8	Unintentional emissions	33
8.1	Radiated emission measurements	33
9	APPENDIX A Test equipment and ancillaries used for tests	36
10	APPENDIX B Test equipment correction factors	37
11	APPENDIX C Measurement uncertainties	41
12	APPENDIX D Test laboratory description	42
13	APPENDIX E Specification references	43
14	APPENDIX F Abbreviations and acronyms	44

1 Applicant information

Client name: Visonic Ltd.

Address: 24 Habarzel street, Tel Aviv 69710, Israel

 Telephone:
 +972 3645 6832

 Fax:
 +972 3645 6788

 E-mail:
 zuri.rubin@jci.com

 Contact name:
 Mr. Zuri Rubin

2 Equipment under test attributes

Product name: Power-G Modem LP Module

Product type: Transceiver

Model(s): Power-G Modem LP

Serial number: NA

Hardware version:E-209563Software release:JS-703874Receipt date26-Mar-20

3 Manufacturer information

Manufacturer name: Visonic Ltd.

Address: 24 Habarzel street, Tel Aviv 69710, Israel

 Telephone:
 +972 3645 6832

 Fax:
 +972 3645 6788

 E-Mail:
 zuri.rubin@jci.com

 Contact name:
 Mr. Zuri Rubin

4 Test details

Project ID: 37717

Location: Primary: Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel

Test started: 13-May-20
Test completed: 02-Jun-20

Test specification(s): FCC 47CFR part 15 subpart C §15.247 (FHSS) and subpart B,

RSS-247 Issue 2:2017, RSS-Gen Issue 5:2019, ICES-003 Issue 6:2016

Not required

Pass

5 Tests summary

Test

Transmitter	characteristics
iransmitter	cnaracteristics

Section 15.247(a)1 / RSS-247 section 5.1(c), 20 dB bandwidth	Pass
Section 15.247(b) / RSS-247 section 5.4(a), Peak output power	Pass
Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions	Pass
Section 15.247(a)1 / RSS-247 section 5.1(b), Frequency separation	Pass
Section 15.247(a)1 / RSS-247 section 5.1(c), Number of hopping frequencies	Pass
Section 15.247(a)1 / RSS-247 section 5.1(c), Average time of occupancy	Pass
Section 15.247(i)5 / RSS-102 section 2.5, RF exposure	Pass, the exhibit to the application of certification is provided
Continue 15 247(d) / DCC 247 postion 5 5 Emissions at hand address	Not as actional
Section 15.247(d) / RSS-247 section 5.5, Emissions at band edges	Not required
Section 15.247 (d) / RSS-247 section 5.5, Emissions at band edges Section 15.203 / RSS-Gen section 8.3, Antenna requirements	Pass
•	•

Unintentional emissions

Section 15.107/ICES-003, Section 6.1, Class B,

Conducted emission at AC power port

Section 15.109/ RSS-Gen section 7.1.2 /ICES-003, Section 6.2, Class B,

Radiated emission

The EUT were certified by FCC under FCC ID: WP3PGMODEMLP and

IC: 1467C-PGMODEMLP were revised with the following changes:

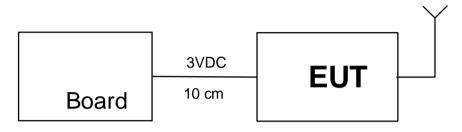
- 1. Removed microcontroller IC, and peripheral components.
- 2. Modified the PCB due to the remove of the microcontroller IC.

The relevant tests were performed to support Application for Class II permissive changes certification.

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mr. I. Zilberstein, test engineer, EMC & Radio	13-May-20 – 02-Jun-20	wo-f-
Reviewed by:	Mrs. S. Peysahov Sheynin, test engineer, EMC & Radio	13-Jun-20	13
Approved by:	Mr. S. Samokha, technical manager, EMC & Radio	23-Jun-20	Can


6 EUT description

Note: The following data in this clause is provided by the customer and represents his sole responsibility

6.1 General information

The EUT is a battery powered RF module, operating in 902-928 MHz with FHSS modulation.

6.2 Test configuration

6.3 Changes made in EUT

No changes were implemented in the EUT during the testing.

6.4 Transmitter characteristics

. .			i iai aotoi i	51.00									
Туре	of equipment												
Χ			ent with or with										
			(Equipment wh					d withii	n ano	ther type of eq	uipme	nt)	
	Plug-in card	(Equipme	ent intended for	a varie	ety of ho	st sy	stems)						
Intend	ded use		Condition of	use									
	fixed						m from all peo						
Χ	mobile						0 cm from all p						
	portable May operate at a distance closer than 20 cm to human body												
Assig	ned frequency	/ ranges		902 –	928 MF	łz							
Opera	ating frequenc	ies		912.7	50 – 919	9.106	6 MHz						
Marrie			_	At trai	nsmitter	50 Ω	RF output co	necto	r				
waxii	num rated out	put powe	r	Peak	output p	owe	r				•	12.29	dBm
				Х	No								
							conti	nuous	variat	ole			
Is tran	nsmitter outpu	t power v	/ariable?		Voc		stepp	ed var	iable	with stepsize			dB
		-			Yes	r	ninimum RF po	m RF power				dBm	
						r	naximum RF p	ower				dBm	
Anten	na connection	า											
								int		with temporal	ry RF o	conne	ector
	unique coup	ling	star	ndard connector		S IX without tempo							
								al	^	without tempt	Jiaiy i	VI CO	Tillector
Anten	na/s technica	l characte	eristics										
Туре			Manufac	turer			Model number			Ga	ain		
Exterr	nal		Foxconn)	ZigBee Antenna 2 c			dBi					
Trans	mitter aggrega	ate data r	ate/s		5	0 kb	ps						
Туре	of modulation					GFSk							
	lating test sign	nal (base	band)		F	PRBS	3						
	mitter power s												
X	Battery		ninal rated vol	tage	3	3.0 VI	DC to module	Batt	ery ty	ре			
	DC	Non	ninal rated vol	tage					, ,	'			
	AC mains	Non	ninal rated vol	tage				Fred	uenc	у			
Comn	non power sou	ırce for tı	ransmitter and	l receiv	/er			Χ	У	es			no
					Χ		equency hoppi						
Sprea	d spectrum te	chnique	used				gital transmissi	on sys	tem (DTS)			
	Hybrid												
Sprea	d spectrum pa			ers tes	ted per	FCC	15.247 only						
		tal numbe			50								
FHSS		andwidth p			102.8 k								
Max. separation of hor			ation of hops		130.4 k	HZ							

Test specification:	Section 15.247(a)1, RSS-247 section 5.1(3), 20 dB bandwidth					
Test procedure:	ANSI C63.10, section 7.8.7					
Test mode:	Compliance	Verdict: PASS				
Date(s):	21-May-20	verdict.	PASS			
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1007 hPa	Power: 3 VDC			
Remarks:						

7 Transmitter tests according to 47CFR part 15 subpart C and RSS-247 requirements

7.1 20 dB bandwidth

7.1.1 General

This test was performed to measure the 20 dB bandwidth of the transmitter hopping channel. Specification test limits are given in Table 7.1.1.

Table 7.1.1 The 20 dB bandwidth limits


Assigned frequency, MHz	Maximum bandwidth, kHz	Modulation envelope reference points*, dBc
902.0 - 928.0	250	
2400.0 - 2483.5	NA	20
5725.0 - 5850.0	1000	

^{* -} Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.

7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- **7.1.2.2** The EUT was set to transmit modulated carrier at maximum data rate.
- **7.1.2.3** The transmitter bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.1.2 and associated plot.
- **7.1.2.4** The test was repeated for each data rate and each modulation format.

Figure 7.1.1 The 20 dB bandwidth test setup

Test specification:	Section 15.247(a)1, RSS-247 section 5.1(3), 20 dB bandwidth					
Test procedure:	ANSI C63.10, section 7.8.7					
Test mode:	Compliance	Verdict: PASS				
Date(s):	21-May-20	verdict.	PASS			
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1007 hPa	Power: 3 VDC			
Remarks:						

Table 7.1.2 The 20 dB bandwidth test results

ASSIGNED FREQUENCY BAND: 902.0 – 928.0 MHz

DETECTOR USED:

SWEEP TIME:

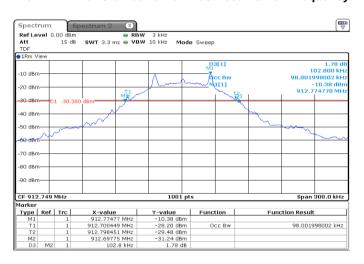
VIDEO BANDWIDTH:

MODULATION ENVELOPE REFERENCE POINTS:

Peak
Auto
Auto
PRBW

MODULATION ENVELOPE REFERENCE POINTS:

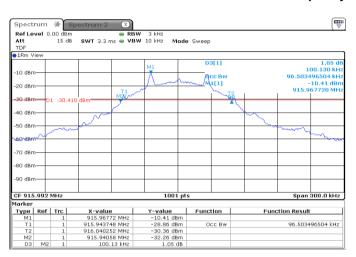
Disabled

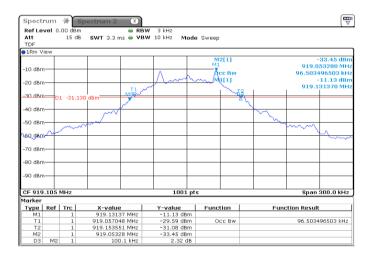

Carrier frequency, MHz	Type of modulation	Data rate, kbps	99% BW	20 dB bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
912.750			98.002	102.800	250	-147.200	Pass
915.863	QPSK	50	96.503	100.130	250	-149.870	Pass
919.106			96.503	100.100	250	-149.900	Pass

Reference numbers of test equipment used

HL 4355	HL 3434	HL 4135	HL 5397					
---------	---------	---------	---------	--	--	--	--	--

Full description is given in Appendix A.


Plot 7.1.1 The 20 dB bandwidth test result at low frequency



Test specification:	Section 15.247(a)1, RSS-247 section 5.1(3), 20 dB bandwidth					
Test procedure:	ANSI C63.10, section 7.8.7					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	21-May-20	verdict: PASS				
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1007 hPa	Power: 3 VDC			
Remarks:	-					

Plot 7.1.2 The 20 dB bandwidth test result at mid frequency

Plot 7.1.3 The 20 dB bandwidth test result at high frequency

Test specification:	Section 15.247(a)1, RSS-247 section 5.1(2), Frequency separation					
Test procedure:	ANSI C63.10, section 7.8.2					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	02-Jun-20	verdict.	PASS			
Temperature: 23 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC			
Remarks:	•					

7.2 Carrier frequency separation

7.2.1 General

This test was performed to measure frequency separation between the peaks of adjacent channels. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Carrier frequency separation limits

Assigned frequency range,	c, Carrier frequency separation	
MHz	Output power 30 dBm	Output power 21 dBm
902.0 - 928.0	25 kHz or 20 dB bandwidth of the	25 kHz or two-thirds of the 20 dB
2400.0 - 2483.5	hopping channel,	bandwidth of the hopping channel,
5725.0 – 5850.0	whichever is greater	whichever is greater

7.2.2 Test procedure

- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized with frequency hopping function enabled and its proper operation was checked.
- **7.2.2.2** The spectrum analyzer span was set to capture the carrier frequency and both of adjacent channels, the lower and the higher. The resolution bandwidth was set wider than 1 % of the frequency span.
- 7.2.2.3 The spectrum analyzer was set in max hold mode and allowed trace to stabilize.
- **7.2.2.4** The frequency separation between the peaks of adjacent channels was measured as provided in Table 7.2.2 and associated plots.

Figure 7.2.1 Carrier frequency separation test setup

Test specification:	Section 15.247(a)1, RSS-24	Section 15.247(a)1, RSS-247 section 5.1(2), Frequency separation		
Test procedure:	ANSI C63.10, section 7.8.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	02-Jun-20	verdict.	PASS	
Temperature: 23 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC	
Remarks:	•			

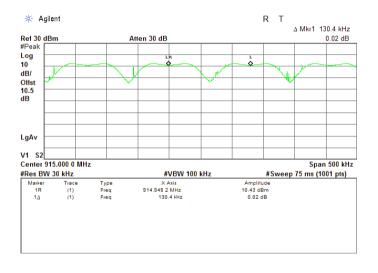
Table 7.2.2 Carrier frequency separation test results

ASSIGNED FREQUENCY: 902 – 928 MHz

MODULATION:GFSKMODULATING SIGNAL:PRBSDETECTOR USED:PeakRESOLUTION BANDWIDTH:≥ 30 KHzVIDEO BANDWIDTH:≥ RBWFREQUENCY HOPPING:Enabled

20 dB BANDWIDTH: 102.800 kHz at Low carrier frequency

l	Carrier frequency separation, kHz	Limit, kHz	Margin*	Verdict
I	130.4	102.8	27.6	Pass


^{* -} Margin = Carrier frequency separation – specification limit.

Reference numbers of test equipment used

_		=	<u> </u>			
	HL 3818	HL 3789				

Full description is given in Appendix A.

Plot 7.2.1 Carrier frequency separation

Test specification:	Section 15.247(a)1, RSS-24	17 section 5.1(3), Number o	f hopping frequencies
Test procedure:	ANSI C63.10, section 7.8.3		
Test mode:	Compliance	Verdict: PASS	
Date(s):	02-Jun-20	verdict.	FASS
Temperature: 23 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC
Remarks:			

7.3 Number of hopping frequencies

7.3.1 General

This test was performed to calculate the number of hopping frequencies used by the EUT. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Minimum number of hopping frequencies

Assigned frequency range, MHz	Number of hopping frequencies	
902.0 – 928.0	50 (if the 20 dB bandwidth is less than 250 kHz) 25 (if the 20 dB bandwidth is 250 kHz or greater)	
2400.0 – 2483.5	15	
5725.0 – 5850.0	75	

7.3.2 Test procedure

- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized with frequency hopping function enabled and its proper operation was checked.
- **7.3.2.2** Initially the spectrum analyzer span was set equal to frequency band of operation and the resolution bandwidth was set wider than 1 % of the frequency span. If the separate hopping channels were not clearly resolved the frequency band of operation was broken to sections and the resolution bandwidth was set wider than 1 % of the frequency span of each section.
- 7.3.2.3 The spectrum analyzer was set in max hold mode and allowed trace to stabilize.
- 7.3.2.4 The number of frequency hopping channels was calculated as provided in Table 7.3.2 and associated plots.

Figure 7.3.1 Hopping frequencies test setup

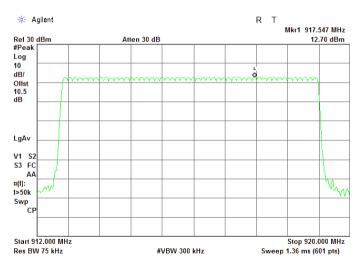
Test specification:	Section 15.247(a)1, RSS-24	7 section 5.1(3), Number o	f hopping frequencies	
Test procedure:	ANSI C63.10, section 7.8.3			
Test mode:	Compliance	Verdict: PASS		
Date(s):	02-Jun-20	verdict: PASS		
Temperature: 23 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC	
Remarks:				

Table 7.3.2 Hopping frequencies test results

ASSIGNED FREQUENCY: 902 – 928 MHz

MODULATION:GFSKDETECTOR USED:PeakRESOLUTION BANDWIDTH:75 KHzVIDEO BANDWIDTH:≥ RBWFREQUENCY HOPPING:Enabled

Number of hopping frequencies	Minimum number of hopping frequencies	Margin*	Verdict
50	50		Pass


^{* -} Margin = Number of hopping frequencies – Minimum number of hopping frequencies.

Reference numbers of test equipment used

	•	•			
HL 3818	HL 3789				

Full description is given in Appendix A.

Plot 7.3.1 Number of hopping frequencies

Test specification:	Section 15.247(a)1, RSS-24	7 section 5.1(3), Average t	ime of occupancy
Test procedure:	ANSI C63.10, section 7.8.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	02-Jun-20	verdict.	FASS
Temperature: 23 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC
Remarks:			

7.4 Average time of occupancy

7.4.1 General

This test was performed to calculate the average time of occupancy (dwell time) on any frequency channel of the EUT. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Average time of occupancy limits

Assigned frequency range, MHz	Maximum average time of occupancy, s	Investigated period, s	Number of hopping frequencies
902.0 - 928.0	0.4	20.0	≥ 50
902.0 – 928.0	0.4	10.0	< 50
2400.0 - 2483.5	0.4	0.4 × N	N (≥ 15)
5725.0 - 5850.0	0.4	30.0	≥ 75

7.4.2 Test procedure

- **7.4.2.1** The EUT was set up as shown in Figure 7.4.1, energized with frequency hopping function enabled and its proper operation was checked.
- **7.4.2.2** The spectrum analyzer span was set to zero centered on a hopping channel.
- **7.4.2.3** The single transmission duration and period were measured with oscilloscope.
- **7.4.2.4** The average time of occupancy was calculated as the single transmission time multiplied by the investigated period and divided by the single transmission period.
- **7.4.2.5** The test was repeated at each data rate and modulation type as provided in Table 7.4.2 and associated plots.

Figure 7.4.1 Average time of occupancy test setup

Test specification:	Section 15.247(a)1, RSS-2	Section 15.247(a)1, RSS-247 section 5.1(3), Average time of occupancy		
Test procedure:	ANSI C63.10, section 7.8.4			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	02-Jun-20	verdict.	PASS	
Temperature: 23 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC	
Remarks:	•			

Table 7.4.2 Average time of occupancy test results

ASSIGNED FREQUENCY: 902 – 928 MHz

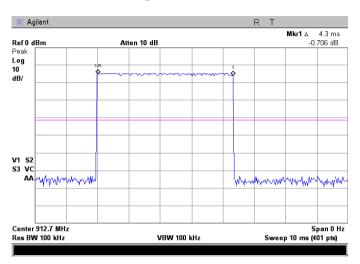
MODULATION: GFSK
DETECTOR USED: Peak
NUMBER OF HOPPING FREQUENCIES: 50
INVESTIGATED PERIOD: 20 s
FREQUENCY HOPPING: Enabled

Carrier frequency, MHz	Single transmission duration, ms	Single transmission period, s			Symbol rate, Msymbol/s	Limit,	Margin,	Verdict
IVITIZ	duration, ms	periou, s	occupancy*, s	rnha	Wisyllibol/s	5	5	
919.12	4.3	255	0.0043	50	NA	0.400	-0.3957	Pass

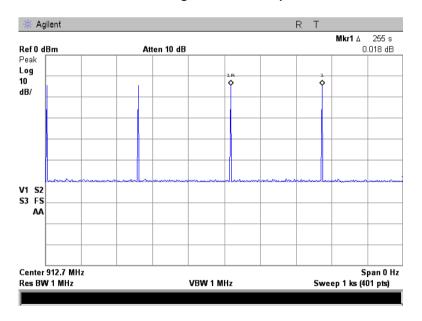
^{* -} Average time of occupancy = (Single transmission duration × Investigated period) / (Single transmission period × number of hopping channels).

Reference numbers of test equipment used

		<u>-</u>				
ł	HL 2909	HL 3770	HL 3780			


Full description is given in Appendix A.

^{** -} Margin = Average time of occupancy – specification limit.



Test specification:	Section 15.247(a)1, RSS-247 section 5.1(3), Average time of occupancy					
Test procedure:	ANSI C63.10, section 7.8.4					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	02-Jun-20	verdict.	PASS			
Temperature: 23 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC			
Remarks:						

Plot 7.4.1 Single transmission duration

Plot 7.4.2 Single transmission period

Test specification:	Test specification: Section 15.247(b), RSS-247 section 5.4(1), Peak output power					
Test procedure:	ANSI C63.10, section 7.8.5					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	02-Jun-20	verdict.	PASS			
Temperature: 23.6 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC			
Remarks:						

7.5 Peak output power

7.5.1 General

This test was performed to measure the maximum peak output power radiated by transmitter. Specification test limits are given in Table 7.5.1

Table 7.5.1 Peak output power limits

Assigned	Peak outp	out power*	Equivalent field strength limit	Maximum
frequency range, MHz	W	dBm	@ 3m, dB(μV/m)*	antenna gain, dBi
902.0 - 928.0	0.25 (<50 hopping channels)	24.0(<50 hopping channels)	125.2 (<50 hopping channels)	
902.0 - 926.0	1.0 (≥50 hopping channels)	30.0 (≥50 hopping channels)	131.2 (≥50 hopping channels)	
2400.0 – 2483.5	0.125 (<75 hopping channels)	21.0(<75 hopping channels)	122.2 (<75 hopping channels)	6.0*
2400.0 – 2463.5	1.0 (≥75 hopping channels)	30.0 (≥75 hopping channels)	131.2 (≥75 hopping channels)	
5725.0 – 5850.0	1.0	30.0	131.2	

^{*-} Equivalent field strength limit was calculated from the peak output power as follows: E=sqrt(30×P×G)/r, where P is peak output power in Watts, r is antenna to EUT distance in meters and G is transmitter antenna gain in dBi.

- by 1 dB for every 3 dB that the directional gain of antenna exceeds 6 dBi for fixed point-to-point transmitters operate in 2400-2483.5 MHz band;
- without any corresponding reduction for fixed point-to-point transmitters operate in 5725-5850 MHz band;
- by the amount in dB that the directional gain of antenna exceeds 6 dBi for the rest of transmitters.

7.5.2 Test procedure

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- **7.5.2.2** The EUT was adjusted to produce maximum available to end user RF output power.
- **7.5.2.3** The frequency span of spectrum analyzer was set approximately 5 times wider than 20 dB bandwidth of the EUT and the resolution bandwidth was set wider than 20 dB bandwidth of the EUT. The spectrum analyzer trace was allowed to stabilize and the maximum peak output power was measured as provided in Table 7.5.2 and associated plots

^{**-} The limit is provided in terms of conducted RF power at the antenna connector. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value as follows:

Test specification: Section 15.247(b), RSS-247 section 5.4(1), Peak output power					
Test procedure:	ANSI C63.10, section 7.8.5				
Test mode:	Compliance	Vordiet: DACC			
Date(s):	02-Jun-20	Verdict: PASS			
Temperature: 23.6 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC		
Remarks:					

Figure 7.5.1 Peak output power test setup

Table 7.5.2 Peak output power test results

ASSIGNED FREQUENCY:

MODULATION:

BIT RATE:

TRANSMITTER OUTPUT POWER SETTINGS:

DETECTOR USED:

902 – 928 MHz

GFSK

50 kbps

Maximum

Peak

EUT 20 dB BANDWIDTH:

102.80 kHz at Low carrier frequency
100.13 kHz at Mid carrier frequency

100.13 kHz at Mid carrier frequency 100.10 kHz at High carrier frequency

RESOLUTION BANDWIDTH: 1000 kHz
VIDEO BANDWIDTH: 3000 kHz
FREQUENCY HOPPING: Disabled
NUMBER OF FREQUENCY HOPPING CHANNELS: 50

Carrier frequency, MHz	Spectrum analyzer reading, dBm	External attenuation, dB	Cable loss, dB	Peak output power, dBm	Limit, dBm	Margin*, dB	Verdict
912.750	12.13	NA	NA	12.13	30.00	-17.87	Pass
915.865	12.28	NA	NA	12.28	30.00	-17.72	Pass
919.106	12.29	NA	NA	12.29	30.00	-17.71	Pass

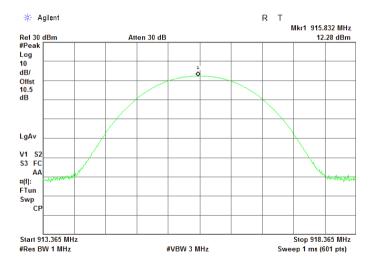
^{* -} Margin = Peak output power – specification limit.

Note: Maximum peak output power was obtained at Unom (115%Unom, 85%Unom) input power voltage.

Reference numbers of test equipment used


_		•	•			
	HL 3818	HL 3789	HL 4068			

Full description is given in Appendix A.



Test specification:	Section 15.247(b), RSS-247 section 5.4(1), Peak output power					
Test procedure:	ANSI C63.10, section 7.8.5					
Test mode:	Compliance	Verdict: PASS				
Date(s):	02-Jun-20					
Temperature: 23.6 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC			
Remarks:						

Plot 7.5.1 Peak output power at low frequency

Plot 7.5.2 Peak output power at mid frequency

Test specification:	Test specification: Section 15.247(b), RSS-247 section 5.4(1), Peak output power					
Test procedure:	ANSI C63.10, section 7.8.5					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	02-Jun-20	verdict.	PASS			
Temperature: 23.6 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC			
Remarks:						

Plot 7.5.3 Peak output power at high frequency

Test specification:	ification: Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6	3				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	13-May-20	verdict.	PASS			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1015 hPa	Power: 3 VDC			
Remarks:	-					

7.6 Field strength of spurious emissions

7.6.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.6.1.

Table 7.6.1 Radiated spurious emissions limits

Frequency, MHz	Field streng	th at 3 m within res dB(μV/m)***	Attenuation of field strength of spurious versus	
r requeriey, imiz	Peak	Quasi Peak	Average	carrier outside restricted bands, dBc***
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**	
0.090 - 0.110	NA	108.5 – 106.8**	NA	
0.110 - 0.490	126.8 – 113.8	NA	106.8 - 93.8**	
0.490 - 1.705		73.8 – 63.0**		
1.705 – 30.0*		69.5		20.0
30 – 88	NA	40.0	NA	20.0
88 – 216	INA	43.5	INA	
216 – 960		46.0		
960 - 1000		54.0		
1000 – 10 th harmonic	74.0	NA	54.0	

^{*-} The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: Lims2 = Lims1 + 40 log (S1/S2),

where S_1 and S_2 – standard defined and test distance respectively in meters.

7.6.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.6.2.1 The EUT was set up as shown in Figure 7.6.1, energized and the performance check was conducted.
- **7.6.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated around its vertical axis.
- 7.6.2.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

7.6.3 Test procedure for spurious emission field strength measurements above 30 MHz

- **7.6.3.1** The EUT was set up as shown in Figure 7.6.2, Figure 1.1.3, energized and the performance check was conducted.
- **7.6.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.6.3.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

^{**-} The limit decreases linearly with the logarithm of frequency.

^{*** -} The field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

Test specification:	Section 15.247(d), RSS-247	section 5.5, Radiated spur	rious emissions
Test procedure:	ANSI C63.10, sections 6.5, 6.6		
Test mode:	Compliance	Verdict:	PASS
Date(s):	13-May-20	verdict.	PASS
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1015 hPa	Power: 3 VDC
Remarks:			

Figure 7.6.1 Setup for spurious emission field strength measurements below 30 MHz

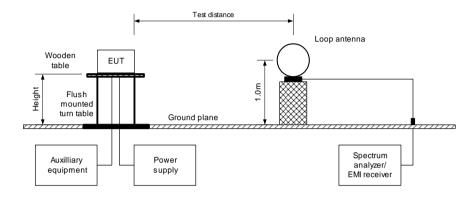


Figure 7.6.2 Setup for spurious emission field strength measurements from 30 to 1000 MHz

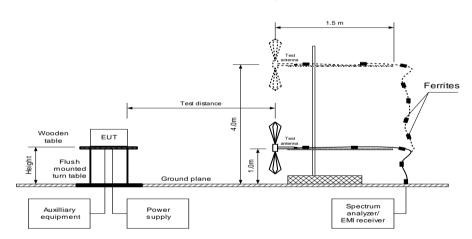
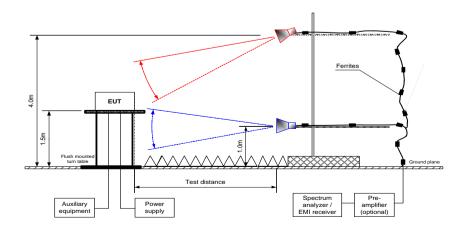



Figure 7.6.3 Setup for spurious emission field strength measurements above1000 MHz

Test specification:	Section 15.247(d), RSS-247	section 5.5, Radiated spur	rious emissions
Test procedure:	ANSI C63.10, sections 6.5, 6.6		
Test mode:	Compliance	Verdict:	PASS
Date(s):	13-May-20	verdict.	PASS
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1015 hPa	Power: 3 VDC
Remarks:			

Table 7.6.2 Field strength of emissions outside restricted bands

ASSIGNED FREQUENCY: 902.0 - 928.0 MHz INVESTIGATED FREQUENCY RANGE: 0.009 - 9500 MHz

TEST DISTANCE: 3 m MODULATION: **GFSK** BIT RATE: 50 kbps TRANSMITTER OUTPUT POWER SETTINGS: Maximum **DETECTOR USED:** Peak RESOLUTION BANDWIDTH: 100 kHz VIDEO BANDWIDTH: 300 kHz

TEST ANTENNA TYPE:

Active loop (9 kHz – 30 MHz)
Biconilog (30 MHz – 1000 MHz)
Double ridged guide (above 1000 MHz)

FREQUENC	Y HOPPING:				sabled	ide (above 1000	/ IVII 12)		
Frequency, MHz	Field strength of spurious, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	Field strength of carrier, dB(μV/m)	Attenuation below carrier, dBc	Limit, dBc	Margin, dB**	Verdict
Low carrier fre	equency								
1825.440167	45.79	Horizontal	1.53	305		-59.48		-39.48	
5476.697500	49.14	Vertical	1.53	0	105.27	-56.13	20.0	-36.13	Pass
6389.275000	56.46	Vertical	1.27	177	105.27	-48.81	20.0	-28.81	Fa55
9696.355000	50.01	Horizontal	2.84	90		-55.26		-35.26	
Mid carrier fre	quency								
1832.070167	45.02	Horizontal	1.53	308		-60.91		-40.91	
5496.034833	47.87	Vertical	1.80	360	105.93	-58.06	20.0	-38.06	Pass
6411.927333	55.00	Vertical	1.54	181		-50.93		-30.93	
High carrier fr	equency								
1838.147500	44.74	Horizontal	1.53	306		-61.28		-41.28	
5514.767333	45.25	Vertical	1.79	9	106.02	-60.77	20.0	-40.77	Pass
6433.870000	54.59	Horizontal	2.14	161		-51.43		-31.43	

^{*-} EUT front panel refers to 0 degrees position of turntable.

^{**-} Margin = Attenuation below carrier – specification limit.

Test specification:	Section 15.247(d), RSS-247	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	13-May-20	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1015 hPa	Power: 3 VDC				
Remarks:	•						

Table 7.6.3 Field strength of spurious emissions above 1 GHz within restricted bands

ASSIGNED FREQUENCY: 902.0 – 928.0 MHz INVESTIGATED FREQUENCY RANGE: 0.009 - 9500 MHz

TEST DISTANCE: 3 m

MODULATION: GFSK
BIT RATE: 50 kbps

TRANSMITTER OUTPUT POWER SETTINGS: Maximum
DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 100 kHz
VIDEO BANDWIDTH: 300 kHz

TEST ANTENNA TYPE:

Active loop (9 kHz – 30 MHz)
Biconilog (30 MHz – 1000 MHz)

Double ridged guide (above 1000 MHz)

FREQUENCY HOPPING: Disabled

TIVEQUEIN	CITIOITIN	<u> </u>				Sabicu					
Eroguenov	Antenr	na	^~imuth	Peak field s	trength(VB	W=3 MHz)	Averag	e field stren	gth(VBW=1	0 Hz)	
Frequency, MHz	Polarization	Height, m	Azimuth, degrees*	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB**	Measured, dB(μV/m)	Calculated, dB(μV/m)	Limit, dB(μV/m)	Margin, dB***	Verdict
Low carrier from	equency										
2738.517667	Horizontal	1.27	76	48.68	74.0	-25.32	48.68	21.35	54.0	-32.65	
4563.672667	Vertical	1.53	185	56.42	74.0	-17.58	56.42	29.09	54.0	-24.91	
7302.352500	Vertical	1.02	349	53.01	74.0	-20.99	53.01	25.68	54.0	-28.32	Pass
8214.930000	Vertical	1.63	358	50.58	74.0	-23.42	50.58	23.25	54.0	-30.75	
9127.007500	Horizontal	1.00	26	49.70	74.0	-24.30	49.70	22.37	54.0	-31.63	
Mid carrier fre	quency										
2747.910000	Horizontal	1.27	79	48.04	74.0	-25.96	48.04	20.71	54.0	-33.29	
4580.142333	Horizontal	1.27	148	55.23	74.0	-18.77	55.23	27.90	54.0	-26.10	
7328.267667	Vertical	1.00	13	50.94	74.0	-23.06	50.94	23.61	54.0	-30.39	Pass
8243.607500	Vertical	1.79	9	49.22	74.0	-24.78	49.22	21.89	54.0	-32.11	
9160.000000	Vertical	1.00	348	50.24	74.0	-23.76	50.24	22.91	54.0	-31.09	
High carrier fr	equency										
2757.302333	Horizontal	1.28	75	48.64	74.0	-25.36	48.64	21.31	54.0	-32.69	
4595.612500	Horizontal	1.27	150	55.22	74.0	-18.78	55.22	27.89	54.0	-26.11	
7353.077500	Vertical	1.00	0	51.99	74.0	-22.01	51.99	24.66	54.0	-29.34	Pass
8271.680167	Vertical	1.02	360	49.37	74.0	-24.63	49.37	22.04	54.0	-31.96	
9191.387667	Vertical	1.04	317	50.06	74.0	-23.94	50.06	22.73	54.0	-31.27	

^{*-} EUT front panel refers to 0 degrees position of turntable.

where Calculated field strength = Measured field strength + average factor.

Table 7.6.4 Average factor calculation

Transmis	sion pulse	Transmis	sion burst	Transmission train	Average feeter
Duration, ms	ion, ms Number of pulses within 100 ms Duration, r		Period, ms	duration, ms	Average factor, dB
4.3	1	NA	NA	NA	-27.33

Average factor or pulse train shorter than 100 ms was calculated as follows:

$$Average\ factor = 20 \times \log_{10} \left(\frac{Pulse\ duration}{Pulse\ period} \times \frac{Burst\ duration}{Train\ duration} \times Number\ of\ bursts\ within\ pulse\ train \right)$$

Average factor or pulse train longer than 100 ms was calculated as follows:

$$Average\ factor = 20 \times \log_{10} \left(\frac{Pulse\ duration}{Pulse\ period} \times \frac{Burst\ duration}{100\ ms} \times Number\ of\ bursts\ within\ 100\ ms \right)$$

^{**-} Margin = Measured field strength - specification limit.

^{***-} Margin = Calculated field strength - specification limit,

Test specification:	Section 15.247(d), RSS-24	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6	3					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	13-May-20	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1015 hPa	Power: 3 VDC				
Remarks:	-						

Table 7.6.5 Field strength of spurious emissions below 1 GHz within restricted bands

ASSIGNED FREQUENCY: 902-928 MHz
INVESTIGATED FREQUENCY RANGE: 0.009 – 1000 MHz

TEST DISTANCE: 3 m

MODULATION: GFSK

MODULATING SIGNAL: PRBS

BIT RATE: 50 Kbps

TRANSMITTER OUTPUT POWER SETTINGS: Maximum

RESOLUTION BANDWIDTH: 120 kHz

VIDEO BANDWIDTH: > Resolution bandwidth
TEST ANTENNA TYPE: Active loop (9 kHz – 30 MHz)
Biconilog (30 MHz – 1000 MHz)

FREQUENCY HOPPING: Disabl

FREQUENC	Y HOPPING	1.		Disabled				
Fraguanay	Frequency, Peak	Qua	Antenna	Antenna	Turn-table			
MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	' I Margin dB		polarization	height, m	position**, degrees	Verdict
Low carrier	frequency							
		No sp	urious emissio	ons were found				Pass
Mid carrier	frequency							
		No sp	urious emissio	ons were found				Pass
High carrier	frequency							
		No sp	urious emissio	ons were found		•		Pass

^{*-} Margin = Measured emission - specification limit.

^{**-} EUT front panel refer to 0 degrees position of turntable.

Test specification:	Section 15.247(d), RSS-247	section 5.5, Radiated spur	rious emissions
Test procedure:	ANSI C63.10, sections 6.5, 6.6		
Test mode:	Compliance	Verdict:	PASS
Date(s):	13-May-20	verdict.	PASS
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1015 hPa	Power: 3 VDC
Remarks:			

Table 7.6.6 Restricted bands according to FCC section 15.205

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2690 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 20 C
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	Above 38.6

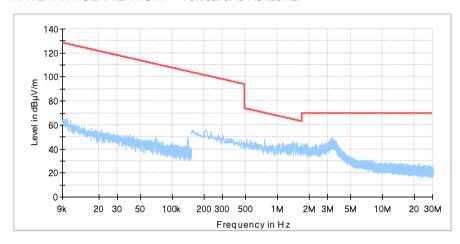
Table 7.6.7 Restricted bands according to RSS-Gen

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.291 - 8.294	16.80425 - 16.80475	399.9 - 410	3260 - 3267	10.6 - 12.7
2.1735 - 2.1905	8.362 - 8.366	25.5 - 25.67	608 - 614	3332 - 3339	13.25 - 13.4
3.020 - 3.026	8.37625 - 8.38675	37.5 - 38.25	960 – 1427	3345.8 - 3358	14.47 – 14.5
4.125 – 4.128	8.41425 - 8.41475	73 - 74.6	1435 – 1626.5	3500 – 4400	15.35 – 16.2
4.17725 – 4.17775	12.29 – 12.293	74.8 - 75.2	1645.5 - 1646.5	4500 - 5150	17.7 – 21.4
4.20725 - 4.20775	12.51975 – 12.52025	108 – 138	1660 - 1710	5350 - 5460	22.01 - 23.12
5.677 - 5.683	12.57675 – 12.57725	156.52475 - 156.52525	1718.8 - 1722.2	7250 - 7750	23.6 - 24
6.215 - 6.218	13.36 – 13.41	156.7 - 156.9	2200 - 2300	8025 - 8500	31.2 - 31.8
6.26775 - 6.26825	16.42 - 16.423	240 - 285	2310 - 2390	9000 - 9200	36.43 - 36.5
6.31175 - 6.31225	16.69475 - 16.69525	322 - 335.4	2655 - 2900	9300 - 9500	Above 38.6

Reference numbers of test equipment used

Н	L 0446	HL 3903	HL 5405	HL 4339	HL 4360	HL 4933	HL 5288	HL 5085

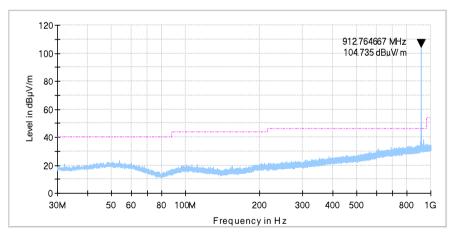
Full description is given in Appendix A.


Test specification:	Section 15.247(d), RSS-24	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6	3					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	13-May-20	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1015 hPa	Power: 3 VDC				
Remarks:	-						

Plot 7.6.1 Radiated emission measurements from 9 kHz to 30 MHz at the low; mid; high carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m


ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.6.2 Radiated emission measurements from 30 to 1000 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber

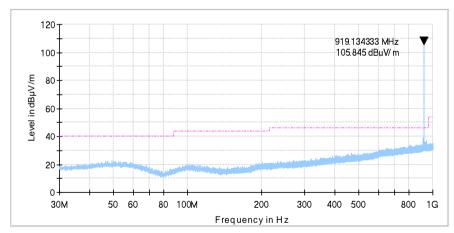
TEST DISTANCE: 3 m


Test specification:	Section 15.247(d), RSS-247	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	13-May-20	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1015 hPa	Power: 3 VDC				
Remarks:	•						

Plot 7.6.3 Radiated emission measurements from 30 to 1000 MHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber

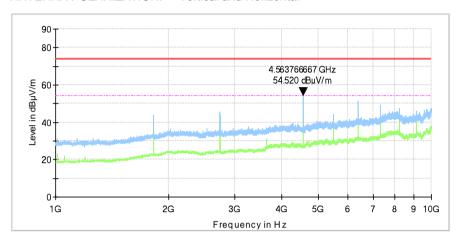
TEST DISTANCE: 3 m


ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.6.4 Radiated emission measurements from 30 to 1000 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber

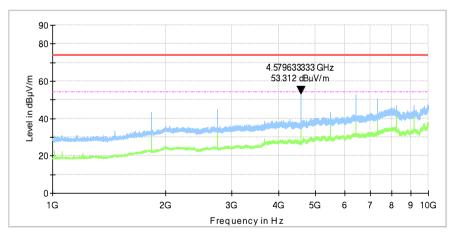
TEST DISTANCE: 3 m


Test specification:	Section 15.247(d), RSS-247	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	13-May-20	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1015 hPa	Power: 3 VDC				
Remarks:							

Plot 7.6.5 Radiated emission measurements from 1000 to 10000 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber

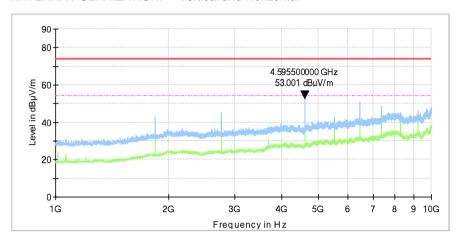
TEST DISTANCE: 3 m


ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.6.6 Radiated emission measurements from 1000 to 10000 MHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber

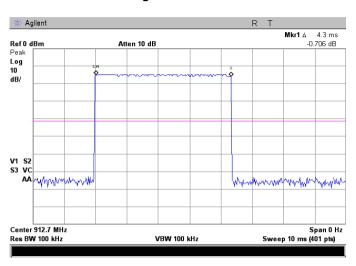
TEST DISTANCE: 3 m

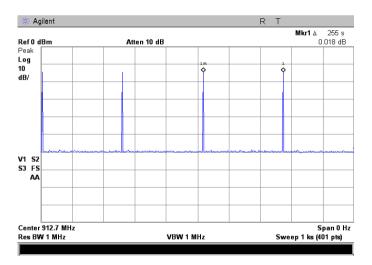


Test specification:	Section 15.247(d), RSS-247	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	13-May-20	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1015 hPa	Power: 3 VDC				
Remarks:							

Plot 7.6.7 Radiated emission measurements from 1000 to 10000 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber


TEST DISTANCE: 3 m



Test specification:	Section 15.247(d), RSS-247	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	13-May-20	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1015 hPa	Power: 3 VDC				
Remarks:							

Plot 7.6.8 Single transmission duration

Plot 7.6.9 Single transmission period

Test specification:	Section 15.203 / RSS-Ger	Section 15.203 / RSS-Gen section 6.8, Antenna requirement					
Test procedure:	Visual inspection						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	02-Jun-20	verdict.	PASS				
Temperature: 23 °C	Relative Humidity: 39 %	Air Pressure: 1005 hPa	Power: 3 VDC				
Remarks:	-						

7.7 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.7.1.

Table 7.7.1 Antenna requirements

Requirement	Rationale	Verdict
The transmitter antenna is permanently attached	Visual inspection	
The transmitter employs a unique antenna connector	NA	Comply
The transmitter requires professional installation	NA	

Test specification:	Section 15.109, Radiated emission					
Test procedure:	ANSI C63.4, Sections 11.6 and	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict: PASS				
Date(s):	14-May-20	verdict: PASS				
Temperature: 25 °C	Relative Humidity: 49 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

8 Unintentional emissions

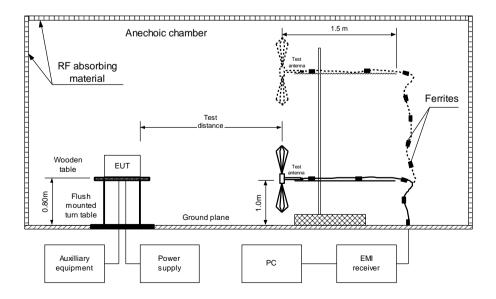
8.1 Radiated emission measurements

8.1.1 General

This test was performed to measure radiated emissions from the EUT enclosure. Specification test limits are given in Table 8.1.1.

Table 8.1.1 Radiated emission test limits

Frequency,	Class B lim	it, dB(μV/m)	Class A limit, dB(μV/m)		
MHz	10 m distance	3 m distance	10 m distance	3 m distance	
30 - 88	29.5*	40.0	39.0	49.5*	
88 - 216	33.0*	43.5	43.5	54.0*	
216 - 960	35.5*	46.0	46.4	56.9*	
Above 960	43.5*	54.0	49.5	60.0*	


^{*} The limit for test distance other than specified was calculated using the inverse linear distance extrapolation factor as follows: $Lim_{S2} = Lim_{S1} + 20 log (S_1/S_2)$,

where S_1 and S_2- standard defined and test distance respectively in meters.

8.1.2 Test procedure for measurements in semi-anechoic chamber

- **8.1.2.1** The EUT was set up as shown in Figure 8.1.1 and associated photograph/s, energized and the performance check was conducted.
- **8.1.2.2** The specified frequency range was investigated with biconilog antenna connected to EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal and the EUT cables position was varied.
- 8.1.2.3 The worst test results (the lowest margins) were recorded in Table 8.1.2 and shown in the associated plots.

Figure 8.1.1 Setup for radiated emission measurements in anechoic chamber, table-top equipment

Test specification:	Section 15.109, Radiated emission				
Test procedure:	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	14-May-20	verdict.	PASS		
Temperature: 25 °C	Relative Humidity: 49 %	Air Pressure: 1012 hPa	Power: 3 VDC		
Remarks:					

Table 8.1.2 Radiated emission test results

EUT SET UP: TABLE-TOP LIMIT: Class B EUT OPERATING MODE: Receive

TEST SITE: SEMI ANECHOIC CHAMBER

TEST DISTANCE: 3 m

DETECTORS USED: PEAK / QUASI-PEAK FREQUENCY RANGE: 90 MHz - 1000 MHz

RESOLUTION BANDWIDTH: 120 kHz

_ Peak	Quasi-peak				Antenna	Turn-table		
Frequency, MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	height, m	position**, degrees	Verdict
	No emission peaks found						Pass	

TEST SITE: SEMI ANECHOIC CHAMBER

TEST DISTANCE: 3 m

DETECTORS USED: PEAK / AVERAGE FREQUENCY RANGE: 1000 MHz – 10000 MHz

RESOLUTION BANDWIDTH: 1000 kHz

Eroguenov		Peak			Average			Antonno	Turn-table	
Frequency,	Measured	Limit,	Margin,	Measured	Limit,	Margin,	Antenna		position**.	
MHz	emission,			emission,			polarization	m	degrees	Vertice
1411 12	dB(μV/m)	dB(μV/m)	dB*	dB(μV/m)	dB(μV/m)	dB*		111	degrees	
	No emission peaks found							Pass		

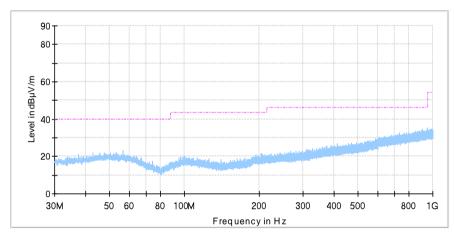
^{*-} Margin = Measured emission - specification limit.

Reference numbers of test equipment used

_							
	HL 4360	HL 3903	HL 4933	HL 5405	HL 5288	HL 5085	

Full description is given in Appendix A.

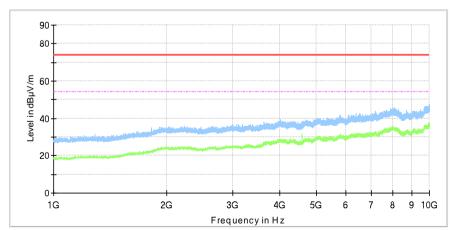
^{**-} EUT front panel refer to 0 degrees position of turntable.



Test specification:	Section 15.109, Radiated emission			
Test procedure: ANSI C63.4, Sections 11.6 and		l 12.1.4		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	14-May-20	verdict.	PASS	
Temperature: 25 °C	Relative Humidity: 49 %	Air Pressure: 1012 hPa	Power: 3 VDC	
Remarks:				

Plot 8.1.1 Radiated emission measurements in 30 - 1000 MHz range, vertical and horizontal antenna polarization

TEST SITE: Semi anechoic chamber


LIMIT: Class B
TEST DISTANCE: 3 m
EUT OPERATING MODE: Receive

Plot 8.1.2 Radiated emission measurements above 1000 MHz, vertical horizontal antenna polarization

TEST SITE: Semi anechoic chamber

LIMIT: Class B
TEST DISTANCE: 3 m
EUT OPERATING MODE: Receive

9 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 10 (9) kHz - 30 MHz	EMCO	6502	2857	24-Feb-20	24-Feb-21
2909	Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz	Agilent Technologies	E4407B	MY414447 62	05-Apr-20	05-Apr-21
3434	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25683	13-Apr-20	13-Apr-21
3770	Attenuator, N-type, 20 dB, DC to 18 GHz, 5 W	Mini-Circuits	BW- N20W5+	NA	12-Aug-19	12-Aug-20
3780	Attenuator, N-type, 10 dB, DC to 18 GHz, 5 W	Mini-Circuits	BW- N10W5+	NA	11-Dec-19	11-Dec-20
3789	Precision Fixed Attenuator, 50 Ohm, 5 W, 10 dB, DC to 18 GHz	Mini-Circuits	BW- S10W5+	NA	12-Aug-19	12-Aug-20
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	27-Apr-20	27-Apr-21
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1226/2A	06-Apr-20	06-Apr-21
4068	Attenuator, SMA, 30 dB, DC to 12.4 GHz	Midwest Microwave	ATT- 0527-30- SMA-07	NA	12-Aug-19	12-Aug-20
4135	Shield Box	TESCOM CO., LTD	TC-5916A	5916A000 136	23-Apr-20	23-Apr-21
4339	High pass Filter, 50 Ohm, 1000 to 18000 MHz, SMA-FM / SMA-M	Micro-Tronics	HPM5011 5-02	001	05-Jun-19	05-Jun-21
4355	Signal and Spectrum Analyzer, 9 kHz to 7 GHz	Rohde & Schwarz	FSV 7	101630	04-Aug-19	04-Aug-20
4360	EMI Test Receiver, 20 Hz to 40 GHz.	Rohde & Schwarz	ESU40	100322	20-Jan-20	20-Jan-21
4933	Active Horn Antenna, 1 GHz to 18 GHz	COM-POWER CORPORATI ON	AHA-118	701046	06-Jan-20	06-Jan-21
5085	Attenuator, 4 dB, DC - 6 GHz, 1 W	Mini-Circuits	UNAT-4+	NA	22-May-20	22-May-21
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX- 8000E	00809	08-Feb-19	08-Feb-22
5397	H-field near field probe, 3 cm	ETS Lindgren	7405-902	NA	31-Jul-18	31-Jul-20
5405	RF cable, 18 GHz, N-N, 6 m	Huber-Suhner	SF118/11 N(x2)	500023/11 8	11-Aug-19	11-Aug-20

10 APPENDIX B Test equipment correction factors

HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809 30-1000 MHz

	30-
Frequency, MHz	Antenna factor, dB/m
30	14.96
35	15.33
40	16.37
45	17.56
50	17.95
60	16.87
70	13.22
80	10.56
90	13.61
100	15.46
120	14.03
140	12.23

Frequency, MHz	Antenna factor, dB/m
160	12.67
180	13.34
200	15.40
250	16.42
300	17.28
400	19.98
500	21.11
600	22.90
700	24.13
800	25.25
900	26.35
1000	27.18

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$. **above 1000 MHz**

Frequency, MHz	Antenna factor, dB/m
1000	26.9
1100	28.1
1200	28.4
1300	29.6
1400	29.1
1500	30.4
1600	30.7
1700	31.5
1800	32.3
1900	32.6
2000	32.5
2100	32.9
2200	33.5
2300	33.2
2400	33.7
2500	34.6
2600	34.7
2700	34.6
2800	35.0
2900	35.5
3000	36.2
3100	36.8
3200	36.8
3300	37.0
3400	37.5
3500	38.2

Frequency, MHz	Antenna factor, dB/m
3600	38.9
3700	39.4
3800	39.4
3900	39.6
4000	39.7
4100	39.8
4200	40.5
4300	40.9
4400	41.1
4500	41.4
4600	41.3
4700	41.6
4800	41.9
4900	42.3
5000	42.7
5100	43.0
5200	42.9
5300	43.5
5400	43.6
5500	44.3
5600	44.7
5700	45.0
5800	45.0
5900	45.3
6000	45.9

The antenna factor shall be added to receiver reading in dB μ V to obtain field strength in dB μ V/m.

HL 0446: Active Loop Antenna EMCO, model: 6502, s/n 2857

-		
Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
10	-33.4	±1.0
20	-37.8	±1.0
50	-40.5	±1.0
75	-41.0	±1.0
100	-41.2	±1.0
150	-41.2	±1.0
250	-41.1	±1.0
500	-41.2	±1.0
750	-41.3	±1.0
1000	-41.3	±1.0

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
2000	-41.4	±1.0
3000	-41.4	±1.0
4000	-41.5	±1.0
5000	-41.5	±1.0
10000	-41.7	±1.0
15000	-42.1	±1.0
20000	-42.7	±1.0
25000	-44.2	±1.0
30000	-45.8	±1.0

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}A/m$.

HL 4933: Active Horn Antenna COM-POWER CORPORATION, model: AHA-118, s/n 701046

JOIN I GIVEN GOIN		
Frequency, MHz	Measured antenna factor (with preamplifier), dB/m	
1000	-16.1	
1500	-15.1	
2000	-10.9	
2500	-11.9	
3000	-11.1	
3500	-10.6	
4000	-8.6	
4500	-8.3	
5000	-5.9	
5500	-5.7	
6000	-3.3	
6500	-4.0	
7000	-2.2	
7500	-1.7	
8000	1.1	
8500	-0.8	
9000	-1.5	
9500	-0.2	

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
10000	1.8
10500	1.0
11000	0.3
11500	-0.5
12000	3.1
12500	1.4
13000	-0.3
13500	-0.4
14000	2.5
14500	2.2
15000	1.9
15500	0.5
16000	2.1
16500	1.2
17000	0.6
17500	3.1
18000	4.2

The antenna factor shall be added to receiver reading in dB μ V to obtain field strength in dB μ V/m.

HL 5405: RF Cable Huber-Suhner, model: SF118/11N(x2), s/n: 500023/118 Calibration date: 01-Aug-2018

-	Calibration		
Set / Applied,	Measured,	Uncertainty,	
MHz	dB	dB	
0.1	0.01	±0.07	
50	0.23	±0.07	
100	0.32	±0.07	
200	0.45	±0.08	
300	0.55	±0.08	
400	0.64	±0.08	
500	0.71	±0.08	
600	0.78	±0.08	
700	0.85	±0.08	
800	0.91	±0.08	
900	0.97	±0.08	
1000	1.02	±0.08	
1100	1.07	±0.08	
1200	1.12	±0.08	
1300	1.16	±0.08	
1400	1.21	±0.08	
1500	1.25	±0.08	
1600	1.30	±0.08	
1700	1.34	±0.08	
1800	1.38	±0.08	
1900	1.42	±0.08	
2000	1.47	±0.08	
2500	1.64	±0.10	
3000	1.81	±0.10	
3500	1.97	±0.10	
4000	2.11	±0.10	
4500	2.25	±0.10	
5000	2.38	±0.10	
5500	2.48	±0.10	
6000	2.59	±0.10	
6500	2.72	±0.10	
7000	2.84	±0.13	
7500	2.97	±0.13	
8000	3.08	±0.13	
8500	3.21	±0.13	
9000	3.31	±0.13	
9500	3.42	±0.13	
10000	3.52	±0.13	

11 APPENDIX C Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Conducted carrier power at RF antenna connector	Below 12.4 GHz: ± 1.7 dB
	12.4 GHz to 40 GHz: ± 2.3 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Occupied bandwidth	± 8.0 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
We have	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

12 APPENDIX D Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for relevant parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; Recognized by Innovation, Science and Economic Development Canada for wireless and terminal testing (ISED), CAB identifier is IL1001, ISED# number 2186A; Certified by VCCI, Japan (the registration numbers are R-10808 for OATS, R-1082 for anechoic chamber, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address: P.O. Box 23, Binyamina 3055001, Israel

Telephone: +972 4628 8001 Fax: +972 4628 8277

e-mail: <u>mail@hermonlabs.com</u>
website: <u>www.hermonlabs.com</u>

Person for contact: Mr. M. Nikishin, EMC and radio group leader

13 **APPENDIX E Specification references**

FCC 47CFR part 15: 2019 Radio Frequency Devices.

American National Standard for Methods of Measurement of Radio-Noise Emissions ANSI C63.4: 2014 from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. ANSI C63.10: 2013

American National Standard of Procedures for Compliance Testing of Unlicensed

Wireless Devices

RSS-247: 2017, Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-

Exempt Local Area Network (LE-LAN) Devices

RSS-Gen: 2019, Issue 5 General Requirements for Compliance of Radio Apparatus

ICES-003: 2016, Issue 6 Information Technology Equipment (Including Digital Apparatus) - Limits and methods

of measurement

14 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
A/m ampere per meter
AM amplitude modulation
AVRG average (detector)

cm centimeter dB decibel

dBm decibel referred to one milliwatt $dB(\mu V)$ decibel referred to one microvolt

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

 $dB(\mu A)$ decibel referred to one microampere

DC direct current

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories

Hz hertz k kilo kHz kilohertz LO local oscillator m meter MHz megahertz min minute millimeter mm millisecond ms μS microsecond NA not applicable narrow band NΒ

 $\begin{array}{ll} \text{OATS} & \text{open area test site} \\ \Omega & \text{Ohm} \end{array}$

PM pulse modulation PS power supply

ppm part per million (10⁻⁶)

QP quasi-peak
RE radiated emission
RF radio frequency
rms root mean square

Rx receive s second T temperature Tx transmit V volt WB wideband

END OF DOCUMENT