

DFS Test Report

Applicant	:	Champtek Incorporated
Product Type	:	Price Checker
Trade Name	:	SCANTECH ID, CHAMPTEK
Model Number	:	SG15 Colour, Shuttle C
Applicable Standard	:	FCC 47 CFR PART 15 SUBPART E ANSI C63.10:2013
Receive Date	:	Sep. 10, 2016
Test Period	:	Nov. 17 ~ Nov. 24, 2016
Issue Date	:	Jan. 09, 2017

Issue by

A Test Lab Techno Corp. No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C) Tel : +886-3-2710188 / Fax : +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330

Note: This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. This document may be altered or revised by A Test Lab Techno Corp. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Revised By
00	Dec. 02, 2016	Initial Issue	Joyce Liao
01	Dec. 26, 2016	Revised report information.	Joyce Liao
02	Jan. 09, 2017	Revised report information.	Joyce Liao

Verification of Compliance

Issued Date: Jan. 09, 2017

Applicant	:	Champtek Incorporated	
Product Type	:	Price Checker	
Trade Name	:	SCANTECH ID, CHAMPTEK	
Model Number	:	SG15 Colour, Shuttle C	
FCC ID	:	WOI-SG15COLOUR	
EUT Rated Voltage	:	DC 5V, 2A	
Test Voltage	:	120 Vac / 60 Hz	
Applicable Standard	:	FCC 47 CFR PART 15 SUBPART E ANSI C63.10:2013	
Test Result	:	Complied	
Performing Lab.	:	A Test Lab Techno Corp. No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C) Tel : +886-3-2710188 / Fax : +886-3-2710190 Taiwan Accreditation Foundation accreditation number: 1330 http://www.atl-lab.com.tw/e-index.htm	

A Test Lab Techno Corp. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by A Test Lab Techno Corp. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Approved By	Fly Lu	Reviewed By	EFTC On Yang
(Manager)	(Fly Lu)	(Testing Engineer)	(Eric Ou Yang)

TABLE OF CONTENTS

1	EUT Description	5
2	Test Methodology	6
3	Dynamic Frequency Selection	7
	3.1. Limits	7
	3.2. Test and Measurement System	11
	3.3. Test Instruments	13
4	Test Methodology	14
	4.1. Mode of Operation	14
	4.2. EUT Exercise Software	14
	4.3. Test Site Environment	14
5	Test Results	
	5.1. Radar Waveforms and Traffic	15
	5.2. Channel Move Time and Channel Closing Transmission Time	16
	5.3. Non-Occupancy Period	17

1 EUT Description

Applicant	Champtek Incorporated 5/F, No.2,Alley 2,Shih-Wei Lane, Chung Cheng Rd., Hsin Tien City, Taiwan				
Manufacturer	Champtek Incorporated 5/F, No.2,Alley 2,Shih-Wei La	ne, Ch	iung Cheng F	Rd., Hsin Tien City, T	aiwan
Product Type	Price Checker				
Trade Name	SCANTECH ID, CHAMPTEK				
Model Number	SG15 Colour, Shuttle C				
Trade Name and Model Number Different Description	Those trade name and model numbers differ from each other in selling region.				
FCC ID	WOI-SG15COLOUR				
	Frequency Ba		Frequency Range (MHz)	e Number of Channels	
	IEEE 802.11a	U-NII	Band II-A	5260 – 5320	4
Operate Frequency	IEEE 802.11n 5GHz 20 MHz	U-NII	Band II-A	5260 - 5320	4
	IEEE 802.11n 5GHz 40 MHz	U-NII	Band II-A	5270 - 5310	2
	IEEE 802.11ac 80 MHz	U-NII	Band II-A	5290	1
Modulation Type	OFDM				
Antenna information	Model		Туре		Max. Gain (dBi)
	F39-FL-113-100IPEX		PCB Antenna		2.5
Antenna Delivery	1TX + 1RX				

ltems	Description		
Communication Mode	■IP Based (Load Based) □Frame Based		
TPC Function	□With TPC	Without TPC	
Weather Band (5600 ~ 5650 MHz)	□With 5600 ~ 5650 MHz	■Without 5600 ~ 5650 MHz	
Beamforming Function	With Beamforming	Without Beamforming	
	□Outdoor access point		
	Indoor access point		
Equipment Type	Fixed point-to-point access points		
	Client devices		
	Master		
	Client with radar detection		
Operating mode	■Client without radar detection		
	Ad-Hoc		
	Bridge		
	MESH		

2 Test Methodology

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

The tests documented in this report were performed in accordance with FCC KDB request:

- FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02
- FCC KDB 905462 D03 Client Without DFS New Rules v01r02

3 Dynamic Frequency Selection

3.1. Limits

§15.407 (h) and FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 Compliance measurement procedures for unlicensed-national information infrastructure devcies operating in the 5250-5350 MHZ and 5470-5725 MHZ bands incorporating dynamic frequency selection.

Table 1: Applicability of DFS Requirements Prior to Use of a Channel				
	Operational Mode			
Requirement	Master	Client (without Radar Detection)	Client (with Radar Detection)	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation				
	Operational Mode			
Requirement	Master Device or Client With Radar Detection	Client without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client With Radar Detection	Client without Radar Detection		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link		
All other tests Any single BW mode Not required				
Note : Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20 MHz channel blocks and a null frequencies between the bonded 20 MHz channel blocks				

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection		
Maximum Transmit Power Value (See Notes 1,2 and 3)		
EIRP ≥ 200 milliwatt	-64 dBm	
EIRP < 200 milliwatt and Power spectral density < 10 dBm/MHz	-62 dBm	
EIRP < 200 milliwatt that do not meet the power spectral -64 dBm -64 dBm		
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test		

transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to FCC KDB Publication 662911 D01.

Table 4: DFS Response Requirement Values			
Parameter	eter Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time 10 seconds See Note 1.			
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.		
U-NII Detection Bandwidth Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.			
Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Mark Time Transmission Time is comprised of 200 milliseconds starting at the beginning of the			

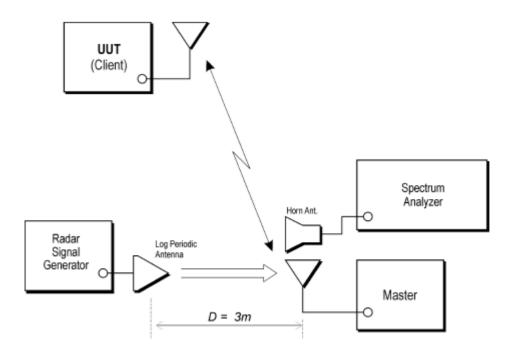
Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

		Table 5: Short Pulse I	Radar Test Wavefo	orms	
Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\frac{\text{Roundup} \left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix}, \\ \begin{pmatrix} \frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \end{pmatrix} \right\}}{\left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \right)}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Rada	r Types 1-4)			80%	120
	se Radar Type closing time tes	0 should be used for th ts.	e detection bandwic	th test, channel mo	ove time, and

Table 5a	: Pulse Repetition Intervals Values for	or Test A
Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

		7	Fable 6 – L	ong Pulse	e Radar Test S	ignal	
Radar Waveform	Bursts	Pulses per Burst	Pulse Width (μsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000-2000	80%	30


		Table	ə 7 – Freqi	uency Hop	ping Radar Te	est Signal	
Radar Waveform	Pulse Width (μsec)	PRI (µsec)	Burst Length (ms)	Pulses per Hop	Hopping Rate (kHz)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	300	9	0.333	70%	30

3.2. Test and Measurement System

3.2.1. Setup for Client with injection at the Master

Example Radiated Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

3.2.2. System Calibration

The short pulse types 0,1,2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time. The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the May 2014 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

3.2.3. System Calibration

The Interference Radar Detection Threshold Level is (-63dBm), The above equipment setup was used to calibrate the radiated Radar Waveform. A vector signal generator was utilized to establish the test signal level for each radar type. During this process there were replace 50ohm terminal form Master and Client device and no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) at the frequency of the Radar Waveform generator. Peak detection was used.The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to at least 3 MHz.

The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was (-63dBm). Capture the spectrum analyzer plots on short pulse radar types, long pulse radar type and hopping radar waveform.

3.2.4. Adjustment of Displayed Traffic Level

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. Software to ping the client is permitted to simulate data transfer but must have random ping intervals. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

3.3. Test Instruments

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
EXA Spectrum Amalyzer	Agilent	N9010A	MY48030518	11/04/2016	1 year
Signal Generator Double-Ridged Waveguide	Agilent	N5182B	MY53050382	05/20/2016	1 year
Horm	ETS-Lindgren	3117	00128055	08/29/2016	1 year
Double Ridged Horn Antenna	ETS	3117	00152321	08/23/2016	1 year
DFS Cable	ATL	DFS	009	10/12/2016	1 year
Microwave Cable	EMCI	EMC104-SM-SM-1 0000	150401	12/28/2015	1 year
Test Site	ATL	TE02	TE02	N.C.R.	

Note N.C.R. = No Calibration Request.

4 Test Methodology

4.1. Mode of Operation

Decision of Test ATL has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode

Mode 1: IEEE 802.11ac 80MHz link mode

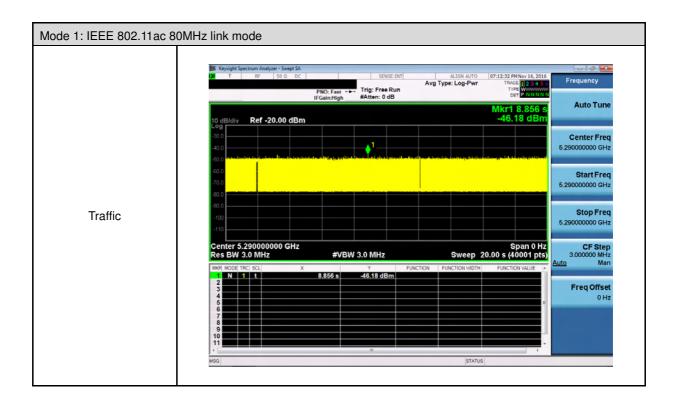
IEEE 802.11ac 80MHz link mode:

Unless otherwise noted, all tests were performed with the radar burst at the channel center frequency of 5290 MHz.

4.2. EUT Exercise Software

1.	Setup the EUT shown on 3.2.
2.	Turn on the power of all equipment.
3.	Turn on Wi-Fi function link to Notebook.
4.	The EUT is operated in the engineering mode to fix the TX frequency for the purposes of measurement.


4.3. Test Site Environment

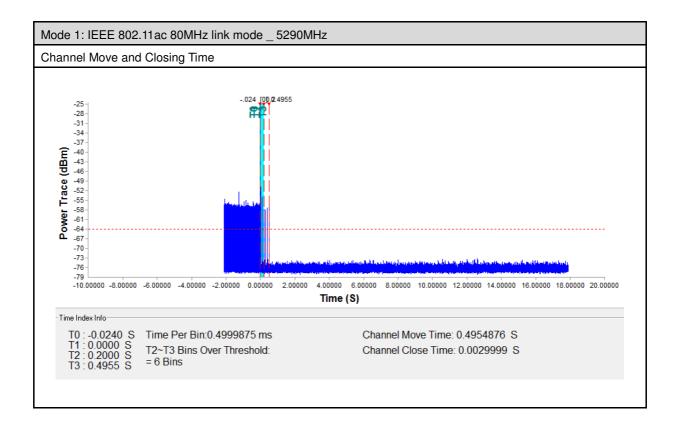

Items	Required (IEC 60068-1)	Actual
Temperature (°C)	15-35	26
Humidity (%RH)	25-75	60
Barometric pressure (mbar)	860-1060	950

5 Test Results

5.1. Radar Waveforms and Traffic

5.2. Channel Move Time and Channel Closing Transmission Time

5.2.1. Reporting Notes


The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows: Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Mode	Radar Type	Frequency (MHz)	Channel Move Time (sec)	Limit (sec)	Channel Closing Transmission Time (ms)	Limit (ms)
Mode 1: IEEE 802.11ac 80MHz link mode	Type 0	5290	0.4955	<10	2.9999	< 60

5.3. Non-Occupancy Period

5.3.1. Results

No EUT transmissions were observed on the test channel during the 30-minute observation time.

lode 1: IEEE 802.11ac 80MHz link r	mode _ 5290MHz		
BL Keysight Spectrum Analyzer - Swept SA DE T RF 50 Ω DC	PNO: Fast IFGain:High #Atten: 0 dB	ALIGN AUTO 06:36:17 PM No Avg Type: Log-Pwr TRACE TYPE Det	
10 dB/div Ref -20.00 dBm	IFGain:High #Atten: 0 dB	ΔMkr1 1.8	Auto Tuno
-000 -400 -400			Center Freq 5.290000000 GHz
-60.0 -70.0 -80.0		•	Δ2 5.290000000 GHz
-00 0 -100 -110			Stop Freq 5.290000000 GHz
Center 5.290000000 GHz Res BW 3.0 MHz	VBW 3.0 MHz	Spa Sweep 2.000 ks (4000	Auto Man
$\begin{array}{c c} \mathbf{A} & \mathbf{A} \\ \mathbf{I} & \mathbf{A} \\ \mathbf{Z} & \mathbf{F} & \mathbf{I} & \mathbf{t} \\ \mathbf{I} & \mathbf{I} & \mathbf{t} \\ \mathbf{J} & \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ $	1.800 ks (Δ) -39.38 dB 26.75 s -35.75 dBm		Freq Offset 0 Hz
8 9 10 11			, •
MSG		STATUS	