

Rev. 00

RF Test Report

Issued Date: Mar. 24, 2021

RONDISH COMPANY LIMITED **Applicant**

Product Type Early Alert Bed Sensor Pad

Trade Name Rondish

Model Number WPAS-10

FCC ID WNG-WPAS-10

DC 3 V, 15 mA **EUT Rated Voltage**

Test Voltage DC 3 V

Applicable Standard FCC 47 CFR PART 15 SUBPART C

ANSI C63.10:2013

Receive Date Feb. 02, 2021

Test Period Mar. 09 ~ Mar. 10, 2021

Issue by

A Test Lab Techno Corp.

101-104, 1F, A building, Safflower ridge industrial area, Taoyuan street, Nanshan district, Shenzhen

Tel: +86-755-23987770 / Fax: +86-755-26637771

http://www.atl-lab.com.tw/e-index.htm

American Association for Laboratory Accreditation number: 3464.02

Test Firm MRA designation number: CN1168

Note:

- 1. The test results are valid only for samples provided by customers and under the test conditions described in this report.
- 2. This report shall not be reproduced except in full, without the written approval of A Test Lab Technology Corporation.
- 3. The relevant information is provided by customers in this test report. According to the correctness, appropriateness or completeness of the information provided by the customer, if there is any doubt or error in the information which affects the validity of the test results, the laboratory does not take the responsibility.

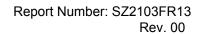
Approved By

(Louis Shen)

Reviewed By

(Testing Engineer)

(Joyce Feng)


(Manager)

Revision History

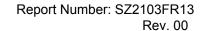

Rev.	Issue Date	Revisions
00	Mar. 24, 2021	Initial Issue

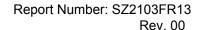
TABLE OF CONTENTS

1	Gen	eral Information	4
	1.1.		
	1.2.	Measurement Uncertainty	2
2	EUT	Description	5
3	Test	Methodology	5
	3.1.	Mode of Operation	
	3.2.	·	
	3.3.	Configuration of Test System Details	
	3.4.	Test Instruments	7
	3.5.	Test Site Environment	8
4	Meas	surement Procedure	
	4.1.	AC Power Line Conducted Emission Measurement	9
	4.2.	Radiated Emissions Measurement	11
	4.3.	20 dB Bandwidth Measurement	15
	4.4.	Antenna Requirement	16
5	Test	Results	17
	Anne	ex A. Conducted Test Results	17
	Anne	ex R. Radiated Emissions Measurement	18

1 General Information

1.1. Summary of Test Result

Standard	Standard Item		Remark	
15.207	07 AC Power Conducted Emission			
15.231(a)	15.231(a) Transmitter Deactivation Time			
15.231(b)	Transmitter Radiated Emissions	PASS		
15.231(c)	20 dB Bandwidth	PASS		
15.203	Antenna Requirement	PASS		
CFR 47 Part 15.231(2010) / ANSI C63.10:2013				


Standard	Description
CFR47, Part 15, Subpart C	Intentional Radiators
ANSI C63. 10: 2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

Decision Rule

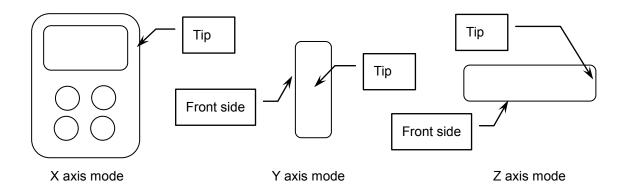
- Uncertainty is not included.
- $\hfill \square$ Uncertainty is included.

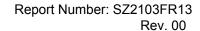
1.2. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty (dB)
Conducted Emission	ion 150 kHz ~ 30 MHz 2.7	
	30 MHz ~ 1000 MHz	1.7
Dedicted Emission	1000 MHz ~ 18000 MHz	5.7
Radiated Emission	18000 MHz ~ 26500 MHz	5.5
	26500 MHz ~ 40000 MHz	4.8
RF Bandwidth	4.9	96 %

2 **EUT Description**

Applicant	Applicant RONDISH COMPANY LIMITED UNIT G&H, 4/F, Block 1, KWAI TAK IND. CTR, 15-33 K Hong Kong				
Manufacturer	ONDISH COMPANY LIMITED INIT G&H, 4/F, Block 1, KWAI TAK IND. CTR, 15-33 K Hong Kong				
Product Type	Early Alert Bed Sensor Pad				
Trade Name	Rondish				
Model Number	WPAS-10				
FCC ID	WNG-WPAS-10				
Frequency Range	433.92 MHz				
Modulation Type	on Type ASK				
Number of Channels	1 Channel				
Antenna Type	wire antenna				
Antenna Gain	na Gain -3 dBi				
RF Cable information	Cable Loss(dB)	Provided by			
RF Cable Illioillation	0.5	■Manufacturer □Testing Laboratory			
Operate Temp. Range 10~40 ℃					


3 Test Methodology

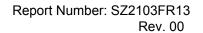

3.1. Mode of Operation

Test Mode
Mode 1: Transmitter Mode
Mode 2: Continuous TX Mode

Then, the above highest fundamental level mode of the configuration of the EUT and antenna was chosen for all final test items.

By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

3.2. EUT Test Step


1. Setup the EUT and simulators as shown on 1.3.

Measurement Software				
No.	Description	Software	Version	
1	Radiated Emission	EZ EMC	1.1.4.4	

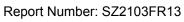
3.3. Configuration of Test System Details

EUT	

	Devices Description						
Product Manufacturer			Model Number	el Number Serial Number Power Cord			
(1)							

3.4. Test Instruments

For Conducted

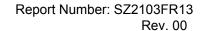

Test Period: Mar. 09 ~ Mar. 10, 2021

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
Power Sensor	Anritsu	U2021XA	SG54130003	09/01/2020	1 year
Spectrum Analyzer (10 Hz~26.5 GHz)	Agilent	N9020A	MY53420615	09/01/2020	1 year
Spectrum Analyzer (9 KHz~26.5 GHz)	Agilent	E4445A	MY46181814	09/01/2020	1 year
Programmable temp	ETAI	9712A	647	10/16/2020	1 year
Test Site	ATL	RF	RF	N.C.R.	

For Radiated Emission

Test Period: Mar. 09 ~ Mar. 10, 2021

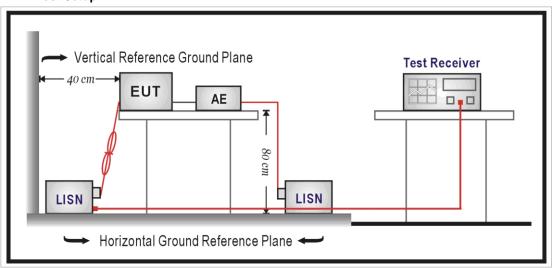
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
Preamplifier (10 kHz~3 GHz)	EMCI	EMC001330	980300	09/01/2020	1 year
Preamplifier (0.1 GHz~26.5 GHz)	EMCI	EMC012645SE	980318	09/01/2020	1 year
Preamplifier (26.5 GHz~40 GHz)	EMCI	EMC2654045	980028	09/01/2020	1 year
Bilog Antenna (30 MHz~1.4 GHz)	Schwarzbeck	VULB 9168	672	10/17/2020	1 year
Horn Antenna (1 GHz~18 GHz)	ETS	3117	00204949	10/17/2020	1 year
Horn Antenna (18 GHz~26.5 GHz)	ETS	3160-09	00202549	10/17/2020	1 year
Receiver (3 Hz~26.5 GHz)	Keysight	N9038A	MY51210179	09/01/2020	1 year
Spectrum Analyzer (3 Hz~43 GHz)	Keysight	N9030A	MY55410268	09/01/2020	1 year
Cable (30 MHz~1 GHz)	EMCI	N/A	1066LFC	09/01/2020	1 year
Cable (1 GHz~18 GHz)	EMCI	N/A	160719	09/01/2020	1 year
Cable (1 GHz~18 GHz)	EMCI	N/A	160324	09/01/2020	1 year
Cable (1 GHz~18 GHz)	EMCI	N/A	160322	09/01/2020	1 year
Loop Antenna	EMCI	LPA600	272	09/01/2020	1 year
Test Site	OuHeng	MFAC3M	RE-026	02/23/2021	1 year



Rev. 00

3.5. Test Site Environment

Items	Required (IEC 60068-1)	Actual
Temperature (°C)	15-35	26
Humidity (%RH)	25-75	60
Barometric pressure (mbar)	860-1060	990


4 Measurement Procedure

4.1. AC Power Line Conducted Emission Measurement

■ Limit

Frequency (MHz)	Quasi-peak	Average
0.15 - 0.5	66 to 56	56 to 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

■ Test Setup

Rev. 00

■ Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50Ω // 50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50Ω // 50uH coupling impedance with 50ohm termination.

Tabletop device shall be placed on a non-conducting platform, of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The wall of screened room shall be located 40cm to the rear of the EUT. Other surfaces of tabletop or floor standing EUT shall be at least 80cm from any other ground conducting surface including one or more LISNs. For floor-standing device shall be placed under the EUT with a 12mm insulating material.

Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a resolution bandwidth of 9 kHz. The equipment under test (EUT) shall be meet the limits in section 4.1, as applicable, including the average limit and the quasi-peak limit when using respectively, an average detector and quasi-peak detector measured in accordance with the methods described of related standard. When all of peak value were complied with quasi-peak and average limit from 150kHz to 30MHz then quasi-peak and average measurement was unnecessary.

The AMN shall be placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for AMNs mounted on top of the ground reference plane. This distance is between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment shall be at least 0,8 m from the AMN. If the mains power cable is longer than 1m then the cable shall be folded back and forth at the centre of the lead to form a bundle no longer than 0.4m. All of interconnecting cables that hang closer than 40cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long. All of EUT and AE shall be separate place more than 0.1m. All 50 Ω ports of the LISN shall be resistively terminated into 50 Ω loads when not connected to the measuring instrument.

If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored.

Rev. 00

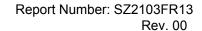
4.2. Radiated Emissions Measurement

■ Limit

According to FCC Part 15.231(b) requirement:

In addition to the provisions of §15.205, the field strength of emissions from intentional radiator operated under this section shall not exceed the following:

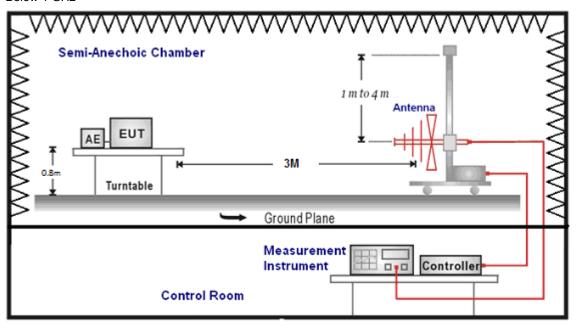
Fundamental and harmonics emission limits

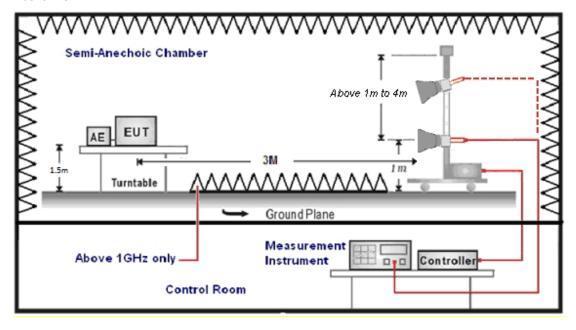

Frequency range	Average Field Strength of Fundamental	Peak Field Strength of Fundamental		
(MHz)	(dBµV/m@3 m)	(dBµV/m@3 m)		
433.92	69.34	65.89		

General Radiated emission Limit

Frequency range	Field Strength of Fundamental	Field Strength of Harmonics		
(MHz)	(uV/m at 3 m)	(uV/m at 3 m)		
40.66 to 40.70	2250 (67.04 dBuV)	225 (47.04 dBuV)		
70 to 130	1250 (61.94 dBuV)	125 (41.94 dBuV)		
130 to 174	1250 (61.94 dBuV) to	125 (41.94 dBuV) to		
	3750 (71.48 dBuV)	375 (51.48 dBuV)		
174 to 260	3750 (71.48 dBuV)	375 (51.48 dBuV)		
2004 470	3750 (71.48 dBuV) to	375 (51.48 dBuV) to		
260 to 470	12500 (81.94 dBuV)	1250 (61.94 dBuV)		
470 and above	12500 (81.94 dBuV)	1250 (61.94 dBuV)		

Remark: 1. The table above tighter limit applies at the band edges.


2. The measurement distance in meters, which that between form closest point of EUT to instrument antenna.



■ Setup

Below 1 GHz

Above 1 GHz

Rev. 00

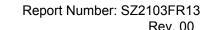
■ Test Procedure

Final radiation measurements were made on a three-meter, Semi Anechoic Chamber. The EUT system was placed on a nonconductive turntable which is 0.8 or 1.5 meters height, top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 2.5 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously & Measurements spectrum range from 30 MHz to 26.5 GHz is investigated.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 3 MHz for peak measurements and 10 Hz for average measurements.

A nonconductive material surrounded the EUT to supporting the EUT for standing on tree orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

SCHWARZBECK MESS-ELEKTRONIK Biconilog Antenna at 3 Meter and the SCHWARZBECK Double Ridged Guide Antenna was used in frequencies 1 – 26.5 GHz at a distance of 1 meter. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20 dB/decade).


For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post – detector video filters were used in the test.

The spectrum analyzer's 6 dB bandwidth was set to 1 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings.

The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in micro volts pre meter (uV/m).

The actual field intensity in decibels referenced to 1 microvolt in to field intensity in micro colts per meter (dBuV/m).

The actual field is intensity in referenced to 1 microvolt per meter (dBuV/m) is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer.

(1) Amplitude (dBuV/m) = FI (dBuV) +AF (dBuV) +CL (dBuV)-Gain (dB)

FI= Reading of the field intensity.

AF= Antenna factor.

CL= Cable loss.

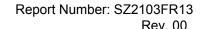
P.S Amplitude is auto calculate in spectrum analyzer.

(2) Actual Amplitude (dBuV/m) = Amplitude (dBuV)-Dis(dB)

The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations:

(a) For fundamental frequency: Transmitter Output < +30 dBm

(b) For spurious frequency: Spurious emission limits = fundamental emission limit /10


Data of measurement within this frequency range without mark in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

■ Calculation of Average Factor

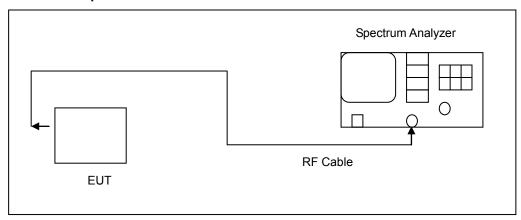
The output field strengths of specification in accordance with the FCC rules specify measurements with an average detector. During the test, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

Please see the diagrams below.

(*) When the field strength (or envelope power) is not constant or when it is in pulses, and an averaging detector is specified to be used, the value of field strength or power over one complete pulse train, excluding blanking intervals, shall be averaged as long as the pulse train does not exceed 0.1 seconds. In cases where the pulse train exceeds 0.1 seconds, the average value (of field strength or output power) shall be determined during a 0.1 second interval during which the field strength or power is at its maximum value.

4.3.

20 dB Bandwidth Measurement

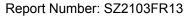

■ Limit

According to FCC Part 15.231(c) requirement:

The 20 dB

B.W Limit = 0.25 % * f (MHz) = 0.25 % * 315 MHz = 787.5 kHz

Test Setup



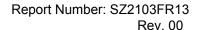
■ Test Procedure

The RF output port of the Equipment-Under-Test is directly coupled to the input of the analyzer through a specialized RF connector and a 10 dB passive attenuator. A fully charged battery was used for the supply voltage. The RF function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. Span = 1 MHz
- 2. RBW ≥ 1 % of the 20 dB span
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The EUT was transmitting at its maximum data rate. The marker-to-peak function was used to set the marker to the peak of the emission. The marker-delta function was used to measure 20 dB down one side of the emission. The marker-delta function and marker was moved to the other side of the emission until it was even with the reference marker. The marker-delta reading at this point was the 20 dB bandwidth of the emission.

Rev. 00

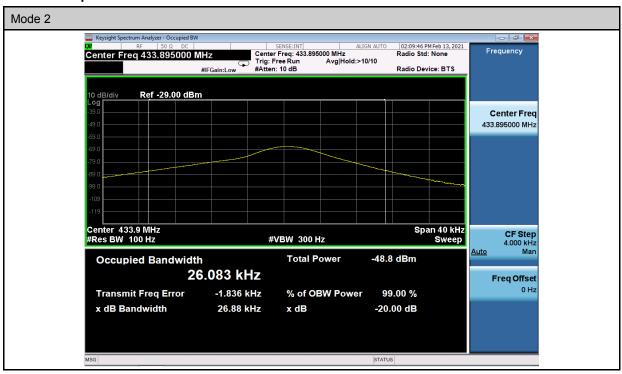

4.4. Antenna Requirement

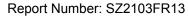
■ Limit

For intentional device, according to 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

■ Antenna Connector Construction

See section 2 – antenna information.

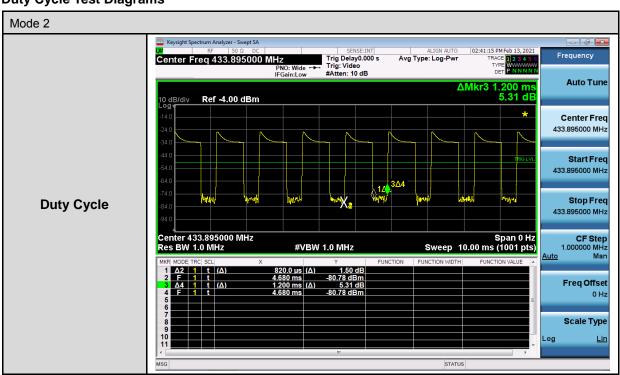

5 Test Results


Annex A. Conducted Test Results

20 dB Bandwidth Measurement

Test Mode	Mode 2	
Frequency	20 dB Bandwidth	Limited
(MHz)	(kHz)	(kHz)
433.92	26.88	1084.74

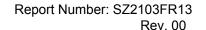
■ Test Graphs



Rev. 00

Annex B. Radiated Emissions Measurement

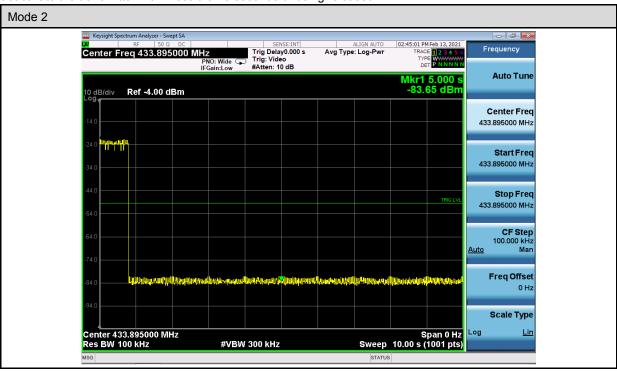
Duty Cycle Test Diagrams


Duty Cycle Results

Test Mode 2			
Item		Results	Note
Ton		0.820 ms	
Тр		1.200 ms	
Duty Cycle		0.6833	
Averaging Factor (20 log * Du	ty Cycle)	-3.30734	

Please see the diagrams below.

Note:


- 1. RB=100 kHz, VB=300 kHz, SPAN=0
- 2. Duty Cycle= Ton/Tp

Transmitter Deactivation Time

The EUT was complied with the requirement of FCC 15.231 (a) (1), which employed a switch that will automatically deactivate the transmitter within less than 5 seconds of being released.

Rev. 00

Fundamental Frequency Test Results

Standard: FCC Part 15.231 Test Distance: 3 m

Test item: Fundamental Power: DC 3 V

Test Mode: Mode 2 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60 $^{\circ}$ RH

Ant.Polar.: Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	433.8900	76.04	-6.70	69.34	100.83	-31.49	peak

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

Example: 69.34=-6.70+76.04

2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) - Pre-Amplifier gain (dB).

3. When the peak results are less than average limit, so not need to evaluate the average.

Standard: FCC Part 15.231 Test Distance: 3 m

Test item: Fundamental Power: DC 3 V

Test Mode: Mode 2 Temp.(°C)/Hum.(%RH): 26(°C)/60 %RH

Ant.Polar.: Vertical

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
	(IVITZ)	(ubuv)	(ub/III)	(ubuv/III)	(ubuv/III)	(ub)	
1	433.8850	69.68	-6.70	62.98	100.83	-37.85	peak

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) - Pre-Amplifier gain (dB).

3. When the peak results are less than average limit, so not need to evaluate the average.

Rev. 00

Below 1 GHz

Note: Data of measurement within this frequency range without mark in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

Standard: FCC Part 15.231 Test Distance: 3 m

Test item: Power: DC 3 V

Test Mode: Mode 2 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60 $^{\circ}$ RH

Description: Model Number: WPAS-10

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Polar. H / V
49.4000	30.07	-11.05	19.02	40.00	-20.98	peak	Н
159.0100	29.73	-10.60	19.13	43.50	-24.37	peak	Н
674.0800	28.59	-1.84	26.75	46.00	-19.25	peak	Н
817.6400	30.30	0.45	30.75	46.00	-15.25	peak	Н
927.2500	29.15	1.28	30.43	46.00	-15.57	peak	Н
995.1500	28.32	1.91	30.23	54.00	-23.77	peak	Н
548.9500	29.67	-4.02	25.65	46.00	-20.35	peak	V
673.1100	27.39	-1.85	25.54	46.00	-20.46	peak	V
732.2800	27.97	-0.90	27.07	46.00	-18.93	peak	V
776.9000	28.62	-0.10	28.52	46.00	-17.48	peak	V
864.2000	27.74	0.77	28.51	46.00	-17.49	peak	V
944.7100	28.18	1.43	29.61	46.00	-16.39	peak	٧

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

Example: 19.02=-11.05+30.07

2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB).

3. When the peak results are less than average limit, so not need to evaluate the average.

Rev. 00

Above 1 GHz

Standard: FCC Part 15.231 Test Distance: 3 m

Test item: Power: DC 3 V

Test Mode: Mode 2 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60 $^{\circ}$ RH

Description: Model Number: WPAS-10

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Polar. H / V
2104.000	52.97	-11.43	41.54	74.00	-32.46	peak	Н
2712.000	52.37	-9.78	42.59	74.00	-31.41	peak	Н
3180.000	52.19	-8.60	43.59	74.00	-30.41	peak	Н
2060.000	52.54	-11.52	41.02	74.00	-32.98	peak	V
2432.000	55.11	-10.75	44.36	74.00	-29.64	peak	V
3316.000	51.85	-8.59	43.26	74.00	-30.74	peak	V

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

^{2.}Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB).

^{3.} When the peak results are less than average limit, so not need to evaluate the average.

Rev. 00

Band edge

Standard:	FCC Part 15.231			Test Distar	nce:	3 m	
Test item:	Band edge			Power:		DC 3 V	
Test Mode:	Mode	e 2		Temp.(°C)/	Hum.(%RH):	26(℃)/60	%RH
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Polar. H / V
405.4665	28.70	-7.80	20.90	46.00	-25.10	peak	Н
410.0000	26.55	-7.67	18.88	46.00	-27.12	peak	Н
608.0000	26.03	-2.73	23.30	46.00	-22.70	peak	Н
612.2872	28.38	-2.67	25.71	46.00	-20.29	peak	Н
614.0000	26.45	-2.65	23.80	46.00	-22.20	peak	Н
407.1794	28.84	-7.75	21.09	46.00	-24.91	peak	V
410.0000	26.76	-7.67	19.09	46.00	-26.91	peak	V
608.0000	27.41	-2.73	24.68	46.00	-21.32	peak	V
612.5013	28.43	-2.67	25.76	46.00	-20.24	peak	V
614.0000	27.13	-2.65	24.48	46.00	-21.52	peak	V

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

Example: 20.90=-7.80+28.70

2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB).

3. When the peak results are less than average limit, so not need to evaluate the average.

--- END---