

FCC - TEST REPORT

Report Number	:	68.950.23.0879.01		Date of Issue:		2023-11-06
Model	<u>:</u>	NPG-001, HP52A, HP	P52AX,	NPG01ASTB		_
Product	<u>:</u>	Playground				
Applicant	<u>:</u>	Shenzhen Skyworth D	Digital T	echnology Co.	, LTD.	
Address	<u>:</u>	14/F, Unit A, Skyworth	n Buildi	ng, Gaoxin Ave	e.1.S.,	
		Nanshan District, 5180	063 Sh	enzhen,		
		PEOPLE'S REPUBLIC	C OF C	HINA		
Manufacturer	:	Shenzhen Skyworth D	Digital T	echnology Co.	, LTD.	
Address	:	14/F, Unit A, Skyworth	n Buildi	ng, Gaoxin Ave	e.1.S.,	
		Nanshan District, 5180	063 Sh	enzhen,		
		PEOPLE'S REPUBLIC	C OF C	HINA		
Test Result	:	■ Positive □ Ne	gative			
Total pages including Appendices	:	60				

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation, chapter A-3.4.

1 Table of Contents

1	Tab	ole of Contents	2
2	Det	tails about the Test Laboratory	3
3	Des	scription of the Equipment Under Test	4
4	Sun	mmary of Test Standards	5
5	Sun	mmary of Test Results	6
6	Ger	neral Remarks	7
7	Tes	st Setups	8
8	Sys	stems test configuration	10
9	Tec	chnical Requirement	11
9	.1	Conducted Emission	11
9	.2	Conducted peak output power	14
9	.3	20 dB bandwidth	19
9	.4	Carrier Frequency Separation	24
9	.5	Number of hopping frequencies	27
9	.6	Dwell Time	30
9	.7	Spurious RF conducted emissions	38
9	.8	Band edge testing	49
9	.9	Spurious radiated emissions for transmitter	55
10	Tes	st Equipment List	59
11	Sys	stem Measurement Uncertainty	60

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park, Guankou Erlu,

Nantou, Nanshan District, Shenzhen City, 518052, P. R. China

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

FCC Registration

514049

No.:

FCC Designation

CN5009

Number:

IC Registration

10320A

No.:

3 Description of the Equipment Under Test

Product: Playground

Model no.: NPG-001, HP52A, HP52AX, NPG01ASTB

Model difference: All models have the same technical construction including circuit

diagram, PCB layout, components and component layout. Only the outlook/color are different. So the main test model is NPG-001.

FCC ID: WNA-NPG-001

Options and accessories: Adapter, HDMI Cable, Remote

Rating: 5VDC, 3A supplied by external adapter

Adapter information: Adapter Model: AD-0150500300US-1

Input: 100-240VAC 50/60Hz, 0.5A,

Output: 5VDC,3.0A 15.0W

Remote information: Type name: Bluetooth voice remote control

Model: NPG-RCU-001

FCC ID: 2A7GQ-NPG-RCU-001

RF Transmission Frequency: 2402MHz-2480MHz

No. of Operated Channel: 79

Modulation: GFSK, $\pi/4$ -DQPSK, 8DPSK

Antenna Type: On Board Antenna

Antenna Gain: 1.87dBi

Description of the EUT: The EUT is a playground with Bluetooth Low Energy/Bluetooth

BDR+EDR, 2.4G Wi-Fi & 5G Wi-Fi functions.

Only Bluetooth BDR+EDR included in this report.

4 Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES
10-1-2021 Edition	Subpart C - Intentional Radiators

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10 (2020).

5 Summary of Test Results

Technical Requirements							
FCC Part 15 Subpart C							
Test Condition		Test Site	Test Result				
			Pass	Fail	N/A		
§15.207	Conducted emission AC power port	Site 1	\square				
§15.247 (b) (1)	Conducted peak output power	Site 1	\boxtimes				
§15.247(a)(1)	20dB bandwidth	Site 1	\boxtimes				
§15.247(a)(1)	Carrier frequency separation	Site 1	\boxtimes				
§15.247(a)(1)(iii)	Number of hopping frequencies	Site 1	\boxtimes				
§15.247(a)(1)(iii)	Dwell Time	Site 1	\boxtimes				
§15.247(e)	Power spectral density				\boxtimes		
§15.247(d)	Spurious RF conducted emissions	Site 1	\boxtimes				
§15.247(d)	Band edge	Site 1	\boxtimes				
§15.247(d) & §15.205 & §15.209	Spurious radiated emissions for transmitter	Site 1					
§15.203	Antenna requirement	See note 2					

Note 1: N/A=Not Applicable.

Note 2: The EUT uses on board antenna, which gain is 1.87dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: WNA-NPG-001 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment Under Test

- **Fulfills** the general approval requirements.
- ☐ **Does not** fulfill the general approval requirements.

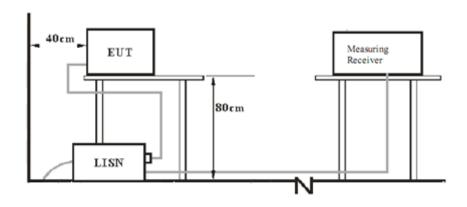
Sample Received Date: 2023-10-23

Testing Start Date: 2023-10-23

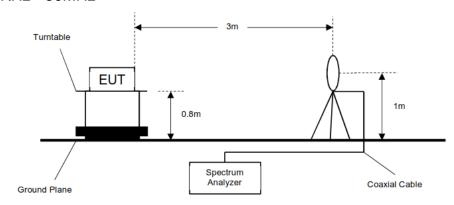
Testing End Date: 2023-11-04

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

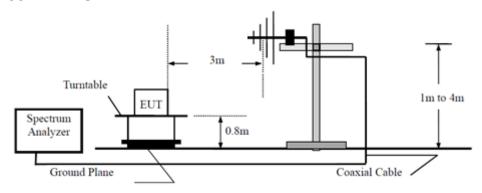
Reviewed by: Prepared by: Tested by:


John Zhi Sanvin Zheng

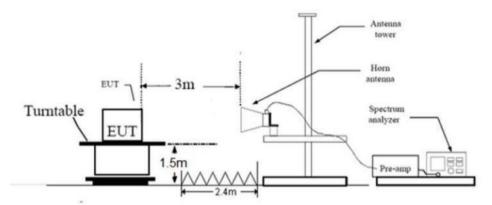
Project Manager Project Engineer Test Engineer



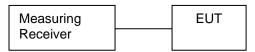
7 Test Setups


7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups 9KHz - 30MHz



30MHz - 1GHz



TUV SUD

Above 1GHz

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

Description	Manufacturer	Model No.	Remark
Notebook	Lenovo	X220	
Remote	Wuxi Weida Intelligent Electronics	NPG-RCU-001	Type name: Bluetooth voice remote control FCC ID: 2A7GQ-NPG-RCU-001

Cables Used During Test:

Cable	Length	Shielded/unshielded	With / without ferrite
HDMI Cable	150cm	Shielded	Without ferrite
Type-C Cable	100cm	Unshielded	Without ferrite

Test software information:

Test Software	adb.exe	
Modulation	Setting TX Power	Packet Type
GFSK	Default	PRBS9
π/4-DQPSK	Default	PRBS9
8DPSK	Default	PRBS9

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

9 Technical Requirement

9.1 Conducted Emission

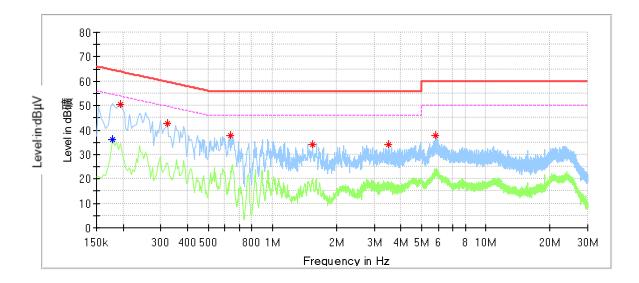
Test Method

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. Both sides of AC line were checked for maximum conducted interference.
- 6. The frequency range from 150 kHz to 30 MHz was searched.
- 7. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Limit

According to §15.207, Conducted emissions limit as below:

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50


^{*}Decreases with the logarithm of the frequency.

Conducted Emission

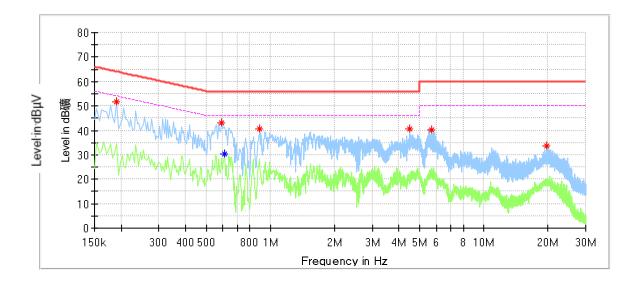
Model : NPG-001

Test Mode : Transmitting mode
Test Voltage : AC120V/60Hz
Remark : Power Line, Live

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.178000		36.20	54.58	18.37	L1	9.54
0.194000	50.44		63.86	13.42	L1	9.54
0.322000	42.60		59.66	17.06	L1	9.57
0.638000	37.93		56.00	18.07	L1	9.60
1.546000	33.92		56.00	22.08	L1	9.61
3.494000	33.94		56.00	22.06	L1	9.68
5.802000	37.71		60.00	22.29	L1	9.78

Remark:

Level=Reading Level + Correction Factor
Correction Factor=LISN Factor + Cable Loss
(The Reading Level is recorded by a fitting which is


(The Reading Level is recorded by software which is not shown in the sheet)

Conducted Emission

Model : NPG-001

Test Mode : Transmitting mode
Test Voltage : AC120V/60Hz
Remark : Power Line, Neutral

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.190000	51.53		64.04	12.50	N	9.57
0.590000	42.90		56.00	13.10	N	9.63
0.610000		30.53	46.00	15.47	N	9.63
0.890000	40.59		56.00	15.41	N	9.63
4.482000	40.68		56.00	15.32	N	9.75
5.714000	40.15		60.00	19.85	N	9.81
19.694000	33.74		60.00	26.26	N	9.95

Remark:

Level=Reading Level + Correction Factor Correction Factor=LISN Factor + Cable Loss

(The Reading Level is recorded by software which is not shown in the sheet)

9.2 Conducted peak output power

Test Method

- 1. The RF output of EUT was connected to the test spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following test receiver settings:

 Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW > the 20dB bandwidth of the emission being measured, VBW≥RBW,

 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power and record the results in the test report.
- 5. Repeat above procedures until all frequencies measured were completed.

Limits

According to §15.247 (b) (1), conducted peak output power limit as below:

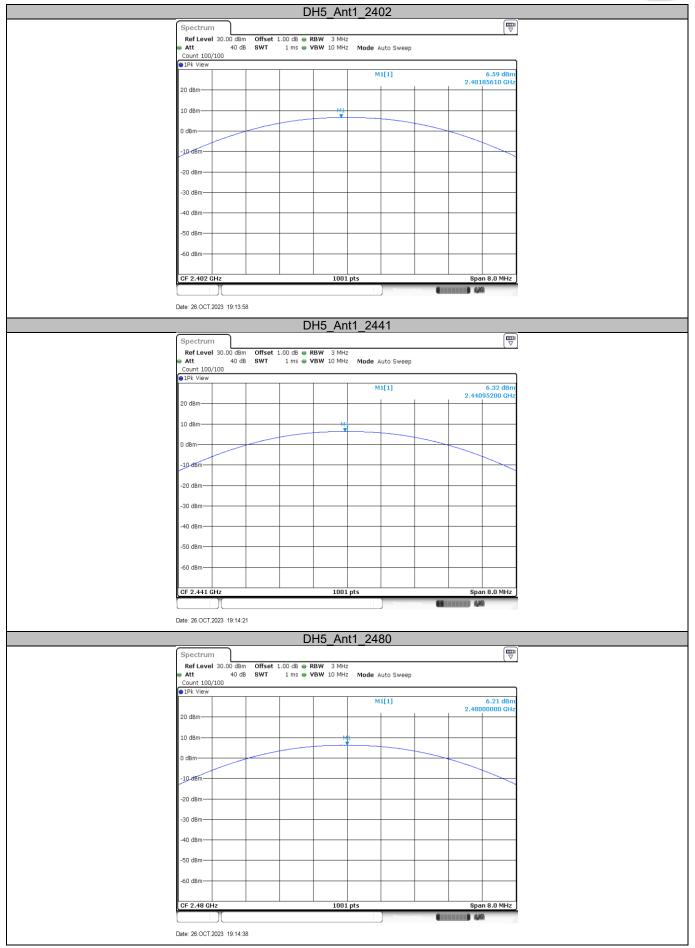
Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Conducted Peak Output Power

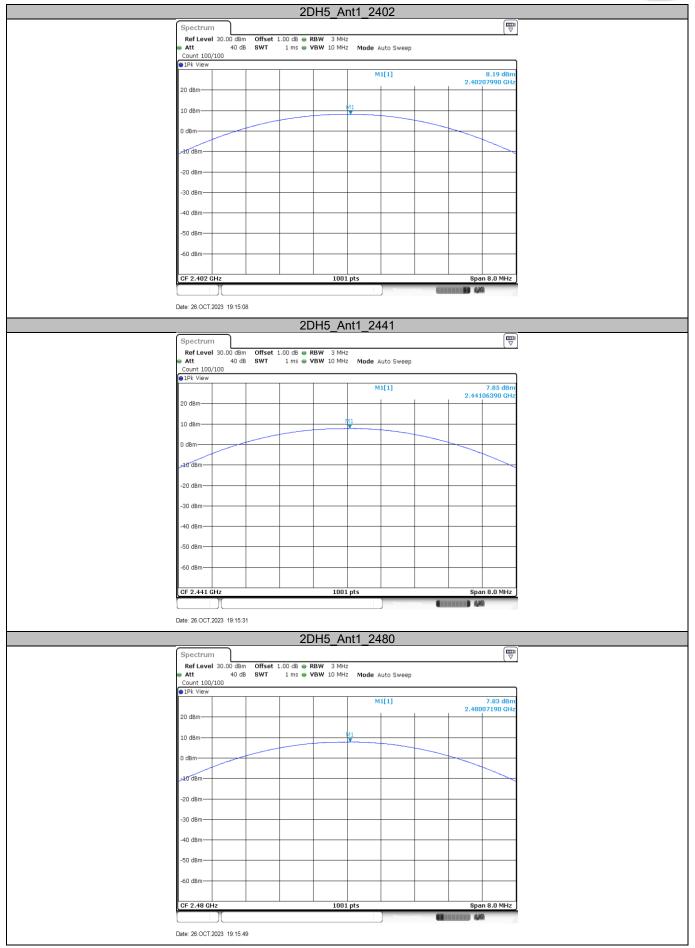
Test result as below table

Bluetooth Mode GFSK modulation Test Result

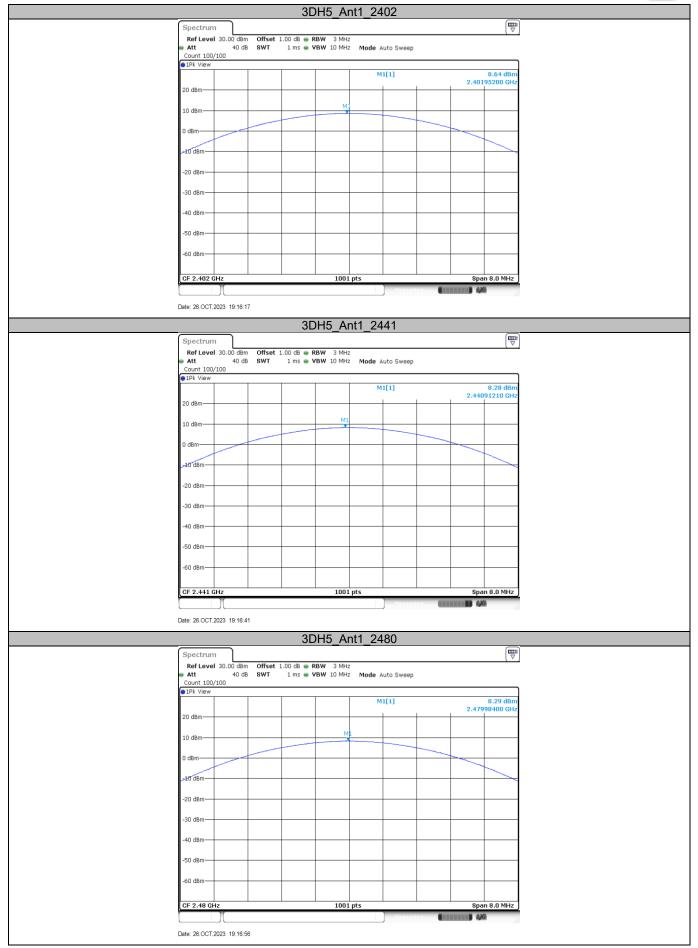
Conducted Peak				
Frequency	Output Power	Result		
MHz	dBm			
Low channel 2402MHz	6.59	Pass		
Middle channel 2441MHz	6.32	Pass		
High channel 2480MHz	6.21	Pass		


Bluetooth Mode π/4-DQPSK modulation Test Result Conducted Peak

Frequency MHz	Output Power dBm	Result
Low channel 2402MHz	8.19	Pass
Middle channel 2441MHz	7.85	Pass
High channel 2480MHz	7.83	Pass


Bluetooth Mode 8DPSK modulation Test Result Conducted Peak

Frequency MHz	Output Power dBm	Result
Low channel 2402MHz	8.64	Pass
Middle channel 2441MHz	8.28	Pass
High channel 2480MHz	8.29	Pass



9.3 20 dB bandwidth

Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Use the following test receiver settings:

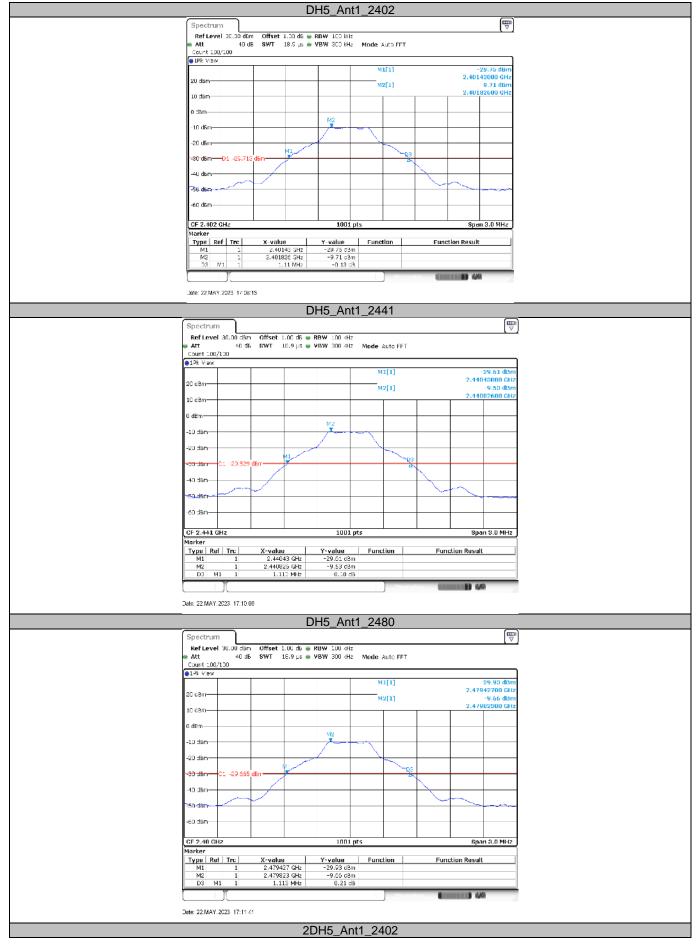
 Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% to 5% of the 20 dB bandwidth/99% OBW, VBW≥3RBW,

 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results.
- 5. Repeat above procedures until all frequencies measured were complete.

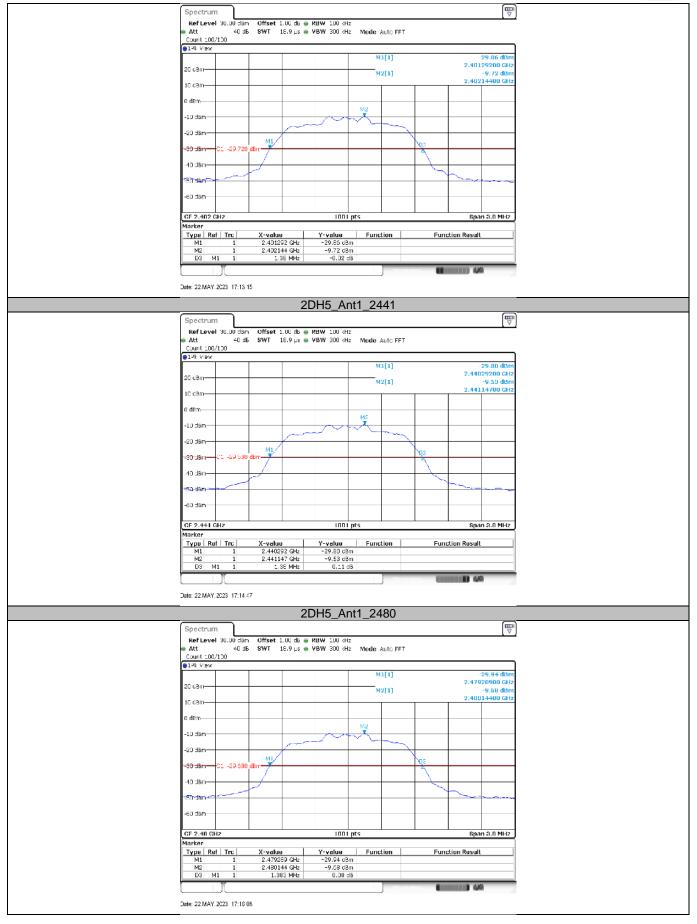
Limit

According to §15.247(a)(1), 20 dB bandwidth limit as below:

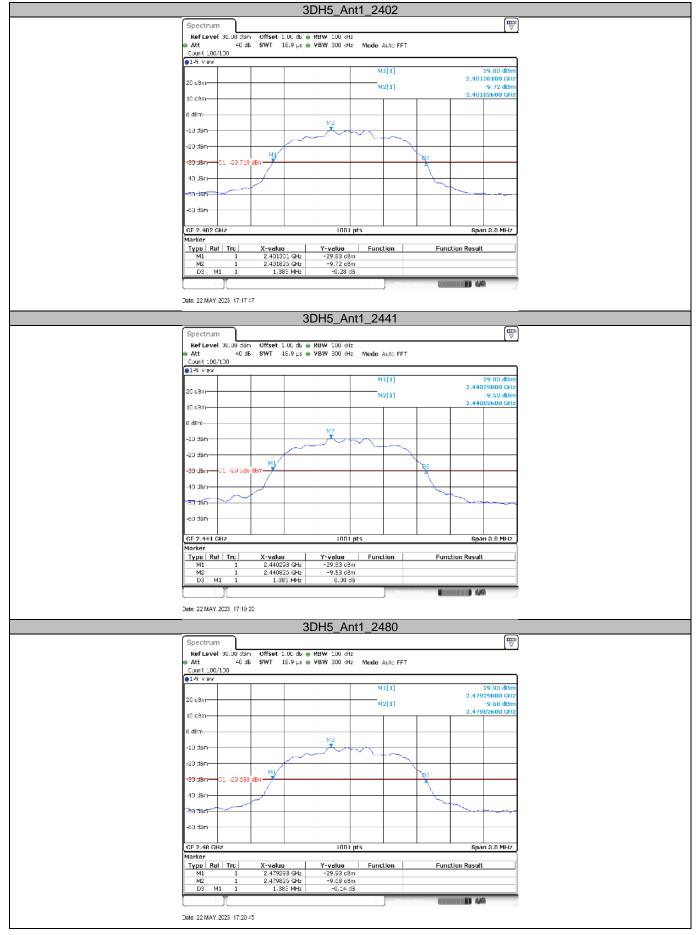
Limit [kHz]	
N/A	



20 dB bandwidth


Bluetooth Mode GFSK Modulation test result

Test Mode	Antenna	Channel [MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit [MHz]	Verdict
		2402	1.116	2401.445	2402.561		PASS
DH5	Ant1	2441	1.116	2440.445	2441.561		PASS
		2480	1.119	2479.442	2480.561		PASS
		2402	1.383	2401.310	2402.693		PASS
2DH5	Ant1	2441	1.383	2440.310	2441.693		PASS
		2480	1.383	2479.310	2480.693		PASS
		2402	1.377	2401.310	2402.687		PASS
3DH5	Ant1	2441	1.377	2440.310	2441.687		PASS
		2480	1.380	2479.307	2480.687		PASS



9.4 Carrier Frequency Separation

Test Method

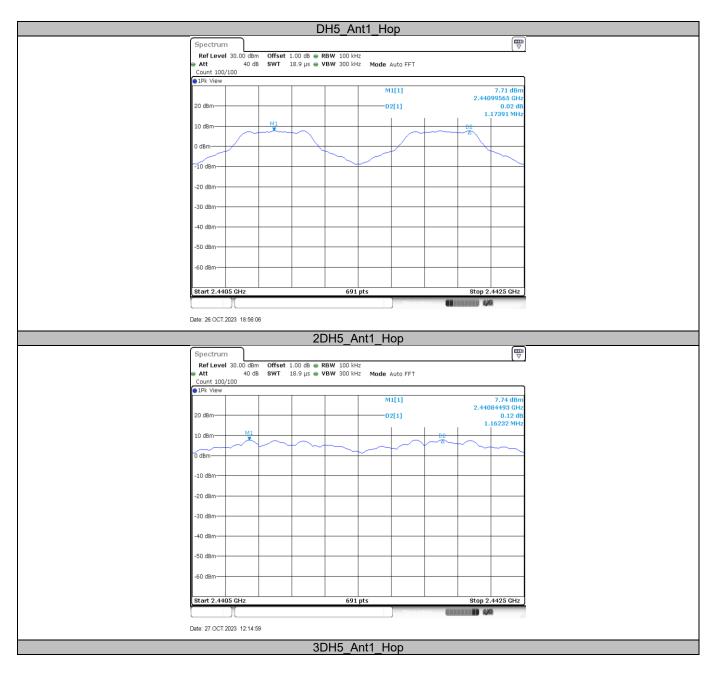
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- 3. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW ≥RBW, Sweep = auto, Detector function = peak.
- 4. By using the Max-Hold function record the separation of two adjacent channels.
- 5. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function. Record the results.
- 6. Repeat above procedures until all frequencies measured were complete.

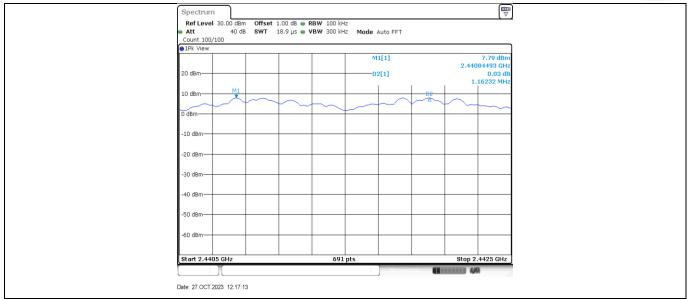
Limit

According to §15.247(a)(1), Carrier Frequency Separation limit as below:

Limit
<u>kHz</u>
≥25KHz or 2/3 of the 20 dB bandwidth which is greater

Limit


Modulation	Frequency	2/3 of 20 dB Bandwidth		
	MHz	kHz		
GFSK	2441	744		
π/4-DQPSK	2441	922		
8DPSK	2441	918		


Carrier Frequency Separation

Test result: The measurement was performed with the typical configuration (normal hopping status).

	Modulation	Frequency	Carrier Frequency Separation	Result
_		MHz	kHz	
	GFSK	2441	1.174	Pass
	π/4-DQPSK	2441	1.162	Pass
	8DPSK	2441	1.162	Pass

9.5 Number of hopping frequencies

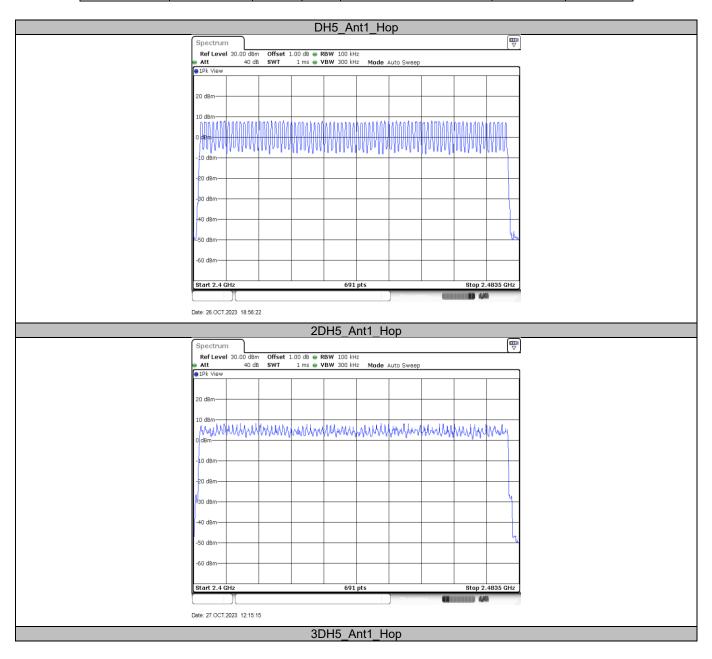
Test Method

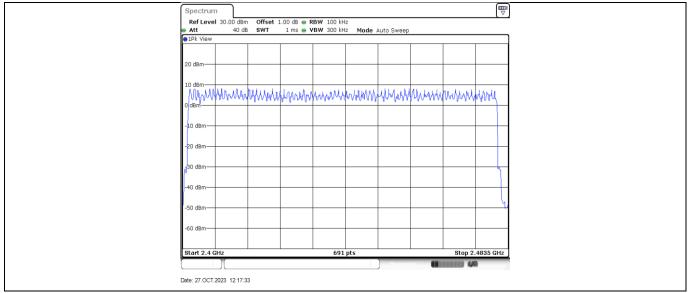
- The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- 3. Use the following spectrum analyzer settings:

 Span = the frequency band of operation, RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller, VBW ≥RBW, Sweep = auto, Detector function = peak, Trace=Max hold.
- 4. Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

Limit

According to §15.247(a)(1)(iii), Number of hopping frequencies limit as below:


Limit
number
<u> </u>


Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), and the total hopping channels is constant for the all modulation mode according with the Bluetooth Core Specification.

Test Mode	Antenna	Channel	Result	Limit	Verdict
DH5	Ant1	Нор	79	>=15	PASS
2DH5	Ant1	Нор	79	>=15	PASS
3DH5	Ant1	Нор	79	>=15	PASS

9.6 Dwell Time

Test Method

- The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- 3. Span: Zero span, centered on a hopping channel.
- 4. RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 5. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 6. Detector function: Peak.
- 7. Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

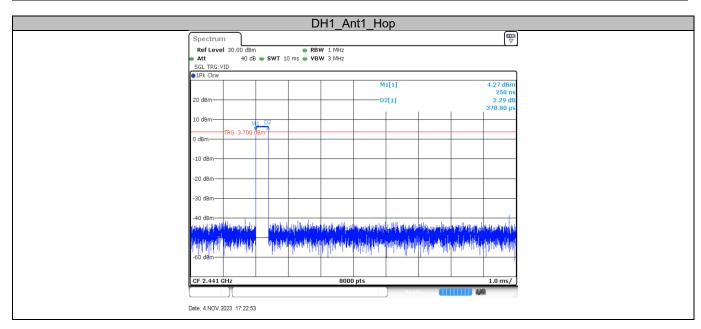
Limit

According to §15.247(a)(1)(iii), Dwell Time limit as below:

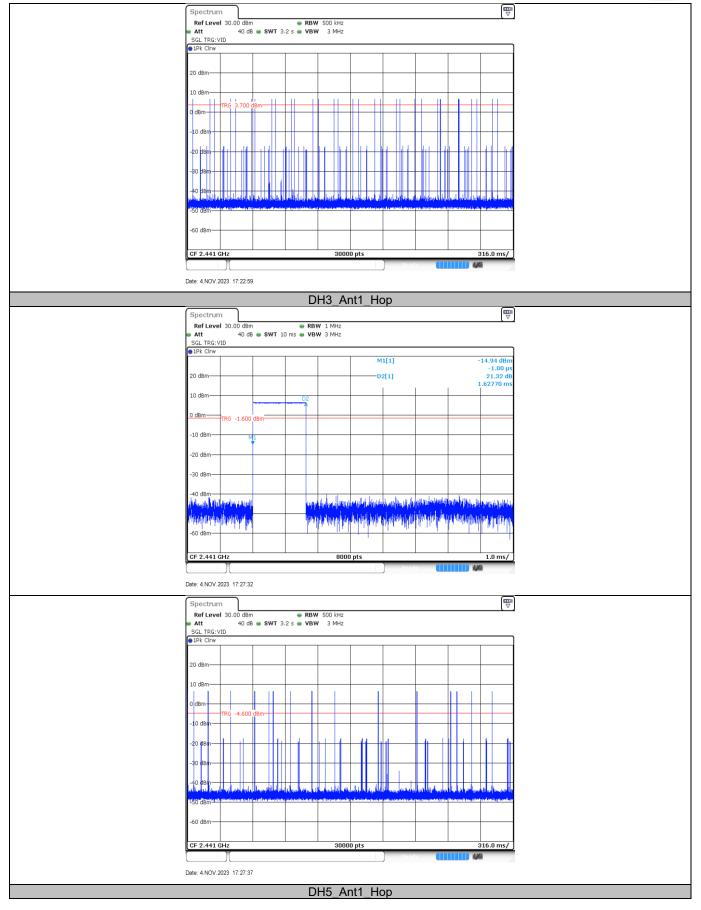
The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Dwell Time

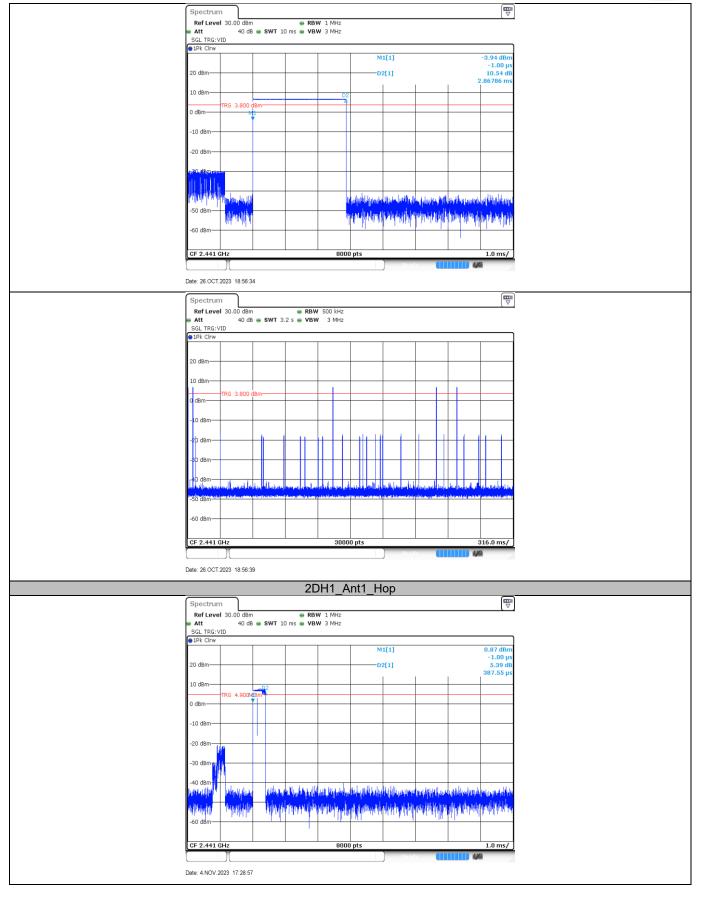
Dwell time

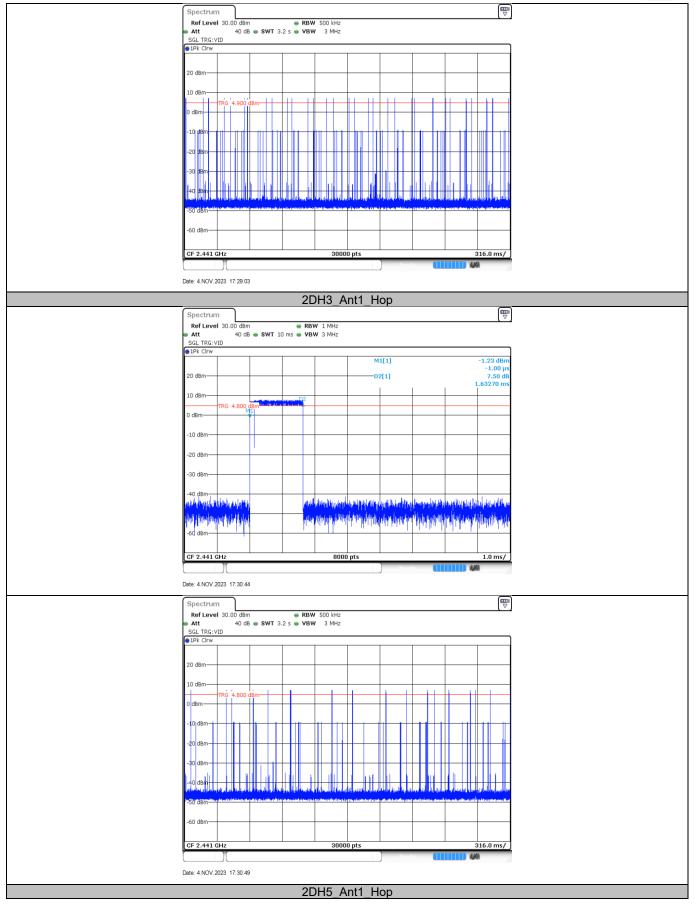

The maximum dwell time shall be 0.4 s.

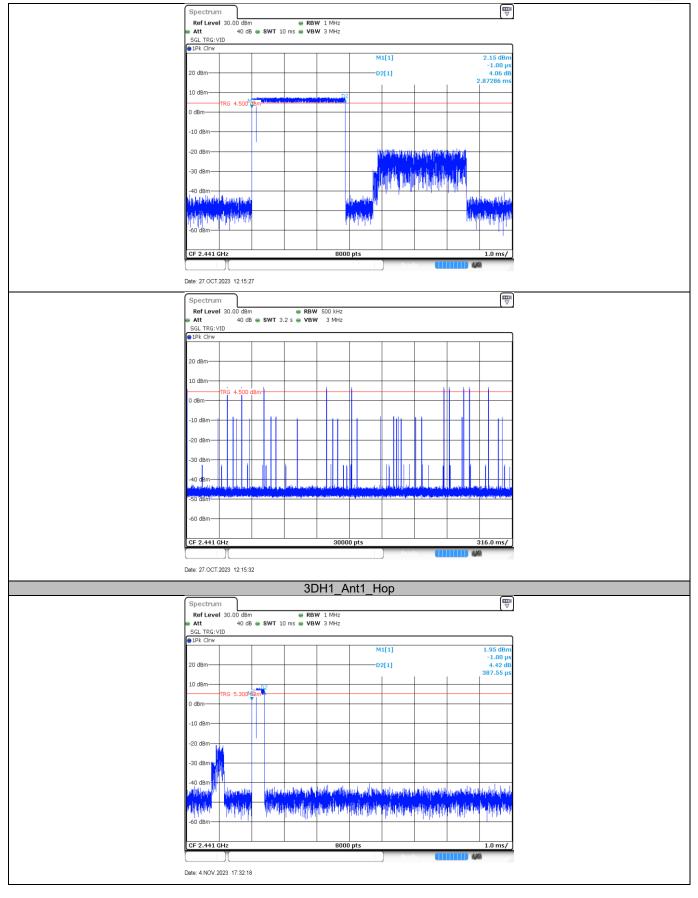
According to the Bluetooth Core Specification,

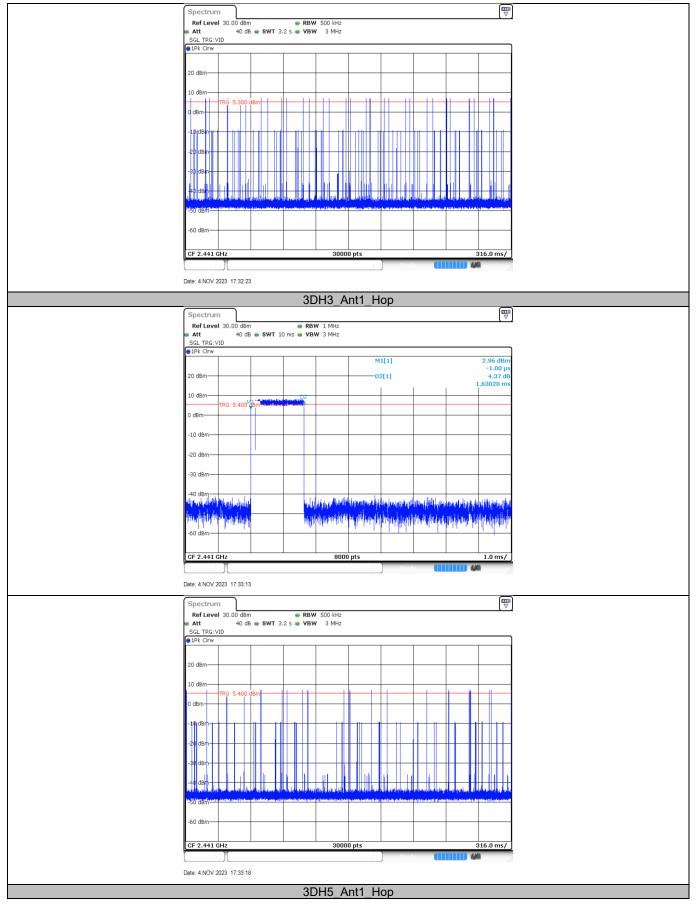

The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 79 [ch] = 31.6 [s] The Dwell Time = Burst Width * Total Hops.

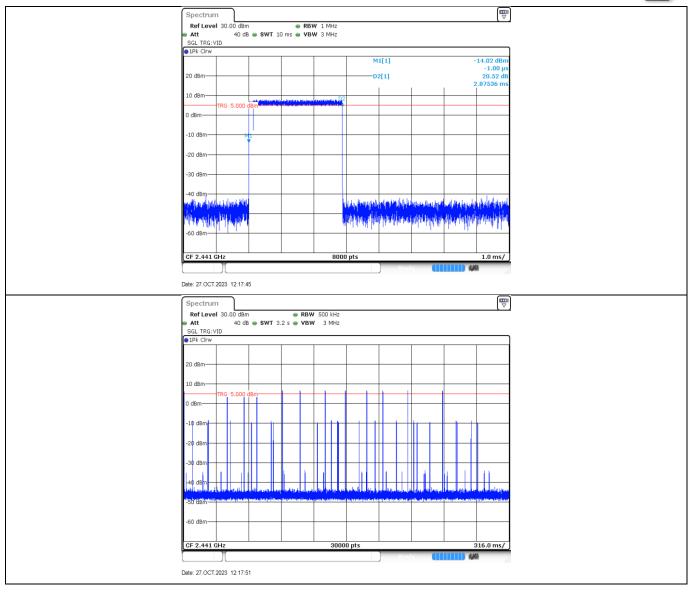
Test result as below:


	roct roodit do bolow.						
Test Mode	Antenna	Channel	Burst Width (ms)	Total Hops	Result (s)	Limit (s)	Verdict
DH1	Ant1	Нор	0.38	320	0.121	<=0.4	PASS
DH3	Ant1	Нор	1.63	160	0.260	<=0.4	PASS
DH5	Ant1	Нор	2.87	50	0.143	<=0.4	PASS
2DH1	Ant1	Нор	0.39	330	0.128	<=0.4	PASS
2DH3	Ant1	Нор	1.63	180	0.294	<=0.4	PASS
2DH5	Ant1	Нор	2.87	110	0.316	<=0.4	PASS
3DH1	Ant1	Нор	0.39	330	0.128	<=0.4	PASS
3DH3	Ant1	Нор	1.63	200	0.326	<=0.4	PASS
3DH5	Ant1	Нор	2.88	120	0.345	<=0.4	PASS







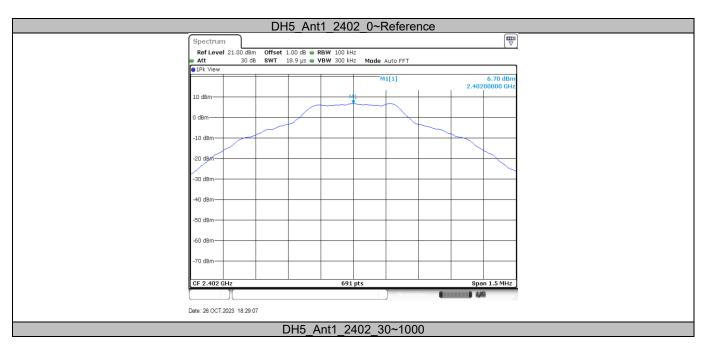


9.7 Spurious RF conducted emissions

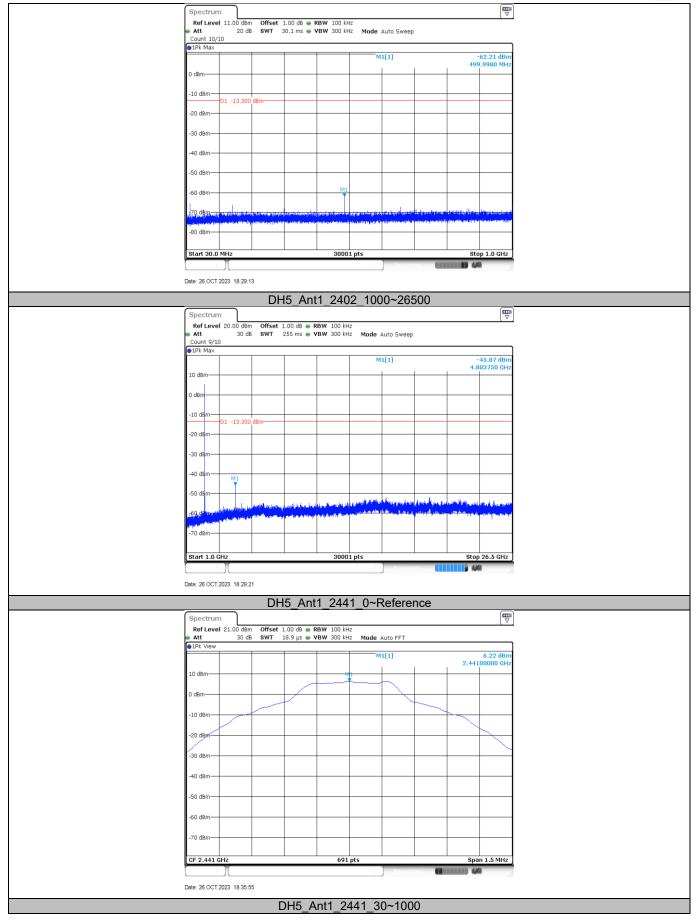
Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector, Sweep = auto, Span = wide enough to capture the peak level of the in-band emission and all spurious emissions, Trace = max hold. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency.

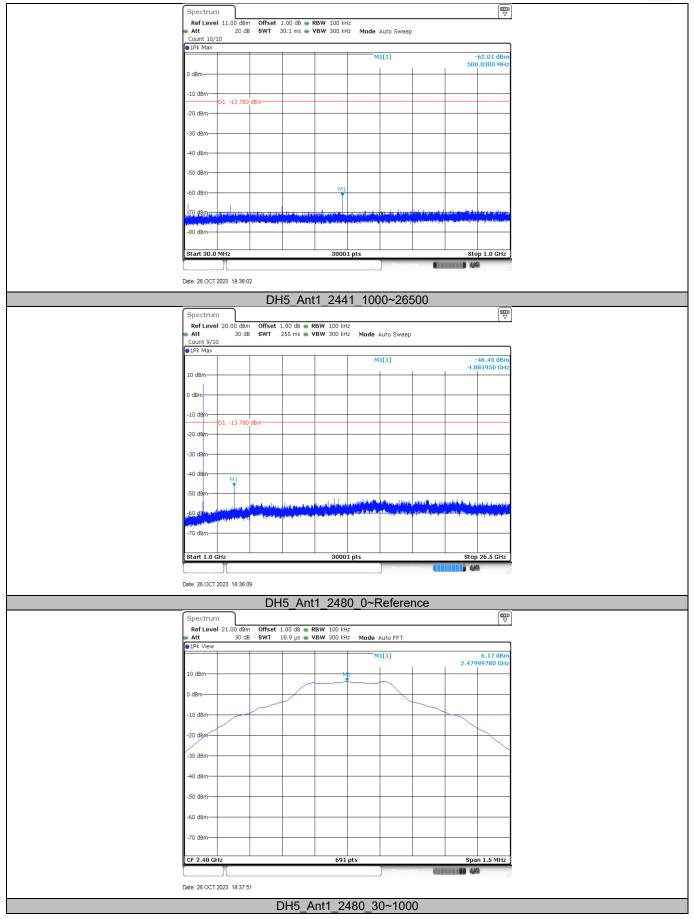
Limit

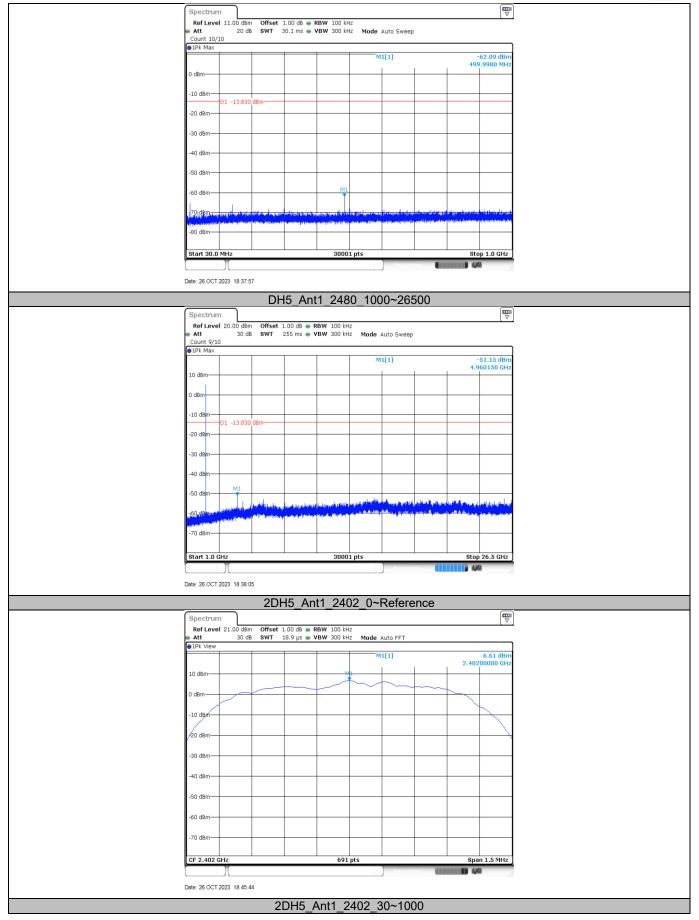

According to §15.247(d), Spurious RF conducted emissions limit as below:

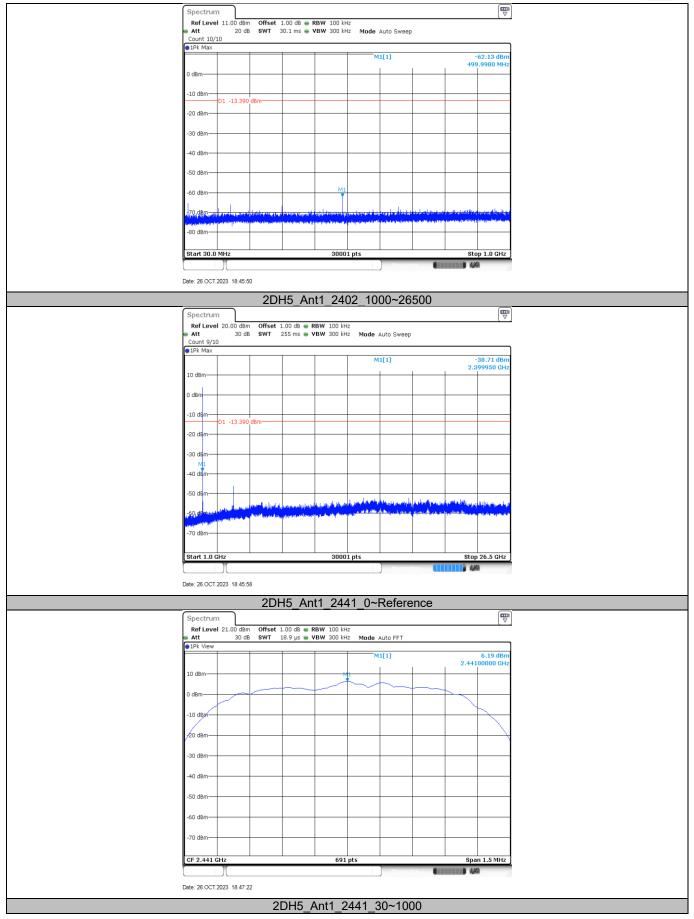
Frequency Range MHz	Limit (dBc)
30-25000	-20

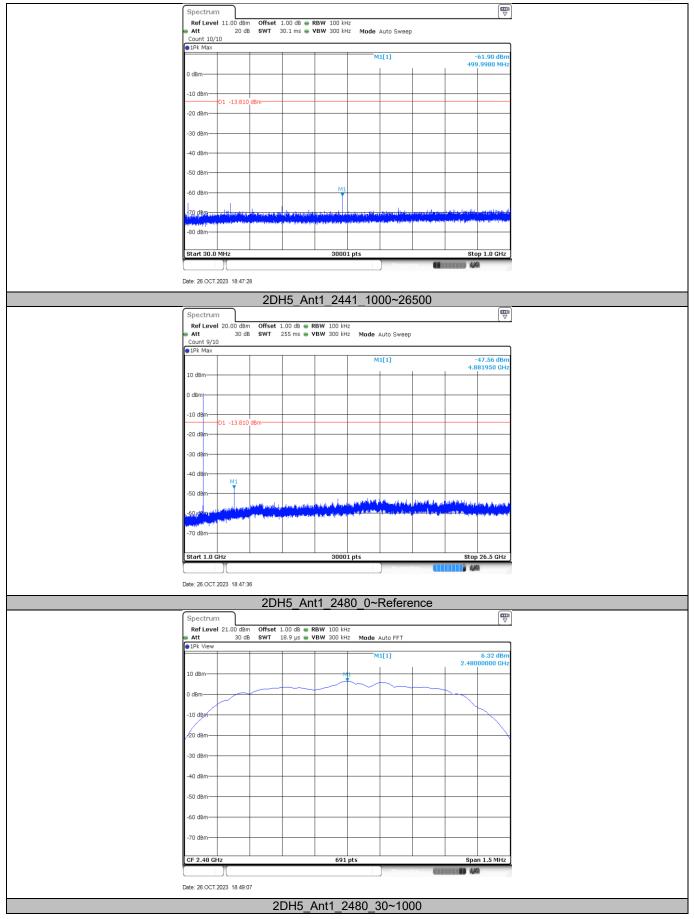


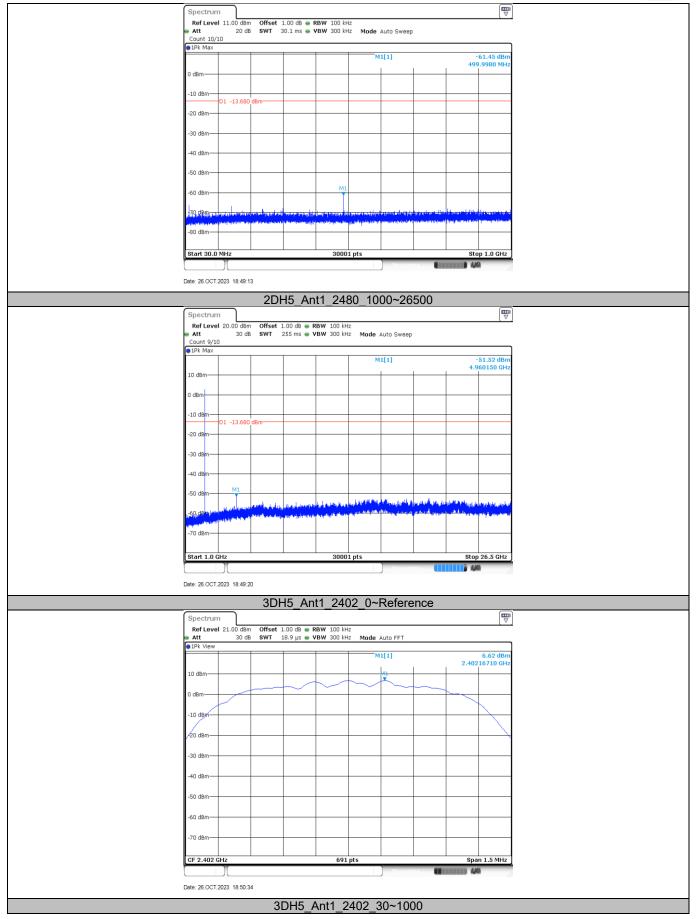
Spurious RF conducted emissions

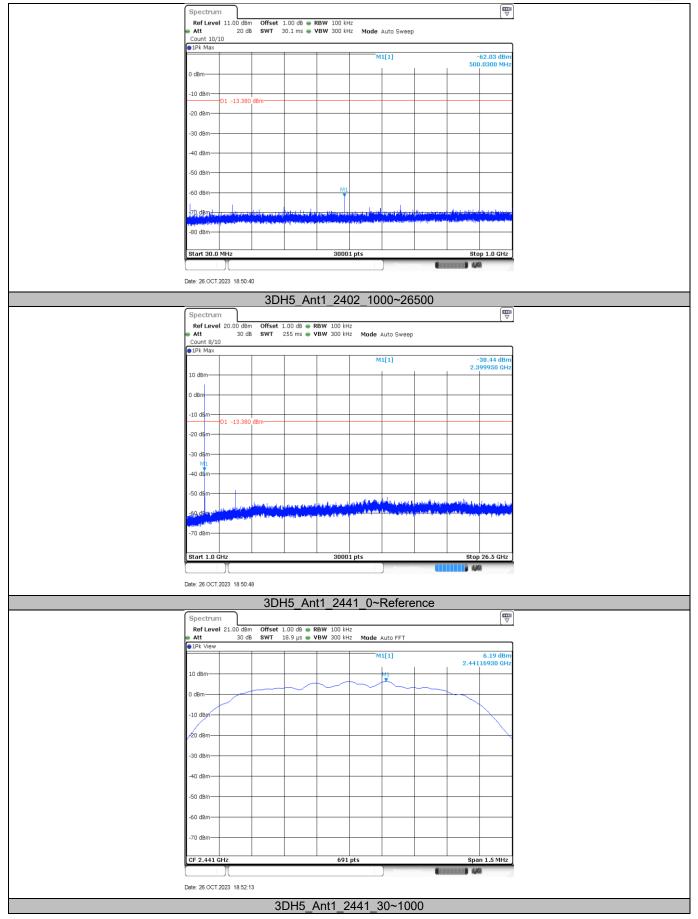

Test Mode	Antenna	Channel	Frequency Range	Reference	Result	Limit	Verdict
		(MHz)	(MHz)	Level	(dBm)	(dBm)	D400
			Reference	6.70	6.70		PASS
		2402	30~1000	30~1000	-62.21	<=-13.3	PASS
			1000~26500	1000~26500	-45.87	<=-13.3	PASS
			Reference	6.22	6.22		PASS
DH5	Ant1	2441	30~1000	30~1000	-62.01	<=-13.78	PASS
		1000~26500	1000~26500	-46.45	<=-13.78	PASS	
			Reference	6.17	6.17		PASS
		2480	30~1000	30~1000	-62.09	<=-13.83	PASS
		1000~26500	1000~26500	-51.15	<=-13.83	PASS	
		2402	Reference	6.61	6.61		PASS
			30~1000	30~1000	-62.13	<=-13.39	PASS
			1000~26500	1000~26500	-38.71	<=-13.39	PASS
		2441	Reference	6.19	6.19		PASS
2DH5	Ant1		30~1000	30~1000	-61.9	<=-13.81	PASS
			1000~26500	1000~26500	-47.56	<=-13.81	PASS
			Reference	6.32	6.32		PASS
		2480	30~1000	30~1000	-61.45	<=-13.68	PASS
			1000~26500	1000~26500	-51.52	<=-13.68	PASS
			Reference	6.62	6.62		PASS
		2402	30~1000	30~1000	-62.03	<=-13.38	PASS
			1000~26500	1000~26500	-38.44	<=-13.38	PASS
			Reference	6.19	6.19		PASS
3DH5	Ant1	2441	30~1000	30~1000	-62	<=-13.81	PASS
			1000~26500	1000~26500	-51.08	<=-13.81	PASS
			Reference	6.31	6.31		PASS
		2480	30~1000	30~1000	-62.46	<=-13.69	PASS
		00	1000~26500	1000~26500	-51.78	<=-13.69	PASS

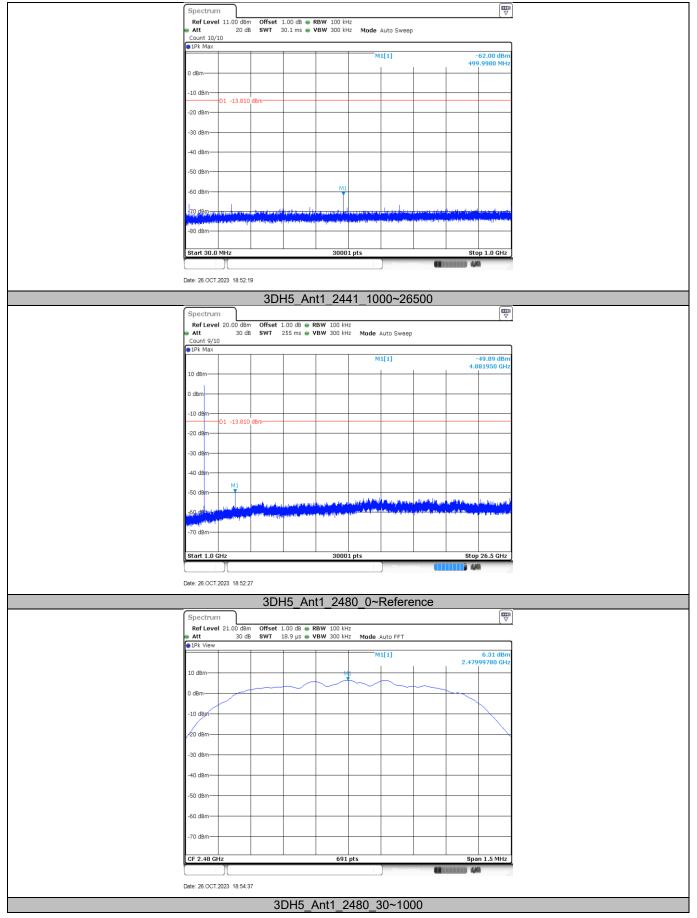


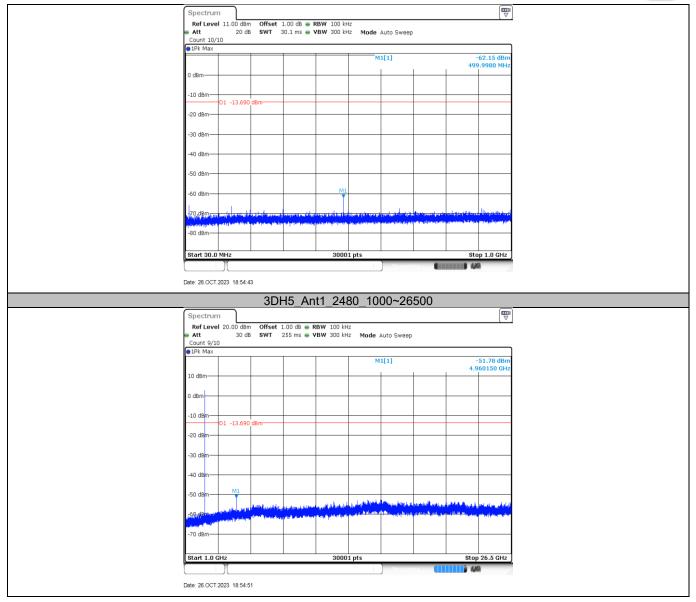












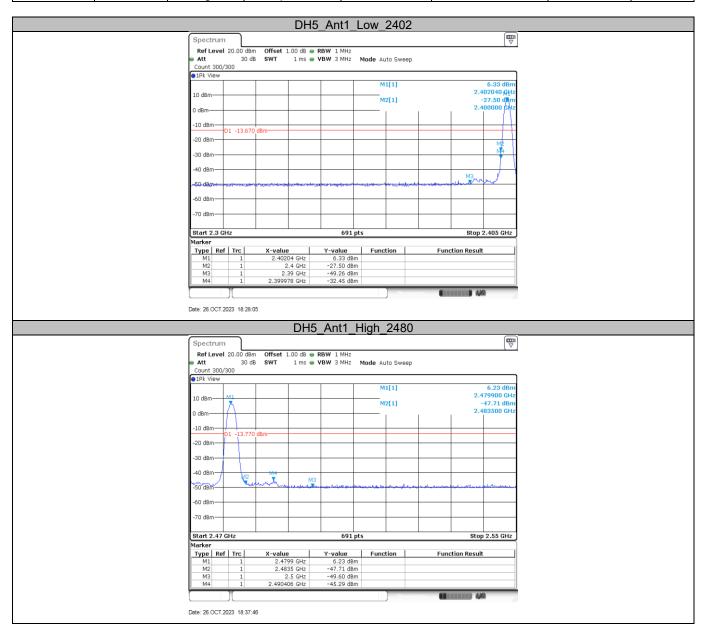
9.8 Band edge testing

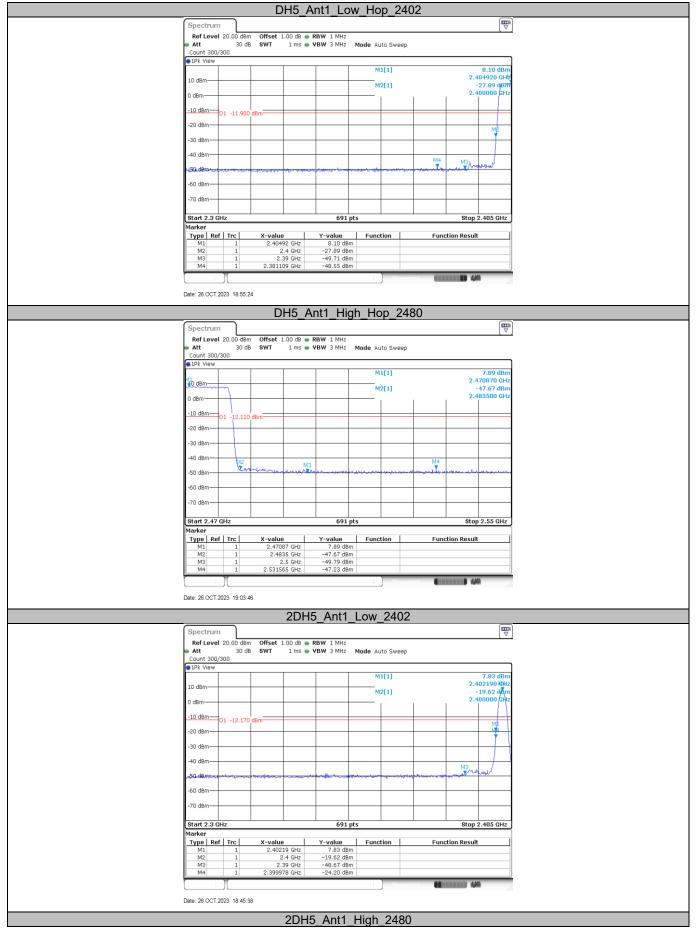
Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously. Set the EUT to the lowest frequency channel.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector, Trace: Max hold, Sweep time: Coupled, Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation. Allow the trace to stabilize.
- 4. Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- 5. Set the EUT to the highest frequency channel and repeat step 2) to 4)
- 6. Enable the EUT hopping mode, repeat the test.

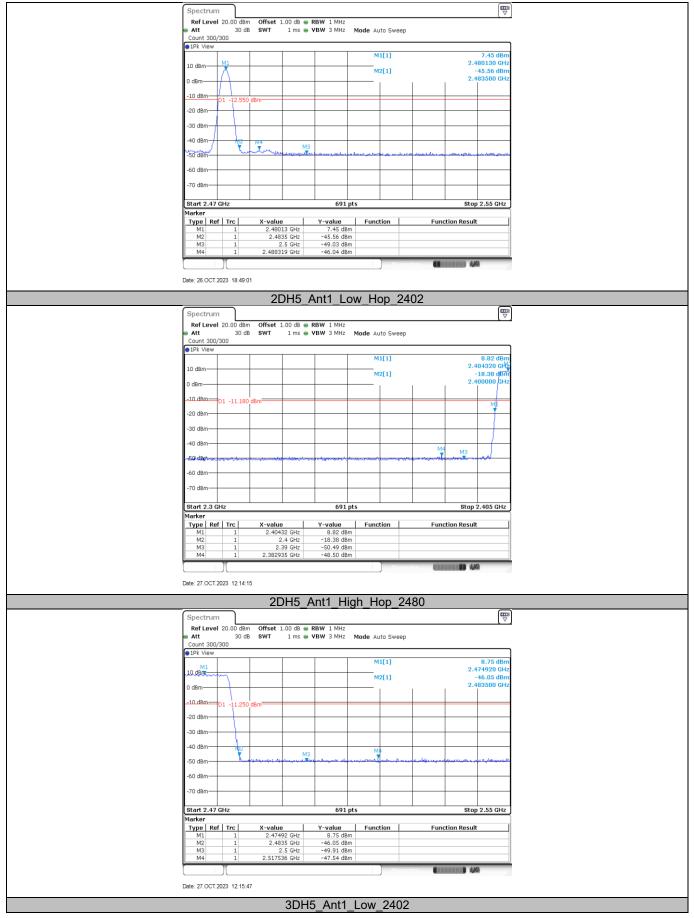
Limit:

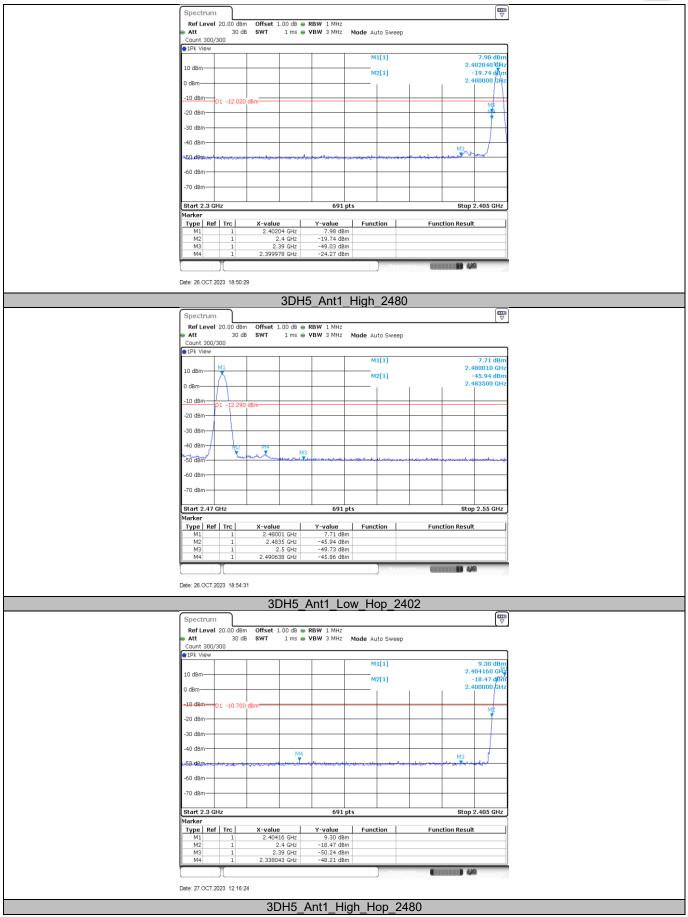
According to §15.247(d), Band edge testing limit as below:

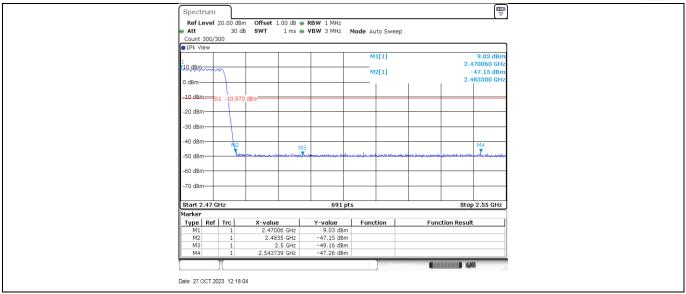

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.


Band edge

Test Result as below:


Test Mode	Antenna	Channel	Channel (MHz)	Reference Level (dBm)	Result (dBm)	Limit (dBm)	Verdict
		Low	2402	6.33	-32.45	<=-13.67	PASS
DH5	Ant1	High	2480	6.23	-45.29	<=-13.77	PASS
פחט	Anti	Low	Hop_2402	8.10	-48.55	-11.9	PASS
		High	Hop_2480	7.89	-47.23	-12.11	PASS
		Low	2402	7.83	-24.2	<=-12.17	PASS
2DH5	Ant1	High	2480	7.45	-46.04	<=-12.55	PASS
2003	Anti	Low	Hop_2402	8.82	-48.5	-11.18	PASS
		High	Hop_2480	8.75	-47.54	-11.25	PASS
		Low	2402	7.98	-24.27	<=-12.02	PASS
3DH5	Ant1	High	2480	7.71	-45.86	<=-12.29	PASS
פחטפ	Anti	Low	Hop_2402	9.30	-48.21	-10.7	PASS
		High	Hop_2480	9.03	-47.26	-10.97	PASS





9.9 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. Use the following test receiver settings According to C63.10:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz to 120KHz for f < 1 GHz; VBW≥ RBW; Sweep = auto; Detector function = QP; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for f ≥1 GHz for peak measurement. For average measurement:

The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).

The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

7. Repeat above procedures until all frequencies measured were complete.

Spurious radiated emissions for transmitter

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength μV/m	Field Strength dBµV/m	Detector	Measurement distance meters
0.009-0.490	2400/F(kHz)	48.5-13.8	AV	300
0.490-1.705	24000/F(kHz)	33.8-23.0	QP	30
1.705-30	30	29.5	QP	30
30-88	100	40	QP	3
88-216	150	43.5	QP	3
216-960	200	46	QP	3
960-1000	500	54	QP	3
Above 1000	500	54	AV	3
Above 1000	5000	74	PK	3

Note 1: Limit $3m(dB\mu V/m)$ =Limit $300m(dB\mu V/m)$ +40Log(300m/3m) (Below 30MHz) Note 2: Limit $3m(dB\mu V/m)$ =Limit $30m(dB\mu V/m)$ +40Log(30m/3m) (Below 30MHz)

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (which is subject to the maximum EIRP, GFSK mode) test result is listed in the report.

Transmitting spurious emission test result as below:

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBµV/m		dBµV/m		dBµV/m	(dB)	
	335.981111	32.86	Н	46.00	QP	13.14	20.09	Pass
	383.996111	30.77	Н	46.00	QP	15.23	20.94	Pass
	521.628333	32.16	Н	46.00	QP	13.84	23.51	Pass
	618.951667	34.41	Н	46.00	QP	11.59	25.89	Pass
30-	Other Frequencies		Н		QP			Pass
1000MHz	197.917778	23.02	V	43.50	QP	20.48	16.77	Pass
	336.573889	26.63	V	46.00	QP	19.37	20.11	Pass
	788.755556	37.10	V	46.00	QP	8.90	27.68	Pass
	894.054444	37.89	V	46.00	QP	8.11	29.17	Pass
	Other Frequencies		V		QP			Pass

GFSK Modulation 2402MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBµV/m		dBµV/m		dBµV/m	(dB)	
	1854.000000	48.91	Н	74.00	PK	25.09	-7.31	Pass
	2123.500000	49.61	Н	74.00	PK	24.39	-5.50	Pass
	3190.500000	48.20	Н	74.00	PK	25.80	-0.21	Pass
1000-	Other Frequencies		Н		PK			Pass
25000MHz	1854.000000	47.17	V	74.00	PK	26.83	-7.31	Pass
	2967.500000	45.52	V	74.00	PK	28.48	-2.00	Pass
	3955.000000*	50.98	V	74.00	PK	23.02	2.73	Pass
	Other Frequencies		V		PK			Pass

GFSK Modulation 2441MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBµV/m		dBµV/m		dBµV/m	(dB)	
	1854.000000	46.84	Н	74.00	PK	27.16	-7.31	Pass
	2131.000000	46.90	Н	74.00	PK	27.10	-5.48	Pass
	3192.000000	49.43	Н	74.00	PK	24.57	-0.21	Pass
1000-	Other Frequencies		Н		PK			Pass
25000MHz	3189.000000	48.58	V	74.00	PK	25.42	-0.21	Pass
	7323.500000*	43.82	V	74.00	PK	30.18	7.87	Pass
	11458.500000*	43.56	V	74.00	PK	30.44	12.31	Pass
	Other Frequencies		V		PK			Pass

GFSK Modulation 2480MHz Test Result

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Band	MHz	dBµV/m		dBµV/m		dBµV/m	(dB)	
	1854.000000	48.81	Н	74.00	PK	25.19	-7.31	Pass
	2374.000000*	45.36	Н	74.00	PK	28.64	-4.77	Pass
	3166.500000	47.62	Н	74.00	PK	26.38	-0.18	Pass
1000-	Other Frequencies		Н		PK			Pass
25000MHz	1854.000000	47.57	V	74.00	PK	26.43	-7.31	Pass
	3187.000000	47.60	V	74.00	PK	26.40	-0.20	Pass
	4824.500000*	50.95	V	74.00	PK	23.05	5.25	Pass
	Other Frequencies		V		PK			Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within frequency range 9kHz-30MHz is the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report.
- (3) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (4) Level=Reading Level + Correction Factor
 - Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
 - Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
 - (The Reading Level is recorded by software which is not shown in the sheet)

10 Test Equipment List

List of Test Instruments

Conducted Emission 2# Test

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-19-002	102590	1	2024-5-19
LISN	Rohde & Schwarz	ENV216	68-4-87-19-001	102472	1	2024-5-20
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16-003	080928189	1	2024-5-19
Test software	Rohde & Schwarz	EMC32	68-4-90-19-005- A01	Version10.35.02	N/A	N/A
Shielding Room	TDK	CSR #2	68-4-90-19-005		3	2025-10-15

Radiated Emission 1# Test

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 7	68-4-74-19-001	102176	1	2024-5-20
Loop Antenna	Rohde & Schwarz	HFH2-Z2	68-4-80-14-006	100398	1	2024-8-17
3m Semi-anechoic chamber	TDK	SAC-3 #1	68-4-90-14-001		3	2024-5-28
Test software	Rohde & Schwarz	EMC32	68-4-90-14-001- A10	Version10.35.02	N/A	N/A

Radiated Emission 2# Test

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14-002	101269	1	2024-5-20
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9162	68-4-80-19-003	284	1	2024-3-5
Wave Guide Antenna	ETS	3117	68-4-80-19-001	00218954	1	2024-4-26
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-001	100745	1	2024-5-19
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-002	100746	1	2024-5-19
Sideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	68-4-80-14-008	12827	1	2024-7-11
Pre-amplifier	Rohde & Schwarz	SCU 40A	68-4-29-14-002	100432	1	2024-8-1
Attenuator	Mini-circuits	UNAT-6+	68-4-81-21-002	15542	1	2024-5-19
3m Semi-anechoic chamber	TDK	SAC-3 #2	68-4-90-19-006		2	2024-5-28
Test software	Rohde & Schwarz	EMC32	68-4-90-19-006- A01	Version10.35.02	N/A	N/A

RF conducted test

Iti oomaastaa t						
DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-004	101030	1	2024-5-19
RF Switch Module	Rohde & Schwarz	OSP120/OSP- B157W	68-4-93-14-003	101226/100929	1	2024-5-20
Test software	Tonscend	System for BT/WIFI	68-4-74-14-006- A13	Version 2.6.77.0518	N/A	N/A
Shielding Room	TDK	TS8997	68-4-90-19-003		3	2025-10-15

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty	
Test Items	Extended Uncertainty
Uncertainty for Conducted Emission in new shielding room (68-4-90-19-005) 150kHz-30MHz (for test using AMN ENV216)	3.15dB
Uncertainty for Radiated Emission in 3m chamber (68-4-90-14-001) 9kHz-30MHz	4.70dB
Uncertainty for Radiated Emission in 3m chamber (68-4-90-14-001) 30MHz-1000MHz	Horizontal: 4.63dB; Vertical: 4.78dB;
Uncertainty for Radiated Emission in new 3m chamber (68-4-90-19-006) 1000MHz-18000MHz	Horizontal: 5.38dB; Vertical: 5.38dB;
Uncertainty for Radiated Emission in new 3m chamber (68-4-90-19-006) 18GHz-40GHz	Horizontal: 5.29dB; Vertical: 5.29dB;
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.31dB Frequency test involved: 0.6×10 ⁻⁸ or 1%

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2021, clause 4.4.3 and 4.5.1.

---The End---