

APPENDIX I MAXIMUM PERMISSIBLE EXPOSURE

According to FCC 1.1310 : The criteria listed in the following table shall be used to evaluate theenvironment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time				
(A) Limits for Occupational / Control Exposures								
300-1,500			F/300	6				
1,500-100,000			5	6				
(B) Limits for General Population / Uncontrol Exposures								
300-1,500			F/1500	6				
1,500-100,000			1	30				

CALCULATIONS

Given

$$\mathsf{E} = \frac{\sqrt{30 \times \mathsf{P} \times \mathsf{G}}}{\mathsf{d}} \quad \& \quad \mathsf{S} = \frac{\mathsf{E}^2}{3770}$$

Where E = Field strength in Volts / meter P = Power in WattsG = Numeric antenna gain*d* = *Distance in meters* S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and
 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where
$$d = Distance$$
 in cm
 $P = Power$ in mW
 $G = Numeric$ antenna gain
 $S = Power$ density in $mW / cm2$

Page 63 of 69

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

<u>LIMIT</u>

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

Mode	Antenna Gain (dBi)	Minimum separation distance (cm)	Output Power (dBm)	Numeric antenna gain (mW)	Power Density Limit (mW/cm ²)	Power Density at 20cm (mW/cm ²)
IEEE 802.11b	2.17	20.0	17.20	1.65	1.00	0.017208
IEEE 802.11g	2.17	20.0	20.49	1.65	1.00	0.036705

Remark: For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.