

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 Http://www.sz-ctc.org.cn

Т	EST REPORT	
Report No:	CTC20231849E01	
FCC ID:	WNA-SK-R6215	
Applicant:	Shenzhen Skyworth Digital Teo	chnology Co.,LTD.
Address:	14/F Unit A. Skyworth Building, District, Shenzhen, China	Gaoxin Ave.1s., Nanshan
Manufacturer	Shenzhen Skyworth Digital Techi	nology Co.,LTD.
Address	14/F Unit A. Skyworth Building, G District, Shenzhen, China	Gaoxin Ave.1s., Nanshan
Product Name:	Wi-Fi 6 Mesh Router	
Trade Mark:	SKYWORTH	
Model/Type reference:	SK-R6215	
Listed Model(s):	SK-G6210, SK-G6215, SK-G622	25, TZN20
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247	
Date of receipt of test sample:	Sep. 19, 2023	
Date of testing	Sep. 19, 2023 ~ Nov. 23, 2023	
Date of issue	Dec. 28, 2023	
Result	PASS	
Compiled by:		Lundlan
(Printed name+signature)	Lucy Lan	
Supervised by:		Lucy Lan Zric Zhang
(Printed name+signature)	Eric Zhang	Termas
Approved by:		Jemas
(Printed name+signature)	Totti Zhao	<u> </u>
Testing Laboratory Name:	CTC Laboratories, Inc.	
Address:	2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China	
This test report may be duplicated co not be reproduced except in full, with it to claim product endorsement by C The test report shall be invalid withou Any objections must be raised to CT not be taken into consideration beyon	out the written approval of our labo TC. The Test Result in the report o ut all the signatures of testing engir C within 15 days since the date wh	ratory. The client should not use only apply to the tested sample. neers, reviewer and approver. en the report is received. It will

Table of Contents

Page

1.	TEST	SUMMARY	3
1	.1.	Test Standards	3
1	.2.	REPORT VERSION	3
1	.3.	TEST DESCRIPTION	3
1		TEST FACILITY	
1	.5.	Measurement Uncertainty	5
1	.6.	Environmental Conditions	5
2.	GENE	RAL INFORMATION	6
2		CLIENT INFORMATION	
2	.2.	GENERAL DESCRIPTION OF EUT	6
2		ACCESSORY EQUIPMENT INFORMATION	
2	.4.	OPERATION STATE	8
2	.5.	Measurement Instruments List	11
3.	TEST	ITEM AND RESULTS	12
3	.1.	CONDUCTED EMISSION	12
3		RADIATED EMISSION	
3	.3.	BAND EDGE EMISSIONS (RADIATED)	38
3		BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	
3	.5.	DTS BANDWIDTH	.125
3		PEAK OUTPUT POWER	
3	.7.	POWER SPECTRAL DENSITY	.157
3		DUTY CYCLE	
3	.9.	ANTENNA REQUIREMENT	.186

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands 902–928MHz, 2400–2483.5MHz, and 5725-5850MHz.

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description
01	Dec. 28, 2023	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247)			
Test Item	Standard Section	Result	Test Engineer
Antenna Requirement	15.203	Pass	Curry
Conducted Emission	15.207	Pass	Curry
Conducted Band Edge and Spurious Emissions	15.247(d)	Pass	Curry
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	Pass	Curry
6dB Bandwidth	15.247(a)(2)	Pass	Curry
Conducted Max Output Power	15.247(b)(3)	Pass	Curry
Power Spectral Density	15.247(e)	Pass	Curry
Transmitter Radiated Spurious	15.209&15.247(d)	Pass	Curry

Note:

1. The measurement uncertainty is not included in the test result.

N/A: means this test item is not applicable for this device according to the technology characteristic of 2. device.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Below is the best measurement capability for CTC Laboratories, Inc.

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15 °C to 35 °C
Relative Humidity:	20 % to 75 %
Air Pressure:	101 kPa

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

2. GENERAL INFORMATION

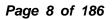
2.1. Client Information

Applicant:	Shenzhen Skyworth Digital Technology Co.,LTD.
Address:	14/F Unit A. Skyworth Building, Gaoxin Ave.1s., Nanshan District, Shenzhen, China
Manufacturer:	Shenzhen Skyworth Digital Technology Co.,LTD.
Address:	14/F Unit A. Skyworth Building, Gaoxin Ave.1s., Nanshan District, Shenzhen, China
Factory:	Shenzhen Skyworth Digital Technology Co., LTD. Baoan Branch Factory
Address:	2-5F,Integration Multi-Storied Building, Skyworth Science and Technology Industrial Park, Tangtou Industrial Zone, Shiyan Street, Baoan District, Shenzhen city, China.

2.2. General Description of EUT

Product Name:	Wi-Fi 6 Mesh Router	
Trade Mark:	SKYWORTH	
Model/Type reference:	SK-R6215	
Listed Model(s):	SK-G6210, SK-G6215, SK-G6225, TZN20	
Model Difference:	All these models have the same product appearance, PCB, layout, material, RF circuit, and software and hardware, and will not affect the RF characteristics. The difference lies in the product model.	
Power Supply:	DC12V 1.5A from AC/DC Adapter	
Adapter Model	YS-SKY120150U01P Input: 100-240V~ 50/60Hz 0.6A Output: 12Vdc/1.5A	
Hardware Version:	/	
Software Version:	/	
2.4G Wi-Fi		
Modulation:	802.11b: DSSS (CCK, DQPSK, DBPSK) 802.11g/ n: OFDM (BPSK, QPSK, 16QAM, 64QAM) 802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)	
Operation Frequency:	802.11b/ g/ n(HT20)/ ax(HE20): 2412MHz~2462MHz 802.11n(HT40)/ ax(HE40): 2422MHz~2452MHz	
Channel Number:	802.11b/ g/ n(HT20)/ ax(HE20): 11 channels 802.11n(HT40)/ ax(HE40): 7 channels	
Channel Separation:	5MHz	
Antenna Type:	Internal Antenna	
Antenna Gain:	3.37dBi	

CTC Laboratories, Inc.


日 中国国家认证认可监督管理委员会

2.3. Accessory Equipment Information

Equipment Information			
Name	Model	S/N	Manufacturer
Notebook	ThinkBook 14 G3 ACL	/	Lenovo
Cable Information			
Name	Shielded Type	Ferrite Core	Length
LAN Cable	Unshielded	NO	150cm
Test Software Information			
Name	Version	/	/
QATool	Ulv2.78_DLLv6.83	/	1

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20)/ax(HE20), CH 03~CH 09 for 802.11n(HT40)/ax(HE40).

Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain(dBi)
1	NA	NA	Internal Antenna	IPEX	3.37
2	NA	NA	Internal Antenna	IPEX	3.37

For 2.4G, this EUT supports MIMO 2X2 with the same antenna gain, and any transmit signals are correlated with each other.

According to KDB 662911 D01, Directional Gain = GAnt.+10log(N) dBi, that is Directional Gain=3.37+10log(2)dBi=6.38dBi. So output power limit is 30-6.38+6=29.62dBm, and the power spectral density limit is 8-6.38+6=7.62dBm/3kHz.

Data Rated:

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Test Mode	Data Rate (worst mode)
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)/ (HT40)	HT-MCS8
802.11ax(HE20)/ (HE40)	HE-MCS0

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059

Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

RU Configuration:

Operating Mode	Resource Unit	26 Tone (2M)
		0
	Specific Resource Unit	4
		8
	Resource Unit	52 Tone (4M)
		37
802.11ax(HE20)	Specific Resource Unit	38
		39
		40
	Resource Unit	106 Tone (8M)
		53
	Specific Resource Unit	54
	Resource Unit	242 Tone (20M)
	Specific Resource Unit	61
Operating Mode	Resource Unit	26 Tone (2M)
		0
		i
	Specific Resource Unit	8
		17
	Resource Unit	52 Tone (4M)
		37
		38
802.11ax(HE40)		39
	On a sifin Deservers Husit	40
	Specific Resource Unit	41
		42
		43
		44
	Resource Unit	106 Tone (8M)
	Specific Resource Unit	53

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059

可监督管理委员会 中国国家认证认

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

	54
	55
	56
Resource Unit	242 Tone (20M)
Specific Resource Unit	61
Specific Resource Unit	62
Resource Unit	484 Tone (40M)
Specific Resource Unit	65

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下 中国国家认证认可监督管理委员会

2.5. Measurement Instruments List

RF Test System					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
2	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 24, 2024
3	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 14, 2024
4	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 14, 2024
5	Test Software	WCS	WCS-WCN	2023.08.04	/

Radiated Emission (3m chamber 3)					
Item	Test Equipment Manufacturer		Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 16, 2023
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	LISN	R&S	ENV216	101112	Dec. 16, 2023
2	LISN	R&S	ENV216	101113	Dec. 16, 2023
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023
6	Test Software	R&S	EMC32	6.10.10	/

Note: 1. The Cal. Interval was one year.

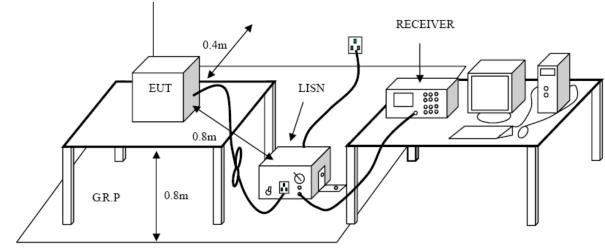
2. The Cal. Interval was three years of the antenna.

3. The cable loss has been calculated in test result which connection between each test instruments.

CTC Laboratories, Inc.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Conducte	ed Limit (dBμV)
Frequency (MHz)	Quasi-peak	Average
0.15 - 0.5	66 to 56 *	56 to 46 *
0.5 - 5	56	46
5 - 30	60	50

* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting 2. ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

The EUT and simulators are connected to the main power through a line impedance stabilization 3 network (LISN). The LISN provides a 50 ohm / 50 µH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the 4. block diagram of the test setup and photographs)

Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was 5. individually connected through a LISN to the input power source.

The excess length of the power cord between the EUT and the LISN receptacle were folded back and 6. forth at the center of the lead to form a bundle not exceeding 40 cm in length.

Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a 7. receiver bandwidth of 9 kHz.

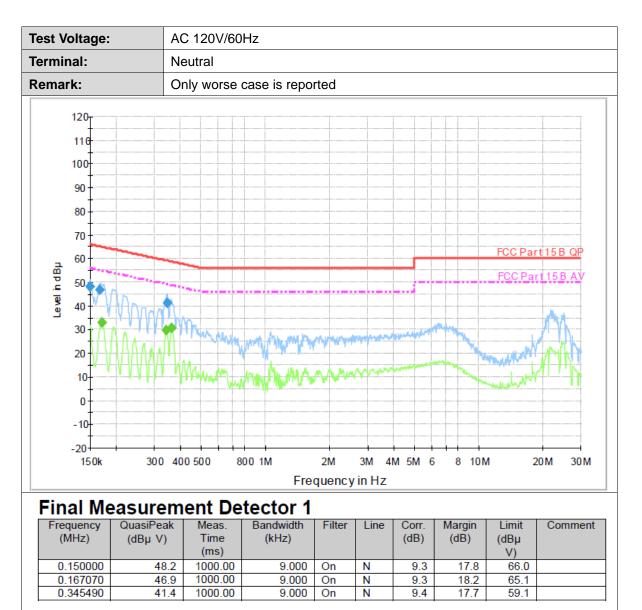
During the above scans, the emissions were maximized by cable manipulation. 8.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059


Test Result

fest Vo	est Voltage: AC 120V/60Hz										
Termin	nal:		Line								
Remar	k:		Only wor	se case is re	ported						
	120 _T										
	110										
	+										
	100										
	90	ii			. <u> </u>						
	80										
	+										
	70									FCC Pr	art 15 B QP
ä	60										
n dE	50									FCC Pa	art 15 B AV
Level in dBµ	40										
Ľ	+ ->	VIVA									
	30	A A A A A	TH MAN	N. KANAGA M	1 VMV	****		~~~~~	MALL.		
	20		- WYWW	17 Min March	ΛM	WW	three		man Malan	made lumber	
	10									manuel at	
	0										
	-10										
	-20									1	
	150k	300	400 500	800 1M	2M requer ⁼	3M novinl		5M 6	5 8 10	M	20M 30M
Ein		acura	mont [Detector	-						
		QuasiPea				er li	ne (Corr.	Margin	Limit	Comment
	IHz)	(dBµ V)	Time (ms)	e (kHz)				dB)	(dB)	(dBµ V)	
	150000	47.				L1		9.4	18.4		
	171810 356700	<u>46</u> . 45.				L1		9.4 9.5	18.1 13.7		
L				etector 2			-	0.0	10.1	00.0	-
	uency	Average	Meas.	Bandwidth	Filter	Line	Cor	r. I	Margin	Limit	Comment
(M	IHz)	(dBµ V)	Time (ms)	(kHz)			(dE	5)	(dB)	(dBµ V)	
	341380	39.9	1000.00		On	L1	_	.5	9.3	49.2	
	363890 052310	41.5 25.8	1000.00			L1 L1		.5 .5	7.1 20.2	48.6 46.0	
			•	+		•					

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Final Measurement Detector 2

	Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
ĺ	0.170440	33.1	1000.00	9.000	On	N	9.3	21.8	54.9	
	0.341380	29.8	1000.00	9.000	On	N	9.4	19.4	49.2	
	0.363890	30.5	1000.00	9.000	On	N	9.4	18.1	48.6	

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel.: (86)755-27521059 可监督管理委员会 中国国家认证认 ΞN

3.2. Radiated Emission

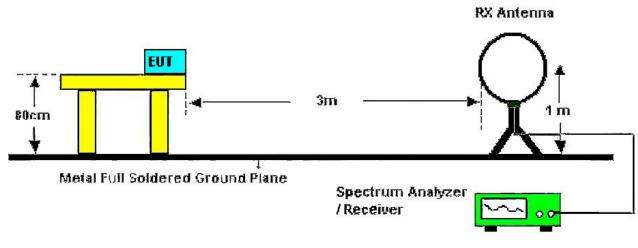
<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

	dBµV/m (at 3 meters)			
Frequency Range (MHz)	Peak	Average		
Above 1000	74	54		

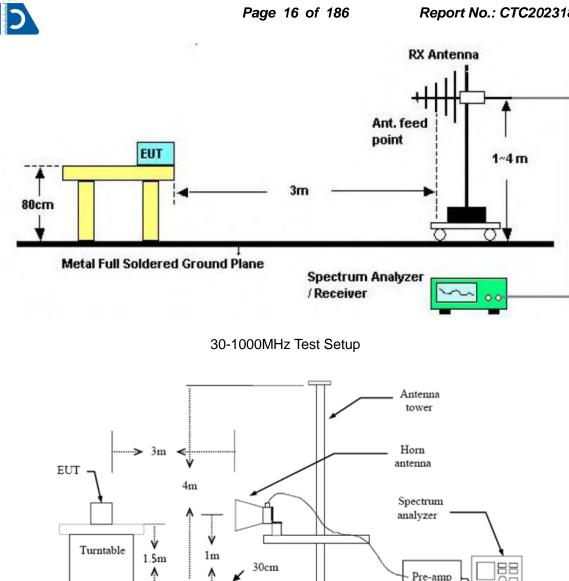
Note:


ΞN

(1) The tighter limit applies at the band edges.

中国国家认证认可监督管理委员会

(2) Emission Level ($dB\mu V/m$)=20log Emission Level ($\mu V/m$).


Test Configuration

Below 30MHz Test Setup

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013.

The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for 2. above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna 4. tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

5. Set to the maximum power setting and enable the EUT transmit continuously.

- Use the following spectrum analyzer settings 6.
- Span shall wide enough to fully capture the emission being measured; (1)
- (2) 9k 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the

CTC Laboratories, Inc.

peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

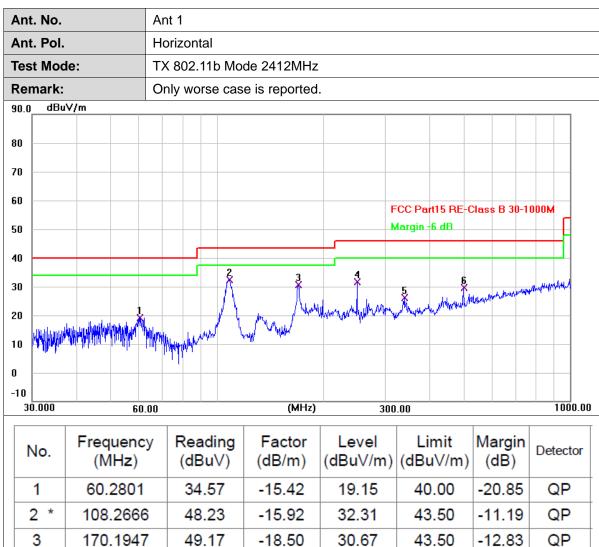
Test Result

9 kHz~30 MHz

From 9 kHz to 30 MHz: The conclusion is PASS.

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

QP


QP

QP

-14.34

-19.94

-16.34

6	
Remarks	

4

5

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

46.19

38.25

38.96

-14.53

-12.19

-9.30

31.66

26.06

29.66

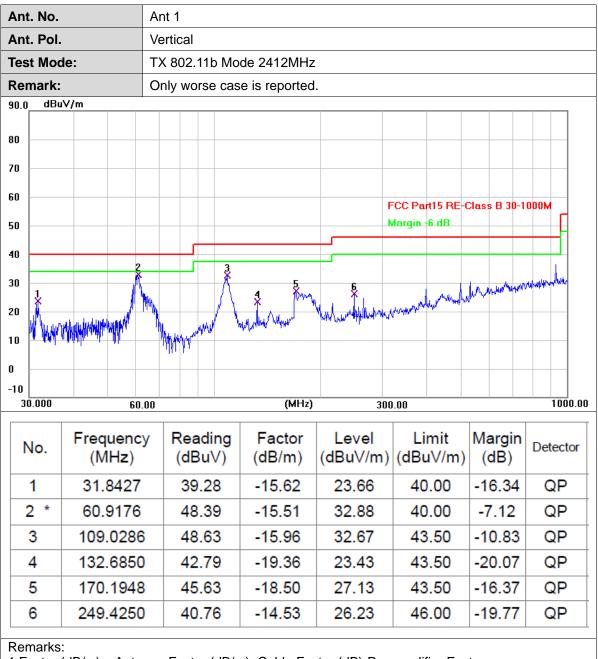
46.00

46.00

46.00

2.Margin value = Level -Limit value

249.4250


339.5887

499.4246

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

ing, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

bove	1GHz
------	------

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.945	47.19	2.11	49.30	54.00	-4.70	AVG
2	4823.992	50.06	2.11	52.17	74.00	-21.83	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4823.961	49.93	2.11	52.04	54.00	-1.96	AVG
2	4824.039	52.72	2.11	54.83	74.00	-19.17	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.945	49.37	2.18	51.55	74.00	-22.45	peak
2 *	4873.973	46.44	2.18	48.62	54.00	-5.38	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.951	51.87	2.18	54.05	74.00	-19.95	peak
2 *	4874.013	49.66	2.18	51.84	54.00	-2.16	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.985	46.93	2.26	49.19	54.00	-4.81	AVG
2	4924.059	49.77	2.26	52.03	74.00	-21.97	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4924.000	48.97	2.26	51.23	54.00	-2.77	AVG
2	4924.033	51.60	2.26	53.86	74.00	-20.14	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.521	48.30	2.11	50.41	54.00	-3.59	AVG
2	4824.044	60.82	2.11	62.93	74.00	-11.07	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.444	61.10	2.11	63.21	74.00	-10.79	peak
2 *	4823.895	49.71	2.11	51.82	54.00	-2.18	AVG

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

中国国家认证认可监督管理委员会 For anti-fake verification, please

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.205	60.28	2.18	62.46	74.00	-11.54	peak
2 *	4874.957	47.59	2.18	49.77	54.00	-4.23	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.774	61.45	2.18	63. <mark>6</mark> 3	74.00	-10.37	peak
2 *	4873.960	49.28	2.18	51.46	54.00	-2.54	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.113	60.19	2.25	62.44	74.00	-11.56	peak
2 *	4924.892	47.53	2.26	49.79	54.00	-4.21	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4924.039	48.84	2.26	51.10	54.00	-2.90	AVG
2	4924.915	60.99	2.26	63.25	74.00	-10.75	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.553	62.86	2.11	64.97	74.00	-9.03	peak
2 *	4823.858	49.42	2.11	51.53	54.00	-2.47	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.210	61.73	2.10	63.83	74.00	-10.17	peak
2 *	4824.319	49.54	2.11	51.65	54.00	-2.35	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4873.325	46.98	2.18	49.16	54.00	-4.84	AVG
2	4874.070	59.86	2.18	62.04	74.00	-11.96	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.511	61.52	2.18	63.70	74.00	-10.30	peak
2 *	4874.500	49.31	2.18	51.49	54.00	-2.51	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.874	46.38	2.26	48.64	54.00	-5.36	AVG
2	4924.853	59.23	2.26	61.49	74.00	-12.51	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4924.058	49.17	2.26	51.43	54.00	-2.57	AVG
2	4924.520	61.19	2.26	63.45	74.00	-10.55	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4843.019	52.01	2.12	54.13	74.00	-19.87	peak
2 *	4843.984	39.50	2.13	41.63	54.00	-12.37	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4844.425	62.24	2.13	64.37	74.00	-9.63	peak
2 *	4844.485	49.47	2.13	51.60	54.00	-2.40	AVG

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.856	51.22	2.18	53.40	74.00	-20.60	peak
2 *	4874.033	37.97	2.18	40.15	54.00	-13.85	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.890	62.49	2.18	64.67	74.00	-9.33	peak
2 *	4874.496	49.27	2.18	51.45	54.00	-2.55	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel.: (86)755-27521059 可监督管理委员会 中国国家认 ΕN

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4903.909	37.28	2.22	39.50	54.00	-14.50	AVG
2	4904.573	50.01	2.22	52.23	74.00	-21.77	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4903.547	59.55	2.22	61.77	74.00	-12.23	peak
2 *	4904.851	47.42	2.22	49.64	54.00	-4.36	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 2412MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.240	53.96	2.10	56.06	74.00	-17.94	peak
2 *	4823.489	41.06	2.11	43.17	54.00	-10.83	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE20) Mode 2412MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.103	63.70	2.10	65.80	74.00	-8.20	peak
2 *	4824.009	50.28	2.11	52.39	54.00	-1.61	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 2437MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.553	36.98	2.18	39.16	54.00	-14.84	AVG
2	4874.046	50.82	2.18	53.00	74.00	-21.00	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE20) Mode 2437MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.433	61.58	2.18	63.76	74.00	-10.24	peak
2 *	4874.881	48.80	2.18	50.98	54.00	-3.02	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 2462MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.847	35.83	2.26	38.09	54.00	-15.91	AVG
2	4923.895	49.30	2.26	51.56	74.00	-22.44	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE20) Mode 2462MHz 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4924.704	60.79	2.26	63.05	74.00	-10.95	peak
2 *	4924.806	46.95	2.26	49.21	54.00	-4.79	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE40) Mode 2422MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4843.377	50.81	2.13	52.94	74.00	-21.06	peak
2 *	4843.871	35.98	2.13	38.11	54.00	-15.89	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE40) Mode 2422MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4843.108	60.46	2.12	62.58	74.00	-11.42	peak
2 *	4844.400	45.45	2.13	47.58	54.00	-6.42	AVG

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE40) Mode 2437MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.235	49.22	2.18	51.40	74.00	-22.60	peak
2 *	4873.751	34.07	2.18	36.25	54.00	-17.75	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE40) Mode 2437MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.023	59.07	2.18	61.25	74.00	-12.75	peak
2 *	4874.807	45.46	2.18	47.64	54.00	-6.36	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE40) Mode 2452MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4903.193	48.56	2.21	50.77	74.00	-23.23	peak
2 *	4903.205	33.90	2.21	36.11	54.00	-17.89	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE40) Mode 2452MHz 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

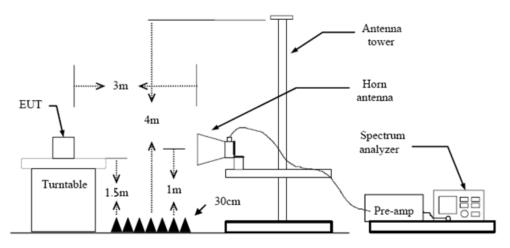
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4903.333	58.46	2.21	60.67	74.00	-13.33	peak
2 *	4903.857	43.43	2.22	45.65	54.00	-8.35	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn


3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)

Restricted Frequency Band	(dBµV/m	ı) (at 3m)
(MHz)	Peak	Average
2310 ~ 2390	74	54
2483.5 ~ 2500	74	54

Test Configuration

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 2. degrees to determine the position of the maximum emission level.

3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement. The receiver set as follow: 5.

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

			Ant 1												
Ant. Pol.			Horiz	ontal											
Test Mod	le:		TX 80	02.11b	Mod	e 2412	2MF	Ιz							
20.0 dBu\	√/m														1
10															
00															
10															
80													$ \land $		
70 										FCC	Part15 C	- Above	1G PK	<u> </u>	
;0															
50							-				Part15 C	- Above	16 AV	<u> </u>	
	~	water	.	*****	and the second	harman war	en.m	dan Annon marke	radion polastella		have a second	nen)			
0															
20															
0.0															
2301.300	2313.30	2325.30	233	7.30	2349.3	i0 (M	Hz)	237	'3.30	2385.30	2397	.30 2	2409.3	0 242	1.3
No.	Frequ (Mł			ading BuV)		Facto dB/m			vel ıV/m)	1	mit ıV/m)	Març (dE		Detect	or
1	2390	.000	14	4.55		31.31		45	.86	74	.00	-28.	14	pea	<
2 *	2390	.000	4	.39		31.31		35	.70	54	.00	-18.	30	AVG	3

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No).	Ant 1					
Ant. Po)l.	Vertical					
Test Mo		TX 802.11b N	lode 2412M⊦	lz			
120.0 dE	}uV/m						
110							
100							
90							
80						N	
70					FCC Part15 C	- Aboye 1G Pl	h
60							
50					FCC Part15 C	- Above 1G A	<u> </u>
40							
30	manstation and reader mans down a					1	<u>ч</u>
20							
10							
0.0							
2303.40	00 2315.40 2327.4	0 2339.40 23	851.40 (MHz)	2375.40	2387.40 2399.	40 2411.4	0 2423.40
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	16.26	31.31	47.57	74.00	-26.43	peak
2 *	2390.000	4.41	31.31	35.72	54.00	-18.28	AVG
Remark							

nt. No.		/	Ant 1						
nt. Pol		H	Horizontal						
est Moo	de:	-	TX 802.11b	Mode 2462MI	Ηz				
20.0 dBu	V/m				1		1		
0									
0									
							FCC Part15 (C - Above 1G	РК
1	Ϋ́								
							FCC Part15 (C - Above 1G	AV
		>	k i						
	two	muns	2 Andream and a feature and and	enonementerinenenterieter	en and the comment	*****	mannom	an	- Marine Make
.0 2453.000	2465.00 24	77.00	2489.00 2	2501.00 (MHz)	2525.00	D 2	2537.00 2549	9.00 2561	.00 2573.
No.	Frequen (MHz)		Reading (dBuV)	Factor (dB/m)	Leve		Limit (dBuV/m	Margir (dB)	ר Detecto
1	2483.50		14.66	31.48	46.1		74.00	-27.86	b peak
2 *	2483.50		4.36	31.48	35.8		54.00	-18.16	

2.Margin value = Level -Limit value

nt. No.			Ant 1									
nt. Pol			Vertica	l								
est Mo	de:		TX 802	.11b N	/lode 2	462MF	Ηz					
20.0 dBu	V/m											
10												
0												
	A											
	h								FCC F	Part15 C	- Above 1G	РК
			_						FCC F	Part15 C	- Above 1G	AV
			1 X									
' J		Louthe	2	menterne		and a log the star of	- april paper and	-	municipa	uda karakaring	ann an	mental
					_							
)					_							
2450.600	2462.60	2474.60	2486.6	0 24	498.60	(MHz)	252	2.60	2534.60	2546	.60 255	8.60 2570.
No.	Frequ (MF	-	Rea (dB	-	Fa (dB	ctor /m)	1	vel V/m)	Lin (dBu\		Margir (dB)	Detector
1	2483	.500	15.	04	31.	48	46	.52	74.	00	-27.48	3 peak
2 *	2483	.500	4.3	32	31.	48	35	.80	54.	00	-18.20	AVG
emarks												

2.Margin value = Level -Limit value

Ant. No.		Ant 1					
Ant. Pol.		Horizontal					
Test Mod	de:	TX 802.11g I	Mode 2412MH	łz			
120.0 dBu	V/m			Î			
110 100 90 80 70 60 50 40					FCC Part15 C		
30 20 10 0.0 2303.400	2315.40 2327	40 2339.40 2	351.40 (MHz)	2375.40	2387.40 2399.	40 2411.4	0 2423,40
No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	30.86	31.31	62.17	74.00	-11.83	peak
2 *	2390.000	11.79	31.31	43.10	54.00	-10.90	AVG
Remarks	•			-			

2.Margin value = Level -Limit value

Ant	. No.					Ant 1														
Ant	. Pol.					Vertio	cal													
Tes	t Mod	e:			•	TX 8	02.1 [′]	1g N	lode 2	2412	Мŀ	lz								
120.0) dBu\	//m																		
110																				
100																				
90																				
80														FC	CC Part15	C ·	Above 1G	PK		
70														1 X		1				
60															C Partit	Ł.	Above 1G	AV		
50														2	Marke					
40	mand	agen		udalized	mante	Manar	man				hand		and and the second	-		-				
30																-				
20																-				
10														_		_				
0.0	04.000	201	6.60		8.60	224	0.00		52.60				6.60 2	2388.6	0 04	00.0	0 241	2.60		4.00
Z	304.600	231	6.60	232	8.60	234	0.60	23	92.60	(MI	12j	237	6.6U Z	2388.6	U 24	00.6	0 241	2.60	242	4.60
1	۱o.	F	requ (Mł		су		adiı Bu∖			acto 3/m			vel ıV/m)		.imit 8uV/m		Margi (dB)		Detect	or
	1	2	2390	.00	0	3	1.02	2	31	.31		62	.33	7	4.00		-11.6	7	peal	<
	2 *	2	2390	.00	0	1	4.92	2	31	.31		46	.23	5	4.00		-7.77	7	AVG	;
	narks: actor (m) =	Ante	enna	Fac	tor (c	dB/m	n)+Ca	ble F	ac	tor (dE	B)-Pre-a	ampli	ifier Fa	octo	or			

2.Margin value = Level -Limit value

	Horizontal TX 802.11g M	1ode 2462MF	łz			
	TX 802.11g M	1ode 2462MH	łz			
$ \rightarrow $						
				FCC Part15 C	- Above 1G Pl	ĸ
	1			FCC Part15 C	- Above 1G A	v
	2					
	2 Sectorementer	hansenendenskeisellens	and all and a second	Har Maria Maria	dalater and a survey as the	and Chine and south
2.00 2474.00	2486.00 24	98.00 (MHz)	2522.00	2534.00 2546.	.00 2558.0	00 2570.0
equency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
483.500						peak
483.500						AVG
(M 483	Hz) 3.500	Hz) (dBuV) 3.500 21.93	Hz) (dBuV) (dB/m) 3.500 21.93 31.48	Hz) (dBuV) (dB/m) (dBuV/m) 3.500 21.93 31.48 53.41	Hz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 3.500 21.93 31.48 53.41 74.00	Hz)(dBuV)(dB/m)(dBuV/m)(dBuV/m)(dB)3.50021.9331.4853.4174.00-20.59

2.Margin value = Level -Limit value

Ant. No.			Ant 1										
Ant. Pol			Vertica	al									
Test Mo	de:		TX 80	2.11g N	lode 24	162MF	Ηz						
120.0 dBu	V/m										1		1
110													
100													
90													
									FCC	Part15 C	- Above 1G	РК	
70													
60									FCC	Part15 C	- Above 1G	AV	
50			2										
40 				Whyter water and the second	ungha man	www.m	والمقدورات ورسجت والراج	muser warnes		-	martine	eren and the second second	
30													
20													
10													
0.0													
2449.400	2461.40	2473.40	2485	.40 24	97.40	(MHz)	252	1.40	2533.40	2545	.40 2557	7.40 256	9.40
	-		_								-		
No.	Freque (MH:		1	ading BuV)	Fac (dB/			vel V/m)	Lir (dBu		Margir (dB)	Detect	or
1	2483.5	500	23	.51	31.	48	54	.99	74.	00	-19.01	peal	<
2 *	2483.5	500	12	.26	31.	48	43	.74	54.	00	-10.26	AVG	;
Remarks				()= (. –				-			
	(dB/m) = A value = Le				n)+Cab	le Fac	tor (dE	3)-Pre-a	amplifie	er Fac	tor		

Ant. No.		Ant 1 + Ant 2					
Ant. Pol.		Horizontal					
Test Mod	le:	TX 802.11n(H	IT20) Mode 2	2412MHz			
120.0 dBu\	√/m						
110							
100							
90							
80						m	~
70					FCC Part15 C	Above 1G P	
60							
50					FCC Part15 C	- Above 1G AV	<u> </u>
40					1× 2		
30	anna de van solo en ante de la de	www.analyter.com		mannaman	Mark Mark		
20							
10							
0.0							
2304.050	2316.05 2328.05	2340.05 23	52.05 (MHz)	2376.05	2388.05 2400.	05 2412.0	5 2424.05
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	15.62	31.31	46.93	74.00	-27.07	peak
2 *	2390.000	7.09	31.31	38.40	54.00	-15.60	AVG
Remarks				-	-		<u> </u>

2.Margin value = Level -Limit value

nt. No.		F	Ant 1 + Ant 2					
nt. Pol		١	/ertical					
est Mo	de:	٦	TX 802.11n(H	IT20) Mode 2	412MHz			
20.0 dBu	V/m	_						
10								
							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
)								
)						FCC Part15 C	Above 1G Pl	< \
)							/	
)						1 FCC Part 15, C	∫ - Above 1G A\	/
)						2		
I Harrison	andro an instruction and a	and the state	an and the other shows the sector - A	-	handler and the reason of the second s	Vertex and the second sec		
I								
)								
)								
0.0								
2302.800	2314.80 232	6.80	2338.80 23	50.80 (MHz)	2374.80 2	2386.80 2398.	80 2410.8	0 2422.8
No.	Frequen (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.00	0	26.17	31.31	57.48	74.00	-16.52	peak
2 *	2390.00	0	14.81	31.31	46.12	54.00	-7.88	AVG
		1			1	1		





nt. No.			Ant 1	+ Ant 2					
nt. Pol.			Horiz	ontal					
est Mod	de:		TX 80	)2.11n(H	IT20) Mode 2	2462MHz			
20.0 dBu	V/m					1			
0									
	~~~~								
							FCC Part15 C	- Above 1G P	ĸ
			1 X				FCC Part15 C	- Above 16 A	v
			\setminus						
			2		lan har many manager	un and an and a start and a start and a start a	marken and marken and	warman and and and and and and and and and a	monorm
.0									
.u 2450.600	2462.60	2474.60	248	6.60 24	98.60 (MHz)	2522.60	2534.60 2546.	60 2558.	60 2570.0
No.	Frequ (Mł			ading BuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
NU.									
1	2483	.500	1	9.78	31.48	51.26	74.00	-22.74	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. No.		Ant 1 + Ant	2				
nt. Pol		Vertical					
est Moo	de:	TX 802.11n	(HT20) Mode 2	2462MHz			
20.0 dBu	V/m			i			
0							
0							
	~~~						
¥					FCC Part15 C	- Above 1G Pl	<u>к</u>
		1					
		X			FCC Part15 C	- Above 1G AV	/
		ž					
		mar mar mar	man	manumunah	unter a hordestation and a new day	and a second and a s	Attendenter
·							
.0 2450.600	2462.60 2474.	60 2486.60	2498.60 (MHz)	2522.60	2534.60 2546.	60 2558.6	<u>50 2570.(</u>
	I			I			
No.	Frequency (MHz)	/ Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	28.11	31.48	59.59	74.00	-14.41	peak
2 *	2483.500	15.50	31.48	46.98	54.00	-7.02	AVG

2.Margin value = Level -Limit value





Ant. No.		Ant 1 + Ant 2					
Ant. Pol.		Horizontal					
Test Mod		TX 802.11n(⊦	IT40) Mode 2	2422MHz			
120.0 dBu	V/m						
110							
100							
90							
80						~~~~	
70					FCC Part15 C	- Above 1G Pl	<
60							
50				1	FCC Part15 C	- Above 16 A	<u> </u>
40				1 X			
30	wante have been been a second		an a	2	m l		
20							
10							
0.0							
2293.900	2308.90 2323.90	2338.90 23	53.90 (MHz)	2383.90 2	2398.90 2413.	90 2428.9	0 2443.90
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	15.23	31.31	46.54	74.00	-27.46	peak
2 *	2390.000	5.11	31.31	36.42	54.00	-17.58	AVG
Remarks							· · · ·

2.Margin value = Level -Limit value



nt. No.			Ant 1	+ Ant 2									
nt. Pol			Vertica	al									
est Mo	de:		TX 80	2.11n(H	IT40) N	lode 2	2422M	Hz					
0.0 dBu	W/m		ĺ										7
0													
o													
												~~~~	
											Y		
									FCC	Part15 C	- Above 1G	РК	
									/				
								1 X	FCC	Part15 C	- Above 1G	AV	
								2	<u>М</u>				
	528°20,004888°20,0048°20720720	an, ayan dan san	an a	weether	ergen Nigelan A	-mar maria	konner Houthan	NAME AND AND A	· ·				
.0													
2291.800	2306.80	2321.80	2336	.80 23	51.80	(MHz)	238	1.80	2396.80	2411	.80 242	6.80 24	41.8
No.	Frequ (MI			ading BuV)	Fac (dB)			vel IV/m)		mit ıV/m)	Margi (dB)	n _{Detec}	toi
1	2390	0.000	17	.23	31.	31	48	.54	74	.00	-25.46	5 pea	k
2 *	2390	.000	7.	32	31.	31	38	.63	54	.00	-15.37	7 AVC	G
	-		-				-		-				

Ant. No.			Ant 1 + /	Ant 2									
Ant. Pol	•		Horizont	al									
Fest Mo	de:	•	TX 802.	11n(H	T40)	Mode 2	2452M	Hz					
20.0 dBu	iV/m												
10													
			_						FCC	Part15 C	- Above 1G	РК	_
י ד													
D									FCC	Part15 C	- Above 1G	AV	_
• 📛				1 X							- ADOVE TO		
o			-										
,			<u> </u>	2	~~~~	monestowned	~				lanan serien der beiter von mer	*******	have a second
0.0													
2431.150	2446.15	2461.15	2476.15	24	91.15	(MHz)	252	1.15	2536.15	2551	.15 256	6.15	2581.1
No.	Freque (MH	-	Read (dBu	-		ictor 3/m)		vel ıV/m)	1	mit IV/m)	Margi (dB)	n _{De}	tector
1	2483.	500	16.5	51	31	.48	47	.99	74	.00	-26.0	1 p	eak
2 *	2483.	500	4.6	4	31	.48	36	.12	54	.00	-17.8	B A	VG
Remarks													

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

可监督管理委员会 中国 EN iII.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

nt. No.			Ant 1 + Ant 2	2						
nt. Pol.			Vertical							
est Mod	de:		TX 802.11n(HT40) Mc	de 2	2452M	Hz			
20.0 dBu	V/m		1							
10										
0										
			η 🗌							
Ц								FCC Part1	5 C - Above 1G F	ж
' 										
)								FCC Part1	5 C - Above 1G A	W
)			\ <u>\</u>							
·			2	manna		-	man market and the second s	ana construction	al some and the second at the	Assonance
)										
)										
)										
.0 2431.250	2446.25 24	161.25	2476.25 2	2491.25 (I	Hz)	252	1.25	2536.25 25	51.25 2566	.25 2581.3
No.	Frequer (MHz	-	Reading (dBuV)	Fact (dB/n			vel V/m)	Limit (dBuV/n	Margin n) (dB)	Detector
1	2483.5	00	15.46	31.4	8	46	.94	74.00	-27.06	peak
2 *	2483.5	00	7.20	31.4	8	38	.68	54.00	-15.32	AVG
emarks										

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

nt. No.		Ant 1 + Ant 2	2				
nt. Pol.		Horizontal					
est Moo	de:	TX 802.11ax	(HE20) Mode	2412MHz 26	5/0		
0.0 dBu	V/m						
o							
o							
					FCC Part15 C	Above 1G Pl	<u>(</u>
						Im	\sim
					FCC Part15 C	- Above 1G A	\sim
					×		
	-	antaramberariationetaristicari	useran mangade and a special states and a special states and the special states and the special states and the s	and the second second	and the second states and the		<u> </u>
.0							
2303.850	2315.85 2327	.85 2339.85 2	351.85 (MHz)	2375.85	2387.85 2399.	85 2411.8	5 2423.0
No.	Frequenc		Factor	Level	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)		(dBuV/m)		
1	2390.000		31.31	45.99	74.00	-28.01	peak
2 *	2390.000) 5.48	31.31	36.79	54.00	-17.21	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

		Ant 1 + Ant 2	2				
Ant. Pol.	1	Vertical					
est Mod	le:	TX 802.11ax	(HE20) Mode	2412MHz 26	6/0		
20.0 dBu ¹	V/m						
10							
00							
0							
0						Λ	
0					FCC Part15 C	- Above 16 P	×∽√
o 📃							
o ⊨ –					FCC Part15 C	Above 1G A	× {
o					1 X		
0		entral mension and all and an and an and a second	eren forstelen en forstelen forstelen om setter en	man man here was made	2	J	
o							
0							
0.0							
2302.800	2314.80 2326	.80 2338.80 2	2350.80 (MHz)	2374.80	2386.80 2398	.80 2410.0	80 2422.8
No.	Frequenc		Factor	Level	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)		(dBuV/m)		
1	2390.000	13.50	31.31	44.81	74.00	-29.19	peak
2 *	2390.000	4.69	31.31	36.00	54.00	-18.00	AVG

Ant. No.			Ant 1 + Ant 2	2				
Ant. Pol.	1		Horizontal					
Fest Mod	de:	-	TX 802.11ax	(HE20) Mode	2412MHz 52	/37		
20.0 dBu	V/m		1		i	1		
10								
00								
o								
							\sim	
0						FCC Part15 C	- Above 1G Pl	K
o								. ~
						FCC Part15 C	- Above 1G A	<u> </u>
						1 X		L l
)	have been and the second	an a	yayan dalama kataraka di dagina saka		manana ang kanang makana mang manana kana mang kana mang kana mang kana mang kana mang mang kana mang mang kana)	
0								
0.0								
2302.800	2314.80	2326.80	2338.80 2	2350.80 (MHz)	2374.80	2386.80 2398.	80 2410.0	30 2422.8
No.	Frequ	iency	Reading	Factor	Level	Limit	Margin	Detector
INO.	(MI	Hz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector
1	2390	.000	11.72	31.31	43.03	74.00	-30.97	peak
2 *	2390	.000	4.41	31.31	35.72	54.00	-18.28	AVG

2.Margin value = Level -Limit value

nt. No.			Ant 1 + A	nt 2								
nt. Pol			Vertical									
st Mo	de:		TX 802.1 [′]	lax(H	E20) Moo	de 24	12M	Hz 52	/37			
).0 dBu	V/m		1									
) (
) (
											\square	
									FCC Pa	t15 C	Above 16	
										t15 C	Above 1G	AV
									1 X			1
winger	- Anno martana	ayoraan ahayo oo dhambodha	en and an	***	and a second and a second	ee.rephille	man			www		
0												
2303.400	2315.40	2327.40	2339.40	2351	.40 (MH:	z)	2375	.40 ;	2387.40	2399.	40 2411	.40 2423.
No.	Frequ (MI		Readir (dBu∖		Factor (dB/m)		Lev		Limi (dBuV/		Margir (dB)	Detector
1	2390	.000	15.29	9	31.31	+	46.	60	74.0	0	-27.40) peak
2 *	2390	.000	4.77		31.31		36.	08	54.0	0	-17.92	AVG

Ant. No.			Ant 1 + Ant 2	<u>)</u>				
Ant. Pol			Horizontal					
est Mo	de:	•	TX 802.11ax	(HE20) Mode	2412MHz 10	6/53		
20.0 dBu	W/m				1			
10								
00								
0								
:0							\int	
						FCC Part15 C	- Above 16/19	Rug -
0								
						FCC Part15 C	- Above 1G A	v I
						×		
0	-			konstruing to market water	and the second as the second	and Section and		
0								
0								
0								
2304.000	2316.00	2328.00	2340.00 2	352.00 (MHz)	2376.00	2388.00 2400.	.00 2412.0	00 2424.0
2304.000 No.	Frequ	iency	Reading	Factor	Level	Limit	Margin	Detecto
	(Mł	HZ)	(dBuV)	(dB/m)	(dBuv/m)	(dBuV/m)	(dB)	
					10.00	74.00	-26.00	peak
1	2390	.000	16.69	31.31	48.00	74.00	-20.00	peak

2.Margin value = Level -Limit value

Ant. No			Ant 1	I + Ant 2									
Ant. Po	Ι.		Verti	cal									
est Mo	de:		TX 8	02.11ax(1ax(HE20) Mode 2412MHz 106/53								
20.0 dB	uV/m			1									_
10													
00													
											\sim		
												Ma	
									FCC P	art15 C	- Above 16	PK	
,										art15 C	- Above 1G	AV	
,									X	and the second			٦
mar	munited	Anna			~~~~~	henner	use and relation	And the second states of the	un Zom				
0													
2304.60	0 2316.60	0 2328.	60 234	10.60 23	52.60 (M	Hz)	2376	6.60	2388.60	2400.	60 241	2.60 2	424.6
No.		quency //Hz)		ading BuV)	Facto (dB/m		Lev (dBu		Lim (dBu∖		Margii (dB)	n _{Dete}	ctor
1	239	90.000	1	5.11	31.31		46.	42	74.0	00	-27.58	3 pe	ak
2 *	239	90.000		5.08	31.31		36.	39	54.0	00	-17.61	1 AV	′G

nt. No.			Ant 1 + Ar	nt 2							
nt. Pol			Horizonta	I							
est Mo	de:		TX 802.11	ax(HE2) Mode	2412N	/Hz 24	2/61			
20.0 dBu	V/m			1					,	1	
10											
00											
,											
,											
								FCC F	art15 C	Above To P	K
)											
)								FCC F	art15 C	- Above 1G A	v
)								1 X			
l contractions	www.www.www.weetwa			and the strend wo	·	hendrighten me		2	moned		
·											
)											
)											
).0 2304.450	2316.45	2328.45	2340.45	2352.45	(MHz)	237	6.45	2388.45	2400.	.45 2412.	45 2424
	_										1
No.		uency Hz)	Readir (dBuV		actor B/m)		vel V/m)	Lin (dBu\		Margin (dB)	Detecto
1	2390	000.	14.07	' 3	1.31	45	.38	74.	00	-28.62	peak
2 *	2390	0.000	4.34	3	1.31	35	.65	54.	00	-18.35	AVG
	2390	0.000	14.07	7 3	1.31	45	.38	74.	00	-28.62	· ·

2.Margin value = Level -Limit value

nt. No	•		Ant 1 + Ant 2					
nt. Po	I.	•	Vertical					
est Mo	de:	-	TX 802.11ax((HE20) Mode	2412MHz 24	2/61		
0.0 dB	uV/m							
o 📃								
o								
							\int	
						FCC Part15 C	Above 1G Pl	<u> </u>
								J _
						FCC Part15 C	- Above 1G A	/
***	alemental management and	manne	- when when a start of the star	*****	under and the second	2 2 Company Company		
.0								
2303.40	0 2315.40 2	327.40	2339.40 23	851.40 (MHz)	2375.40	2387.40 2399.	40 2411.4	40 2423.
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.0	00	18.19	31.31	49.50	74.00	-24.50	peak
2 *	2390.0	00	5.63	31.31	36.94	54.00	-17.06	AVG

nt. No.			Ant 1	+ Ant 2									
nt. Pol	-		Horizo	ontal									
est Mo	de:		TX 80	2.11ax((HE20)	Mode	2462	ИHz 26	/8				
20.0 dBu	uV/m		1										_
10													
00													
									FCC	Part15 C	- Above 1G	РК	-
	nn/												-
∎ <u> </u>	V V								FCC	Part15 C	- Above 1G	AV	-
)			1										
o /			1 X 2										_
)		Maril	huhitmana	Martine record for	***************************************		and the second secon	and and address of the	here and the second		Philadelliology and Andrewski	waard wa Aanal	~
,													
o 📃													
0.0													
2451.200) 2463.20	2475.20	2487	.20 24	99.20	(MHz)	252	3.20	2535.20	2547.	.20 255	9.20 25	71.2
No.	Frequ (Mł	-		ading 3uV)	Fac (dB	ctor /m)	1	vel iV/m)		nit V/m)	Margii (dB)	n _{Detec}	tor
1	2483	.500	12	2.50	31.	48	43	.98	74	.00	-30.02	2 pea	ık
2 *	2483	.500	4	.36	31.	48	35	.84	54	.00	-18.16	6 AV	G
2 *	2483	.500	4.	.36	31.	48	35	.84	54	.00	-18.16	D AV	G

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

可监督管理委员会 中国国家认证认 EN

nt. No.		Ant 1 + Ant 2	2				
nt. Pol		Vertical					
est Mo	de:	TX 802.11ax	(HE20) Mode	2462MHz 26	5/8		
20.0 dBu	₩/m					1	
10							
	~ Add				FCC Part15 C	- Above 1G P	ĸ
· 					FCC Part15 C	- Above 16 A	v
		1 X					
·	\	× 2					
ı		-Munsterner-manda.ma	and the second state of th	Malanangla-add Assessmented Mark	madeline who marked	-le-la-month/section/1	en and the stars
).0							
2451.200	2463.20 2475.2	20 2487.20 2	499.20 (MHz)	2523.20	2535.20 2547.	.20 2559.	20 2571.
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	12.70	31.48	44.18	74.00	-29.82	peak
2 *	2483.500	3.86	31.48	35.34	54.00	-18.66	AVG
	1						

nt. No.		Ant 1 + Ant	2				
nt. Pol.		Horizontal					
est Mod	de:	TX 802.11a	x(HE20) Mode	2462MHz 52	/40		
20.0 dBu\	¥∕m						
10							
00							
0							
	M						
	$\sim h + 1$				FCC Part15 C	- Above 1G P	ĸ
0					FCC Part15 C	- Above 1G A	v
0		1 X					
0		mikelezanon marine	and the second second second	and marked provide here where	****	-	with the for a last to a
0							
0							
0							
0.0 2451.200	2463.20 2475	.20 2487.20	2499.20 (MHz)	2523.20	2535.20 2547.	.20 2559.2	20 2571.2
No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500) 14.20	31.48	45.68	74.00	-28.32	peak
2 *	2483.500) 4.52	31.48	36.00	54.00	-18.00	AVG

2.Margin value = Level -Limit value

nt. No.		Ant 1 + Ant	2				
nt. Pol		Vertical					
est Mo	de:	TX 802.11a	x(HE20) Mode	2462MHz 52	/40		
20.0 dBu	V/m						
	~						
	\sqrt{r}				FCC Part15 C	- Above 1G P	ĸ
F							
\square					FCC Part15 C	Al	
1		1				- ADOVE TO A	<u> </u>
	\	× ×					
		have generation	and a second and the second	and and the second s	and a shore the sale of the second	Maria Andrew Arradicat	an and found the second
.0							
.0 2450.000	2462.00 2474.	00 2486.00	2498.00 (MHz)	2522.00	2534.00 2546	.00 2558.	00 2570.
No.	Frequency (MHz)	/ Reading (dBuV)	g Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500		31.48	45.78	74.00	-28.22	peak
2 *	2483.500	4.82	31.48	36.30	54.00	-17.70	AVG
2 *	2483.500	4.82	31.48	36.30	54.00	-17.70	AVG

Ant. No.			Ant 1	+ Ant 2	2								
Ant. Pol.			Horiz	ontal									
Test Mod	de:		TX 8)2.11ax	(HE20)	Mode	2462N	/Hz 10	6/54				
20.0 dBu	V/m												
10													
00													
0													
		٦											
	γ								FCC Part	15 C - Abo	ve 1G P	К	
	~												
									FCC Part	15 C - Abo	ve 16 A	v	
יין י			1 X										
)			2		e	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	montonen	the the second of		mouthmatiling			
)													
0													
0													
0.0 2451.200	2463.20	2475.20	248	7.20 2	499.20	(MHz)	252	3.20	2535.20 2	2547.20	2559.3	20 2571.	2
	_												
No.	Frequ (Mł			ading BuV)	Fac (dB/		Lev (dBu		Limit (dBuV/ı		argin dB)	Detecto	r
1	2483	.500	1	3.03	31.4	48	44.	.51	74.00	-29	9.49	peak	
2 *	2483	.500	4	.24	31.4	48	35.	.72	54.00) -18	8.28	AVG	
					-				-				

2.Margin value = Level -Limit value

nt. No.		Ant 1 + Ant 2					
nt. Pol.		Vertical					
est Moo	de:	TX 802.11ax	(HE20) Mode	2462MHz 10	6/54		
0.0 dBu	V/m						
0							
0							
N	\sim []				FCC Part15 C	- Above 16 Pl	ĸ
		1			FCC Part15 C	- Above 1G A	v
	- I N	1 X					
		2	manganatanahanana karana ka	an a	nt-langer of the manufacture of the	en and an and a second and a second as	whether
.0 2451.200	2463.20 2475.2	20 2487.20 24	499.20 (MHz)	2523.20	2535.20 2547.	20 2559.2	20 2571.2
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	15.45	31.48	46.93	74.00	-27.07	peak
2 *	2483.500	5.43	31.48	36.91	54.00	-17.09	AVG
				-	-		

nt. No.			Ant 1 + Ant 2					
nt. Pol			Horizontal					
est Mo	de:	-	TX 802.11ax((HE20) Mode	2462MHz 24	2/61		
20.0 dBu	V/m				1			
10								
,								
		7				FCC Part15 C	- Above 1G P	<u> </u>
		-	1 X			FCC Part15 C	- Above 1G A	/
		and the second s						
			2 Same		~~~	mutononten	may therease makes and	
.0								
2448.800	2460.80	2472.80	2484.80 24	196.80 (MHz)	2520.80	2532.80 2544.	80 2556.8	30 2568.8
2448.800 No.	Freque	ency	Reading (dBuV)	196.80 (МНz) Factor (dB/m)	Level	Limit (dBuV/m)	80 2556.1 Margin (dB)	<u>30 256</u> 8 Detecto
	2483.5	<i>'</i>	19.40	31.48	50.88	74.00	-23.12	peak
1	1 2400.0	500	13.40	01.40	00.00	14.00		peak
1 2 *	2483.5	500	4.50	31.48	35.98	54.00	-18.02	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. No.		Ant 1 + Ant 2 Vertical									
nt. Pol											
est Mo	de:	TX 802.11a	TX 802.11ax(HE20) Mode 2462MHz 242/61								
20.0 dBu	₩/m										
10											
\int											
					FCC Part15 C	- Above 1G Pl	<u>د</u>				
1											
					FCC Part15 C	- Above 1G A	/				
		×									
		12 Marine Marine	en solandator or sona tor the	and the second second second	warmen washing		en an				
·											
·											
.0 2449.400	2461.40 2473.	40 2485.40 2	2497.40 (MHz)	2521.40	2533.40 2545.	40 2557.4	40 2569.4				
	Frequency	Reading	Factor	Level	Limit	Margin					
No.	Frequency (MHz)	(dBuV)	(dB/m)	1	(dBuV/m)	Margin (dB)	Detector				
1	2483.500	18.49	31.48	49.97	74.00	-24.03	peak				
2 *	2483.500 5.89		31.48	37.37	54.00	-16.63	AVG				
					1		L				

nt. Pol. est Mode: 0.0 dBuV/n 0		Horizontal TX 802.11a	x(HE40) Mode	2422MHz 26	/0			
0.0 dBuV/n		TX 802.11a	x(HE40) Mode	2422MHz 26	/0			
0	n	i						
•								
					0			
					FCC Part15 C	Above-1G P	<u> </u>	
							$\forall \mathcal{M}$	
					FCC Part15 C	- Above 1G A	<u> </u>	
				1 X				
manandation	wanterwark		mannen	multer the state	ananan		₩	
.0 2293.000 2	2308.00 2323.	00 2338.00	2353.00 (MHz)	2383.00	2398.00 2413.	.00 2428.0	JO 2443.	
Na	Frequency	/ Reading	Factor	Level	Limit	Margin		
No.	(MHz)	(dBuV)		(dBuV/m)	(dBuV/m)	(dB)	Detector	
1	2390.000	14.12	31.31	45.43	74.00	-28.57	peak	
2 *	2390.000	6.62	31.31	37.93	54.00	-16.07	AVG	

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. No. Ant. Pol.		4	Ant 1 + Ant 2										
		,	Vertical										
est Mod	e:	-	TX 802.11ax(HE40) Mode 2422MHz 26/0										
20.0 dBu¥	//m		Î										
10													
									n				
									FCC	Page 15 C	- Above 16 P	N-	
											V		
								_	FCC	Part15 C	- Above 1G A		
								1 X				$ \mathbb{H}$	
Surgestine and	mummu		and the second second second		wanner	man		2	ard				
I													
.0	2312.50	2327.50	2342.50	23	57.50	(MHz)	238	7.50	2402.50	2417.	50 2432.	50 244	7 .
N	Frequ	iency	Readi	ng	Fac	ctor	Le	vel	Lir	nit	Margin		
No.	(MHz)		(dBuV)		(dB/m)				(dBuV/m)		(dB)	Detector	or
1	2390	.000	16.4	16.45		31.31		47.76		.00	-26.24	peak	<
2 *	2390.000		5.06		31.31		36.37		54.00		-17.63	AVG	3

nt. No).	Ant 1 + Ant 2					
nt. Po	d.	Horizontal					
est Mo	ode:	TX 802.11ax(HE40) Mode	2422MHz 52	/37		
20.0 dE	3uV/m						
IO							
0							
ı							
,							
					FCC Part15 C	- Above 1G Pl へん へっ	
						ΥY	\mathcal{M}
					FCC Part15 C	- Above 1G AV	<u> </u>
				1 X 2			
	maladasharan waxaa waxaa kaa miyaa	hundredown	alexandrophyranaleonen an	man and the second with	undered		
).0							
2292.25	50 2307.25 2322.25	5 2337.25 23	52.25 (MHz)	2382.25	2397.25 2412.	25 2427.2	25 2442.2
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	13.47	31.31	44.78	74.00	-29.22	peak
2 *	2390.000	5.95	31.31	37.26	54.00	-16.74	AVG
				1		1	1

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. Pol. est Mode		Vertical										
st Mode												
	e:	TX 802.11ax(HE40) Mode 2422MHz 52/37										
0.0 dBuV/	/m											
o												
0												
					[[]]							
					FCC Part15.C	- Aboye 16 Pl						
							\neg					
					FCC Part15 C	- Above 1G A						
				1 X			M					
and a second second	way to many second and second	an grant was been been allowed		2 	wheel							
.0												
	2310.25 2325.	25 2340.25 2	2355.25 (MHz)	2385.25	2400.25 2415.	25 2430.2	25 2445.3					
No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)		Limit (dBuV/m)	Margin (dB)	Detector					
1	2390.000		31.31	46.53	74.00	-27.47	peak					
2 *	2390.000	5.33	31.31	36.64	54.00	-17.36	AVG					

nt. No.			Ant 1 + Ant 2					
nt. Pol.	1		Horizontal					
est Moo	de:	•	TX 802.11ax	(HE40) Mode	2422MHz 10	6/53		
0.0 dBu	V/m		1				1	
0								
0								
						FCC Part15 C	- Above 1G Pl	K
							т II Y	VN
					1	FCC Part15 C	- Above 1G A	<u> </u>
					*			
-	undermathanterte	-		and have a source of the second second	minuna and a strangement	numaine		II
.0								
2293.000	2308.00	2323.00	2338.00 2	353.00 (MHz)	2383.00	2398.00 2413.	00 2428.0	0 2443.0
No.		uency Hz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390	.000	17.25	31.31	48.56	74.00	-25.44	peak
2 *	2390	.000	5.13	31.31	36.44	54.00	-17.56	AVG

2.Margin value = Level -Limit value

nt. No			Ant 1 + Ant 2										
nt. Po	l.		Vertical										
est Mo	de:	-	TX 802.11ax(HE40) Mode 2422MHz 106/53										
20.0 dB	uV/m		1	1									
10													
						FCC Part15/C	Aboye 16 Pl	Sm-					
							Vľ						
					1	FCC Part15 C	- Above 1G A	\square					
					X			N					
markene	manna			annound with		mm							
2294.50	0 2309.50 2	324.50	2339.50 23	54.50 (MHz)	2384.50	2399.50 2414.	50 2429.5	50 2444.					
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector					
1	2390.0	00	16.83	31.31	48.14	74.00	-25.86	peak					
2 *	2390.0	00	5.28	31.31	36.59	54.00	-17.41	AVG					
2 *	2390.0	00	5.28	31.31	36.59	54.00	-17.41	AV					

nt. Pol. est Mode		Horizontal TX 802.11ax(
20.0 dBuV/		TX 802.11ax(
	/m		⊓⊏40) Mode	2422MHz 24	2/61									
0														
0														
,						m								
,					FCC-Part15 C	- Above 1G Pk	<u>.</u>							
, ,						γŗ	$\gamma \gamma$							
,					FCC Part15 C	- Above 1G AV								
,				1 X										
mansubul	waydan dawlaad arab shabban agaand	an harden with second and second	mannemater	and the second	human		Ч							
)														
)														
)														
	2308.75 2323.75	2338.75 23	53.75 (MHz)	2383.75	2398.75 2413.	75 2428.7	/5 2443.7							
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector							
1	2390.000	13.47	31.31	44.78	74.00	-29.22	peak							
2 *	2390.000	5.61	31.31	36.92	54.00	-17.08	AVG							

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. No		Ant 1	+ Ant 2					
nt. Po	l.	Vertica	al					
est Mo	de:	TX 80	2.11ax(HE40) Mod	e 2422MHz	242/61		
20.0 dB	uV/m							
10								
00								
o								
)								
) 🕅						FUU Part15 U	- Above 16/A	
)								
					1		- Above 1G A	×
·					1 × 2			Y
Navqayatyora I	ana an	ware when we wanted		an the physical data series and	n ngan din ship nga nga kalantan Ri	- Andrew A		
)								
)								
).0 2293.75	0 2308.75 232	3.75 2338.	75 00	53.75 (MHz)	2383.75	2398.75 2413	.75 2428.3	75 2443.7
No.	Frequence (MHz)		ading BuV)	Factor (dB/m)	Level (dBuV/n	Limit n) (dBuV/m)	Margin (dB)	Detector
1	2390.00	0 13	.85	31.31	45.16	74.00	-28.84	peak
2 *	2390.00	0 4.	53	31.31	35.84	54.00	-18.16	AVG

nt. No.		A	nt 1 + Ant 2					
nt. Pol.		н	lorizontal					
st Moc	le:	T	X 802.11ax(HE40) Mode	2422MHz 48	4/65		
0.0 dBu\	√/m	1						
o								
o								
						FCC Part15 C	- Abøve 16 P	<u> </u>
						FCC Part15 C	- Above 1G A	
					1 X			~
manen	and the second second		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ntueses an engineering	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	nd and a second s		
.0								
2294.500	2309.50 232	24.50	2339.50 23	54.50 (MHz)	2384.50	2399.50 2414.	50 2429.	50 2444.
No.	Frequen (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.00		14.71	31.31	46.02	74.00	-27.98	peak
2 *	2390.00	0	4.58	31.31	35.89	54.00	-18.11	AVG
-								<u> </u>

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

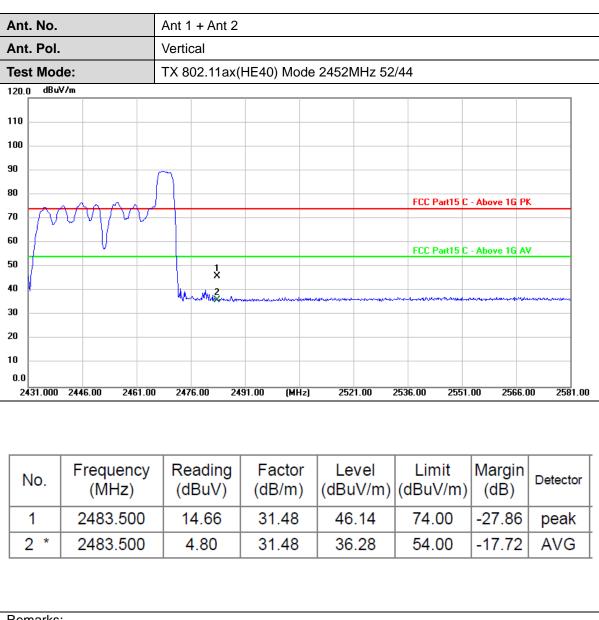
2.Margin value = Level -Limit value

Ant. No	•		Ant 1	I + Ant 2									
Ant. Po	Ι.		Verti	cal									
est Mo	de:		TX 8	02.11ax	(HE40)	Mode	2422N	/Hz 48	4/65				
20.0 dB	uV/m												٦
10													_
00													_
o													
o											··· V ···		
o 📃									FUL	Part15 C	- Above 1G	РК	
o												(
o 📃								1 X	- FEC	Part15 C	- Above 1G	AV	
0								2	1				
	aforenda/arena	alleh dhealan harrowen	ph.e42.42-42.00199193	and and the second s	open we know have a	en allege and a second	udahanananahan	Month M					-
o													_
o 📃													_
0.0 2293.00	0 2308.00	2323.0		8.00 2	353.00	(MHz)		3.00	2398.00	2413.	00 242		 43.0(
No.		uency Hz)		ading BuV)	1	ctor 8/m)	1	vel V/m)		mit ıV/m)	Margii (dB)	n Detec	tor
1	239	0.000	1	7.51	31	.31	48	.82	74	.00	-25.18	3 pea	k
2 *	239	0.000	1	7.05	31	.31	38	.36	54	.00	-15.64	1 AV	G

nt. No.		Ant 1 + A	nt 2									
nt. Pol.	1	Horizonta	I									
est Mod	de:	TX 802.11ax(HE40) Mode 2452MHz 26/17										
20.0 dBu\	V/m											
0												
0												
							FCC Part15	C - Above 1G	РК			
		$\frac{1}{1}$										
	~ V V	V	-				FCC Part15	C - Above 1G	AV			
	V		1×									
V		hinsonon	2 Annonetrin	weether	en the state of th	monumali	when you wanted the man	hoppendetransa	upprosenting and the			
.0 2430.250	2445.25 2460.2	5 2475.25	2490.25	(MHz)	252	0.25	2535.25 25	50.25 256	5.25 2580.3			
	Frequency	Dect	~~ ~				L insit	Moreit				
No.	Frequency (MHz)	Readii (dBu\	-	actor IB/m)	1	vel IV/m)	Limit (dBuV/m	Margin (dB)	Detector			
1	2483.500	16.97	7 3	1.48	48	.45	74.00	-25.55	5 peak			
2 *	2483.500	6.56	3	1.48	38	.04	54.00	-15.96	3 AVG			

2.Margin value = Level -Limit value

Ant. No.		Ant 1 + Ant 2	2				
Ant. Pol.		Vertical					
Fest Mod	de:	TX 802.11ax	(HE40) Mode	2452MHz 26	/17		
20.0 dBu	V/m						
10							
00							
0							
		Λ					
	00000				FCC Part15 C	- Above 1G Pl	ĸ
יין י	$\vee \vee \vee \vee$	\vee					
)	V				FCC Part15 C	- Above 1G A	v
0		1 X					
D 🖡 🗌		E	and a sub-	marker marker the marker was	an and a state of the second	and and a second second	anne the second
0							
0							
o							
D.O 2430.500	2445.50 2460.5	50 2475.50 2	2490.50 (MHz)	2520.50	2535.50 2550.	50 2565.5	50 2580.5
No.	Frequency (MHz)	<pre>/ Reading (dBuV)</pre>	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	13.89	31.48	45.37	74.00	-28.63	peak
2 *	2483.500	4.66	31.48	36.14	54.00	-17.86	AVG
emarks	-		·	-	-		



nt. No	-		A	Ant 1	+ Ant 2									
nt. Po	I.		H	loriz	ontal									
est Mo	ode:		1	TX 8	02.11ax(HE40) N	1ode	2452N	/Hz 52	/44				
20.0 dB	uV/m									1				-
0														
														1
			r	η						FCC P	art15 C	C - Above 1G	РК	
0	$\gamma \Lambda l$	$\Lambda \Lambda \Lambda$	M				_							
_ I ↑			V V	+			_			FCC P	art15 (C - Above 1G	AV	
		V			1									
				white	1 2 4	Marmadittate	and marking	havenendare	- and advanted	tructure	Manpris	prover and a second	hand the for the state of the second state of the second state of the second state of the second state of the s	
.0 2431.00	0 2446		61.00		6.00 24	91.00 (MHz)		1.00	2536.00	2551		6.00 258	
							,							
No.	Fr	equen (MHz)	-		ading BuV)	Fact (dB/r			vel V/m)	Lim (dBu\		Margii (dB)	n Detect	tor
1	2	483.50	0	1	1.73	31.4	8	43	.21	74.(00	-30.79	9 pea	k
2 *	2	483.50	0	6	6.29	31.4	8	37	.77	54.(00	-16.23	3 AVC	3

2.Margin value = Level -Limit value

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

nt. No.		Ant	1 + Ant 2									
nt. Pol.		Hor	izontal									
est Mod	le:	TX 802.11ax(HE40) Mode 2452MHz 106/56										
0.0 dBu	√/m											
0												
0												
·												
·	I	hum				FCC Part15 C	- Above 1G F	чк				
	$\Lambda\Lambda\Lambda\Lambda$											
. IV	~ 1 V V					ECC Part15 C	- Above 1G A	<u></u>				
	<u>\</u>						- ADOVE TO A					
ļ			1 × 2									
		<u> </u>	- marting with	source and the source of the	nghaninanah salah kanadipta	washer to mark mark your	hypotogetellikeen of nyklowikeen of his	Manathaniska				
.0												
2431.000	2446.00 2461.	00 2	476.00 24	91.00 (MHz)	2521.00	2536.00 2551	.00 2566.	.00 2581.				
	Frequency	, P	eading	Factor	Level	Limit	Margin					
No.	(MHz)		dBuV)	(dB/m)		(dBuV/m)		Detector				
1	2483.500		12.35	31.48	43.83	74.00	-30.17	peak				
2 *	2483.500		5.56	31.48	37.04	54.00	-16.96	AVG				
	-						•					

2.Margin value = Level -Limit value

nt. No.		Ant 1 + Ant 2	Ant 1 + Ant 2								
nt. Pol		Vertical									
est Mo	de:	TX 802.11ax	(HE40) Mode	2452MHz 10	6/56						
20.0 dBu	W/m										
10											
	ſ										
	. A A AAT				FCC Part15 C	- Above 1G Pl	ĸ				
TV-	VALLOO										
					FCC Part15 C	- Above 1G Al					
		1 X				- ADOVE TO A					
<u> </u>		Museu 2									
		" March water	and a star a	ana an	den en e	enge-roomhananadaeu					
.0											
2431.000	2446.00 2461.0	00 2476.00 2	491.00 (MHz)	2521.00	2536.00 2551.	00 2566.0	0 2581.				
No.	Frequency (MHz)	 Reading (dBuV) 	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
1	2483.500	14.97	31.48	46.45	74.00	-27.55	peak				
2 *	2483.500	4.65	31.48	36.13	54.00	-17.87	AVG				
2 "	2483.500	4.60	31.48	30.13	54.00	-17.87	AVG				

CTC Laboratories, Inc.

可监督管理委员会 中国国家认 EN **い正**ル

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

nt. No.			Ant 1 + Ant 2									
nt. Pol.			Horiz	ontal								
est Mod	le:		TX 802.11ax(HE40) Mode 2452MHz 242/62									
20.0 dBu\	V/m											
10												
00												
,												
	- ^ ⁽	Marca Marcana	~~~					FCC Part15	C - Above 1G	РК		
M	JVV											
- H								FCC Part15	C - Above 1G	AV		
				1 X 2								
ų			min	2 million	when the stand of the same	www.w.athloca	medhandway	Wentermannen	reneralises and and and and	ward Martin Commences		
.0 2431.000	2446.00	2461.00	2476	6.00 24	91.00 (MHz)	2521.	.00 2	536.00 255	1.00 256	6.00 258		
No.		iency Hz)		ading BuV)	Factor (dB/m)	Lev (dBu)		Limit (dBuV/m	Margii	n _{Detect}		
No.	Frequ (MI 2483	Hz)	(dl	ading BuV) 2.21	Factor (dB/m) 31.48		V/m)	Limit (dBuV/m 74.00		Delect		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. No.		Ant 1 + An	t 2							
nt. Pol.		Vertical								
est Mod	de:	TX 802.11ax(HE40) Mode 2452MHz 242/62								
20.0 dBu	V/m									
10										
)	- marine	my								
)	AM				FCC Part15 C	- Above 1G P	ж			
77	VAL									
· {					FCC Part15 C	- Above 16 A	v			
		- ł								
		Manus and Star								
		and the second	ann an	ware and the second	anna an ann an an an an an an an an an a	den and the second s	manathan			
.0										
2431.000	2446.00 2461	.00 2476.00	2491.00 (MHz)	2521.00	2536.00 2551	.00 2566.	.00 2581.			
No.	Frequenc (MHz)	y Readin (dBuV		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1	2483.500		31.48	49.42	74.00	-24.58	peak			
2 *	2483.500	5.68	31.48	37.16	54.00	-16.84	AVG			
2 *	2483.500	5.68	31.48	37.16	54.00	-16.84	AVG			

nt. No.			Ant 1 + A	Ant 2	Ant 1 + Ant 2									
nt. Pol			Horizont	al										
est Mo	de:		TX 802.11ax(HE40) Mode 2452MHz 484/65											
20.0 dBu	W/m		1				î		,	1				
10														
00														
								FCC P	art15 C	- Above 1G	PK			
								FCC P	art15 C	- Above 1G	AV			
V			bury	1 X										
			× ×	2			mound	mandan		servery-and tryadition	and the second			
.0 2430.250	2445.25	2460.25	2475.25	2490.2	5 (MH	a) 25	20.25	2535.25	2550.	25 256	5.25 2580.3			
No.		iency Hz)	Read (dBu		Factor (dB/m)		evel uV/m)	Lim (dBu\		Margir (dB)	Detector			
1	2483	.500	13.2	5	31.48	44	1.73	74.(00	-29.27	' peak			
2 *	2483	.500	4.0	7	31.48	35	5.55	54.0	00	-18.45	5 AVG			
				·		·				-	-			

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

可监督管理委员会 中国国家认 EN ūΕī

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

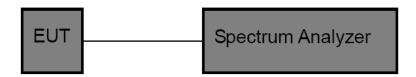
nt. No.			Ant 1 + Ant 2									
nt. Pol.		,	Vertical									
est Mod	le:	-	TX 802.11ax(HE40) Mode 2452MHz 484/65									
0.0 dBu\	√/m											
o												
o												
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~									
								FCC Part15 C	: - Above 1G F	<u>K</u>		
				1 ×				FCC Part15 0	- Above 1G A	N		
			<u> </u>	2 Xartur yan maran	managenera	gundensetwoodnood	and the second	ajuugatuudgatsidaadaa Joreen afilikaya	andrew manager	and the second second		
.0												
2428.250	2443.25	2458.25	2473.25	2488.25	(MHz)	2518.2	5 2	533.25 2548	3.25 2563.	.25 2578.2		
No.	Freque (MH	-	Readin (dBuV)			Leve (dBuV		Limit (dBuV/m)	Margin (dB)	Detector		
1	2483.	500	23.25	31.	48	54.7	3	74.00	-19.27	peak		
2 *	2483.	500	5.18	31.	48	36.6	6	54.00	-17.34	AVG		

CTC Laboratories, Inc.

中国国家认证认可监督管理委员会 EN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn




# 3.4. Band Edge and Spurious Emissions (Conducted)

# <u>Limit</u>

# FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

## Test Configuration



#### Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold.
- 4. Measure and record the results in the test report.

#### Test Mode

Please refer to the clause 2.4.



#### **Test Result**

## (1) Band Edge Conducted Test & Conducted Spurious Emissions Test

Mode	Channel	Ant.	OOB Emission Frequency (MHz)	OOB Emission Level (dBm)	Limit (dBm)	Result
			2400.00		-35.78	PASS
		0	2393.98	-50.367	-35.78	PASS
	4		4823.70	-42.152	-35.78	PASS
	1		2400.00	-50.446	-35.76	PASS
		1	4823.74	-41.859	-35.76	PASS
			4874.30	-40.107	-34.93	PASS
IEEE 802.11b	0	0	4874.30	-39.695	-35.21	PASS
	6	1	2483.50	-54.469	-33.07	PASS
		0	4924.24	-35.997	-33.07	PASS
	44	0	2483.50	-53.705	-33.45	PASS
	11	4	4924.24			PASS
		1	2400.00	-46.584	-31.93	PASS
			2398.92	-45.426	-31.93	PASS
		0	4823.70	-42.297	-31.93	PASS
	,		2400.00	-45.567	-31.77	PASS
	1			-45.368		PASS
		1				PASS
IEEE 802.11g -						PASS
	-	0				PASS
	6	1				PASS
-		-			-35.76         -35.76         -35.76         -35.76         -35.21         -33.07         -33.07         -33.07         -33.45         -31.93         -31.93         -31.93         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.77         -31.4         -32.42         -32.42         -31.4         -30.03         -29.88         -29.88         -31.88         -31.88 </td <td>PASS</td>	PASS
		0				PASS
	11	4				PASS
		1				PASS
						PASS
		0	-			PASS
	1					PASS
	•	1				PASS
						PASS
IEEE		0				PASS
802.11n_20	6	1				PASS
-		-				PASS
		0	Frequency (MHz)         Level (dBm)           2400.00         -53.066           2393.98         -50.367           4823.70         -42.152           2400.00         -50.446           4823.74         -41.859           4874.30         -40.107           4874.30         -39.695           2483.50         -54.469           4924.24         -35.997           2483.50         -53.705           4924.24         -35.819           2400.00         -46.584           2398.92         -45.426           4823.70         -42.297           2400.00         -45.567			PASS
	11					PASS
		1				PASS
						PASS
		0				PASS
	3	U U				PASS
	J J					PASS
		1				PASS
IEEE		0			-31.75	PASS
802.11n_40	6	1			-31.63	PASS
F					-31.75	PASS
		0			-31.75	PASS
	9				-31.75	PASS
		1			-31.74 -31.74	PASS

CTC Laboratories, Inc.

EN 中国国家认证认可监督管理委员会

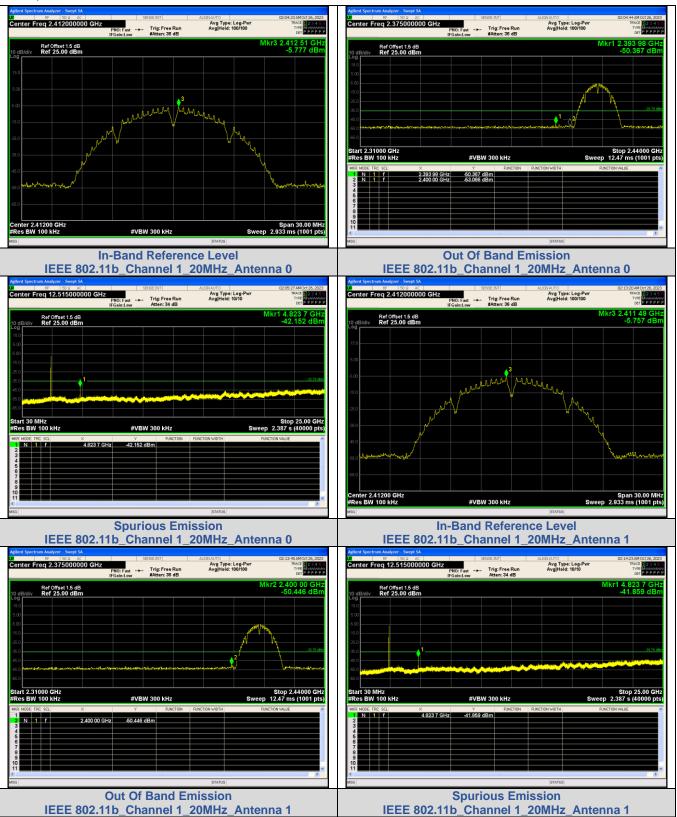
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



Mode	Channel	RU & Index	Ant.	OOB Emission Frequency (MHz)	OOB Emission Level (dBm)	Limit (dBm)	Result
				2400.00	-52.907	-35.72	PASS
		26RU0	0	2349.26	-51.424	-35.72	PASS
				24917.0	-43.222	-35.72	PASS
				2400.00	-52.217	-35.76	PASS
			1	2379.68	-51.204	-35.76	PASS
				24860.2	-42.881	-35.76	PASS
				2400.00	-51.590	-35.99	PASS
			0	2340.94	-51.333	-35.99	PASS
		52RU37		24907.0	-43.277	-35.99	PASS
		521057		2400.00	-52.168	-34.56	PASS
	1		1	2314.16	-51.024		PASS
				24849.6	-43.367		PASS
			0	2400.00	-44.573	-29.89	PASS
		106RU53	8	4813.75	-36.841		PASS
		10011000	1	2400.00	-42.313		PASS
			•	4824.98	-37.483		PASS
			0	2400.00	-34.937	-29.81	PASS
			~	4820.61	-40.057		PASS
IEEE		242RU61		2400.00	-47.570		PASS
802.11ax_20			1	2396.97	-47.046		PASS
002.111aA_20				4820.60	-41.510	(dBm)           -35.72           -35.72           -35.72           -35.76           -35.76           -35.76           -35.76           -35.76           -35.99           -35.99           -35.99           -35.99           -34.56           -34.56           -34.56           -29.89           -29.04           -29.04           -29.81           -29.81           -30.45           -30.45           -30.45           -30.45           -30.45           -30.45           -30.45           -30.45           -30.35           -35.34           -35.34           -35.34           -35.34           -35.34           -35.34           -35.34           -35.34           -35.34           -35.34           -35.34           -35.34           -35.34           -35.34           -35.34           -35.34           -36.39           -28	PASS
	6	242RU61	0	4874.93	-36.903		PASS
		2121(001	1	4877.42	-39.330		PASS
			0	2483.50	-52.370		PASS
		26RU8	8	23575.4	-43.064		PASS
		201100	1	2483.50	-53.765		PASS
			1	24891.4	-42.938		PASS
			0	2483.50	-52.877		PASS
		52RU40	U U	4922.99	-41.704		PASS
			1	2483.50	-53.160		PASS
	11			4937.98	-38.825		PASS
			0	2483.50	-53.172		PASS
		106RU54	Ū.	4925.49	-37.053		PASS
			1	2483.50	-52.125		PASS
		242RU61		4935.48	-35.102		PASS
			0	2483.50	-44.032		PASS
			-	4925.49	-36.891		PASS
			1	2483.50	-51.815		PASS
		╂─────┤		4921.12	-40.207		PASS
			0	2400.00	-43.898		PASS
			0	2398.01	-38.901		PASS
		26RU0		23732.1	-43.440		PASS PASS
			1	2400.00 2396.97	-52.393 -50.331		PASS
			I	4808.10			PASS
				2400.00	-41.965 -53.544		PASS
			0	2359.92			PASS
			U	2359.92	-51.480 -43.062		PASS
		52RU37		23759.0	-43.062 -53.789		PASS
IEEE			1	2397.62	-53.789 -51.550		PASS
802.11ax_40	3		I	2397.62			PASS
002.11aX_40				23205.2	-42.528 -48.961		PASS
			0	2396.45	-43.867		PASS
			U	2396.45	-43.867		PASS
		106RU53		2400.00	-42.240		PASS
			1	2395.67	-49.012		PASS
				24700.4	-43.212		PASS
		+		2400.00	-42.349		PASS
			0	2395.54	-41.503	-33.93	PASS
		242RU61	0	23768.3	-42.859	-33.93	PASS
		F	1	2400.00	-53.334	-32.44	PASS
	1		1	2700.00	00.004	J2.77	17.00

CTC Laboratories, Inc.

中国国家认证认可监督管理委员会 EN


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



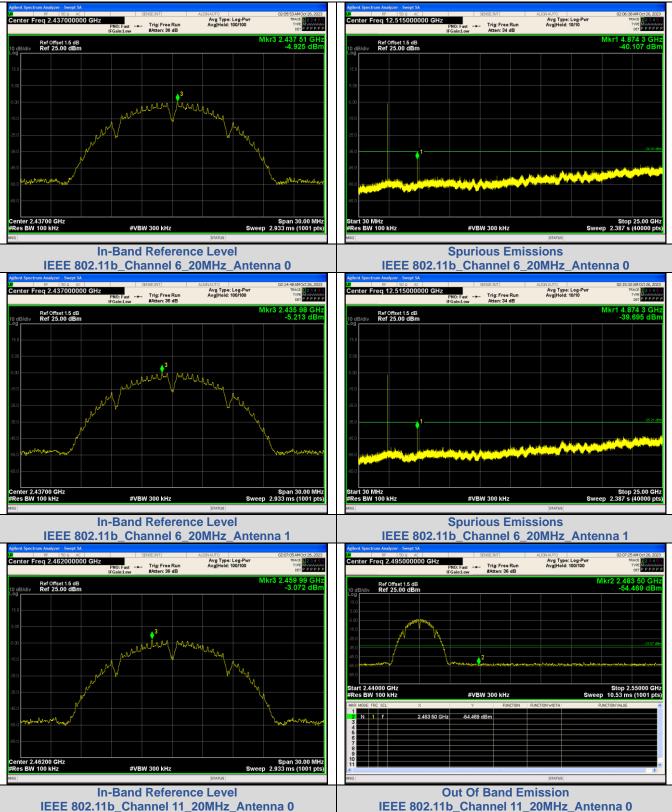
				2395.80	-49.895	-32.44	PASS
				21869.9	-42.717	-32.44	PASS
				2400.00	-44.359	-32.96	PASS
			0	2395.02	-42.256	-32.96	PASS
		484RU65		4845.60	-40.979	-32.96	PASS
			4	2400.00	-41.231	-32.96	PASS
			1	4842.46	-40.118	-32.96	PASS
	6		0	4886.16	-41.458	-33.04	PASS
	0	404KU00	1	4872.43	-38.391	-33.0	PASS
			0	2483.50	-54.313	-34.02	PASS
		26RU17	0	24855.2	-43.017	-34.02	PASS
		200017	1	2483.50	-53.157	-35.03	PASS
				22817.6	-43.283	-35.03	PASS
			0	2483.50	-53.281	-35.14	PASS
		52RU44	0	24873.3	-42.876	-35.14	PASS
		52RU44	1	2483.50	-53.800	-33.74	PASS
	·		1	23614.1	-43.167	-33.74	PASS
			0	2483.50	-50.962	-34.2	PASS
	9	106RU56		23737.7	-43.622	-34.2	PASS
	9	1000030	1	2483.50	-51.707	-32.64	PASS
			I	24879.5	-43.431	-32.64	PASS
			0	2483.50	-49.046	-32.9	PASS
		242RU62	0	24790.9	-42.160	-32.9	PASS
		2421002	1	2483.50	-54.088	-33.53	PASS
			1	24812.1	-42.636	-33.53	PASS
			0	2483.50	-45.512	-33.18	PASS
		484RU65	U	4903.02	-37.933	-33.18	PASS
		4040000	1	2483.50	-53.331	-33.2	PASS
			1	4903.02	-38.467	-33.2	PASS



Test plot as follows:



2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China


中国国家认证认可监督管理委员会

EN

Tel.: (86)755-27521059 Fax: (86)755-27521011

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn





#### CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 ΞN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn