

FCC TEST REPORT

Product Name: 4K UHD Streaming Box

Trade Mark: SKYWORTH, SDT, DIRECTV, THOMSON,

STRONG, Tesla, MECOOL, CoLoVu

Model No.: LEAP-S1

Add. Model No.: OTT-01, HP40A, HP40A3, HP4005,

SRT401, THA100, THA 100, HP4035,

XA400, KM2, C1 Plus, Leap-S1

Report Number: 210406006RFC-2

Test Standards: FCC 47 CFR Part 15 Subpart C

FCC ID: WNA-LEAP-S1

Test Result: PASS

Date of Issue: June 23, 2021

Prepared for:

Shenzhen Skyworth Digital Technology Co., LTD Unit A14/F. Skyworth Bldg., Gaoxin Ave. 1s., Nanshan District, Shenzhen, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

> TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:

KERIN LLU

wKieron Luo

Project Engineer

Reviewed by:

Eric Yu Project Supervisor

Approved by:


KeVin Liang

Assistant Manager

Date:

June 23, 2021

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Version

Version No.	Date	Description
V1.0	June 23, 2021	Original

CONTENTS

1.	GENE	RAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	EUT Information	4
		1.2.1 GENERAL DESCRIPTION OF EUT	4
		1.2.2 DESCRIPTION OF ACCESSORIES	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	5
	1.6	TEST LOCATION	
	1.7	TEST FACILITY	
	1.8	DEVIATION FROM STANDARDS	6
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	1.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
	1.11	MEASUREMENT UNCERTAINTY	6
2.	TEST	SUMMARY	7
2. 3.	EOIII	PMENT LIST	/ Q
3. 4.		CONFIGURATION	
4.	ILSI		
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	8
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	8
		4.1.2 RECORD OF NORMAL ENVIRONMENT	8
		TEST CHANNELS	
		JT TEST STATUS	
	4.4 TE	ST SETUP	
		4.4.1 FOR RADIATED EMISSIONS TEST SETUP	
	4.5 S	STEM TEST CONFIGURATION	11
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	12
	5.1	REFERENCE DOCUMENTS FOR TESTING	12
	5.2	ANTENNA REQUIREMENT	
	-		
		ATED SPURIOUS EMISSIONS	
5.4	BAND	DEDGE MEASUREMENTS (RADIATED)	17
		X 1 PHOTOS OF TEST SETUP	
ΔDI	DENIDI	Y 2 PHOTOS OF FUT CONSTRUCTIONAL DETAILS	20

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant:	Shenzhen Skyworth Digital Technology Co., LTD	
Address of Applicant: Unit A14/F. Skyworth Bldg., Gaoxin Ave. 1s., Nanshan District, Shenzhen, C		
Manufacturer: Shenzhen Skyworth Digital Technology Co., LTD		
Address of Manufacturer:	Unit A14/F. Skyworth Bldg., Gaoxin Ave. 1s., Nanshan District, Shenzhen, China	

Report No.: 210406006RFC-2

1.2 EUT INFORMATION

1.2.1 General Description of EUT

2.1 General Description of Eur				
Product Name:	4K UHD Streaming Box			
Model No.:	LEAP-S1	LEAP-S1		
Add. Model No.:	OTT-01, HP40A, HP40A3, HP4005, SRT401, THA100, THA 100, HP4035, XA400, KM2, C1 Plus, Leap-S1.			
Trade Mark:	SKYWORTH, SDT, DIRECTV, THOMSON, STRONG, Tesla, MECOOL, CoLoVu			
DUT Stage:	Identical Prototype			
	2.4 GHz ISM Band:	IEEE 802.11b/g/n		
	2.4 GHZ ISWI BAIIU.	Bluetooth V4.2		
EUT Supports Function:	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz	IEEE 802.11a/n/ac	
EOT Supports Function.		5 250 MHz to 5 350 MHz	IEEE 802.11a/n/ac	
		5 470 MHz to 5 725 MHz	IEEE 802.11a/n/ac	
		5 725 MHz to 5 850 MHz	IEEE 802.11a/n/ac	
Sample Received Date:	April 6, 2021			
Sample Tested Date:	May 4, 2021 to June 19, 2021			

1.2.2 Description of Accessories

1.2.2 Description of Accessories				
Adaptor (1)				
Model No.:	RJ23-W120100US			
Input:	100-240 V~50/60 Hz 0.5 A			
Output:	12V == 1A			
DC Cable:	1.50 Meter, Unshielded without ferrite			

Adaptor (2)				
Model No.:	F12L33-120100SPAU			
Input:	100-240 V~50/60 Hz 0.3 A			
Output:	12V == 1A			
DC Cable:	1.50 Meter, Unshielded without ferrite			

Cable (1)		
Description:	HDMI Cable	
Cable Type: Unshielded without ferrite		
Length: 1.5 Meter		

Page 5 of 20 Report No.: 210406006RFC-2

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	Bluetooth LE
Type of Modulation:	GFSK
Number of Channels:	40
Channel Separation:	2 MHz
Antenna Type:	on-board Antenna
Antenna Gain:	1.5 dBi
Maximum Peak Power:	0.03 dBm
Normal Test Voltage:	120V~60Hz

1.40THER INFORMATION

THE PROPERTY OF THE PROPERTY O				
Operation Frequency Each of Channel				
f = 2402 + 2k MHz, k = 0,,39				
Note:				
f	is the operating frequency (MHz);			
k	is the operating channel.			

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust
USB disk	Kingston	DTSE9	N/A	UnionTrust
Monitor	KTC	U3202S	N/A	UnionTrust

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
11	Antenna Cable	SMA	0.30 Meter	UnionTrust
2	Ethernet Cable	RJ45	1.5 Unshielded without ferrite	UnionTrust

1.6TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district,

Shenzhen, China

Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886 Page 6 of 20 Report No.: 210406006RFC-2

1.7TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturers recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	ltem	Measurement Uncertainty
1	Conducted emission 9kHz-150kHz	±3.8 dB
2	Conducted emission 150kHz-30MHz	±3.4 dB
3	Radiated emission 9kHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases							
Test Item	Test Requirement	Test Method	Result				
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	N/A	PASS				
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013 Clause 6.2	Verified NOTE				
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section ANSI C63.10-2013 Clause 11.9.1.3		Verified NOTE				
6dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013 Clause 11.8.1	Verified NOTE				
Power Spectral Density	FCC 47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013 Clause 11.10.2	Verified NOTE				
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013 Clause 11.11	Verified NOTE				
Radiated Spurious Emissions	Radiated Spurious FCC 47 CFR Part 15 Subpart C Section		PASS				
Band Edge Measurements (Radiated)	FCC 47 CFR Part 15 Subpart C Section 15 205/15 209		PASS				

NOTE: On the basis of the original report 190920001RFC-2 (FCC ID:WNA-LEAP-S1, Date of Issue: November 8, 2019), only one new antenna was replaced, the model was added, and the trademark and name were changed. Others remain unchanged, see the difference statement for details, all technical data is referred to original report 190920001RFC-2.

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List								
Used Equipment		Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)			
\boxtimes	3 m SAC	ETS-LINDGREN	3m	N/A	Jan. 22, 2021	Jan. 21, 2024			
\boxtimes	Receiver	R&S	ESIB26	100114	Nov. 18, 2020	Nov. 17, 2021			
\boxtimes	Loop Antenna	ETS-LINDGREN	6502	00202525	Nov. 14, 2020	Nov. 13, 2022			
\boxtimes	Broadband Antenna (Pre-amplifier)	ETS-Lindgren	3142E	00201566	Nov. 14, 2020	Nov. 13, 2021			
\boxtimes	Pre-amplifier	HP	8447F	2805A02960	Nov. 10, 2020	Nov. 09, 2021			
\boxtimes	6dB Attenuator	Talent	RA6A5-N- 18	18103001	Nov. 14, 2020	Nov. 13, 2021			
\boxtimes	Double-Ridged Waveguide Horn Antenna (Pre-amplifier)	ETS-Lindgren	3117-PA	00201541	Apr. 30, 2021	Apr. 29, 2023			
\boxtimes	Pre-amplifier	ETS-Lindgren	00118385	00201874	Nov. 10, 2020	Nov. 09, 2021			
	Double-Ridged Waveguide Horn Antenna (Pre-amplifier)	ETS-Lindgren	3116C-PA	00202652	Nov. 14, 2020	Nov. 13, 2022			
	Pre-amplifier	ETS-Lindgren	00118384	202652	Nov. 14, 2020	Nov. 13, 2022			
	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A			
	Test Software	Audix	e3	Software Version: 9.160323					

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter Selected Values During Tests				ts					
	Test Condition	Ambient							
	rest Condition	Temperature (°C)	Voltage	Relative Humidity (%)					
	NT/NV	+15 to +35	120V~60Hz	20 to 75					
Remark: 1) NV: Normal Voltage; NT: Normal Temperature									

4.1.2 Record of Normal Environment

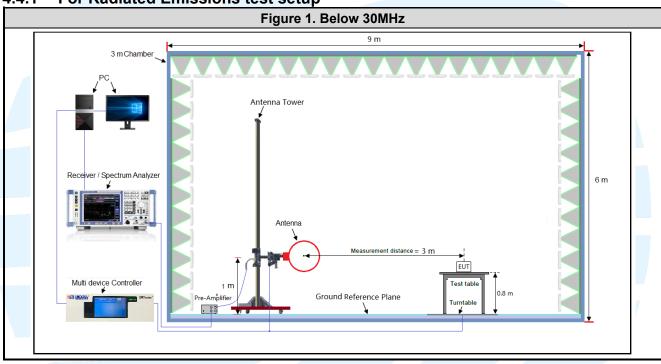
Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by
Radiated Spurious Emissions				
Band Edge Measurements	23	60	101.06	Fire Huo
(Radiated)				

4.2TEST CHANNELS

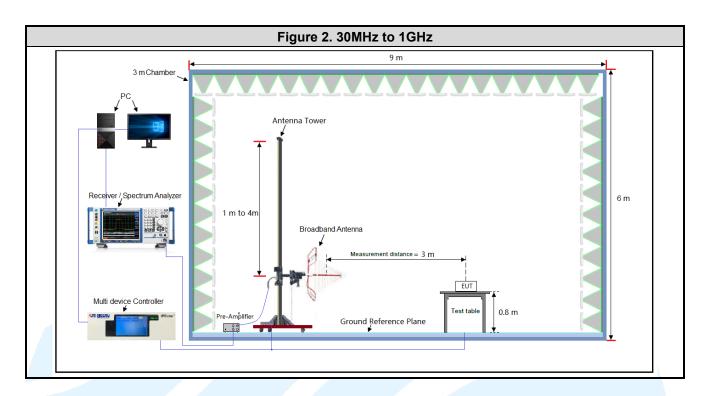
Type of Modulation	Tx/Rx Frequency	Test RF Channel Lists			
		Lowest(L)	Middle(M)	Highest(H)	
GFSK	2402 MHz to 2480 MHz	Channel 0	Channel 19	Channel 39	
		2402 MHz	2440 MHz	2480 MHz	

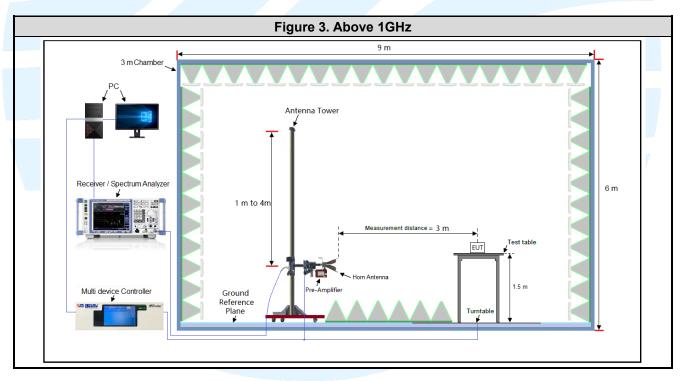
4.3 EUT TEST STATUS

Type of Modulation	Tx Function	Description
GFSK	1Tx	Keep the EUT in continuously transmitting with modulation test single.


Report No.: 210406006RFC-2

Power Setting
Power Setting: not applicable, test used software default power level.


	Test Software
Test software name: MP tool (Realtek);	


4.4 TEST SETUP

4.4.1 For Radiated Emissions test setup

Page 11 of 20 Report No.: 210406006RFC-2

4.5 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by 120V~60Hz. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is Page 12 of 20 Report No.: 210406006RFC-2

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title			
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations			
2	FCC 47 CFR Part 15	Radio Frequency Devices			
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices			
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules			

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 1.5

Page 13 of 20 Report No.: 210406006RFC-2

5.3 RADIATED SPURIOUS EMISSIONS

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 **Test Method:** ANSI C63.10-2013 Clause 11.11 & Clause 11.12

Receiver Setup:

Frequency	RBW
0.009 MHz-0.150 MHz	200/300 kHz
0.150 MHz -30 MHz	9/10 kHz
30 MHz-1 GHz	100/120 kHz
Above 1 GHz	1 MHz

Limits:

Spurious Emissions

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009 MHz-0.490 MHz	2400/F(kHz)	-		300
0.490 MHz-1.705 MHz	24000/F(kHz)	-	-	30
1.705 MHz-30 MHz	30		-	30
30 MHz-88 MHz	100	40.0	Quasi-peak	3
88 MHz-216 MHz	150	43.5	Quasi-peak	3
216 MHz-960 MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dB\mu V/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

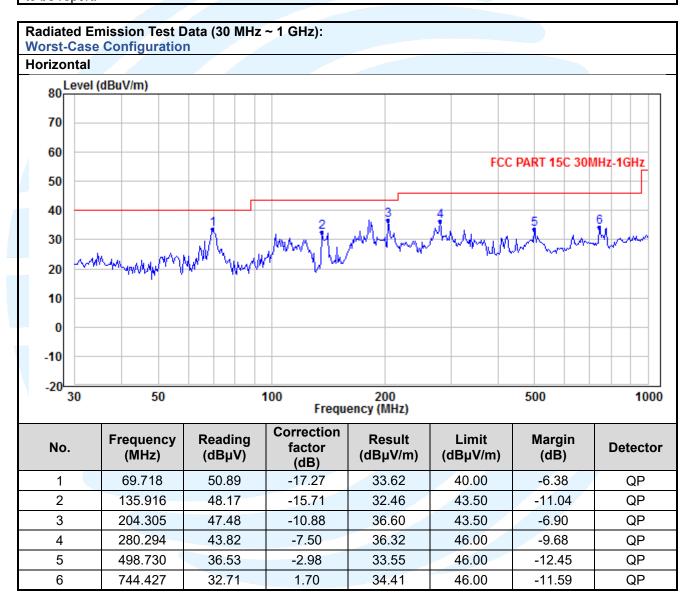
Test Setup: Refer to section 4.4.1 for details.

Test Procedures:

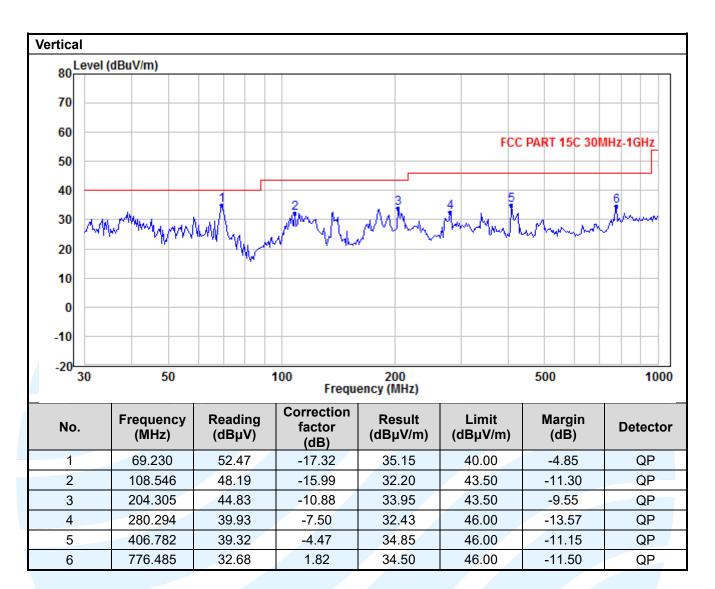
- 1. From 30 MHz to 1GHz test procedure as below:
- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 2. Above 1GHz test procedure as below:
- 1) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).

Page 14 of 20 Report No.: 210406006RFC-2

- Test the EUT in the lowest channel ,middle channel, the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the Y axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.


Equipment Used: Refer to section 3 for details.

Test Result: Pass


The measurement data as follows:

Radiated Emission Test Data (9kHz ~ 30 MHz):

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

Radiated Emission Test Data (Above 1GHz):

Lowest Channel:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4804.00	37.86	-3.32	34.54	74.00	-39.46	Peak	Horizontal
2	7206.00	41.90	0.84	42.74	74.00	-31.26	Peak	Horizontal
3	4804.00	38.26	-1.62	36.64	74.00	-37.36	Peak	Vertical
4	7206.00	43.23	0.91	44.14	74.00	-29.86	Peak	Vertical

Middle Channel:

	No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
Ī	1	4880.00	41.77	-1.54	40.23	74.00	-33.77	Peak	Horizontal
	2	7320.00	43.54	0.87	44.41	74.00	-29.59	Peak	Horizontal
Ī	3	4880.00	42.01	-1.54	40.47	74.00	-33.53	Peak	Vertical
	4	7320.00	46.09	0.87	46.96	74.00	-27.04	Peak	Vertical

Highest Channel:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4960.00	39.31	-1.47	37.84	74.00	-36.16	Peak	Horizontal
2	7440.00	42.07	0.83	42.90	74.00	-31.10	Peak	Horizontal
3	4960.00	38.32	-1.47	36.85	74.00	-37.15	Peak	Vertical
4	7440.00	42.05	0.83	42.88	74.00	-31.12	Peak	Vertical

Remark:

- 1. Correct Factor = Antenna Factor + Cable Loss Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.
- Result = Reading + Correct Factor.
- 3. Margin = Result Limit.
- 4. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Page 17 of 20 Report No.: 210406006RFC-2

5.4BAND EDGE MEASUREMENTS (RADIATED)

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209

Test Method: ANSI C63.10-2013 Clause 11.13

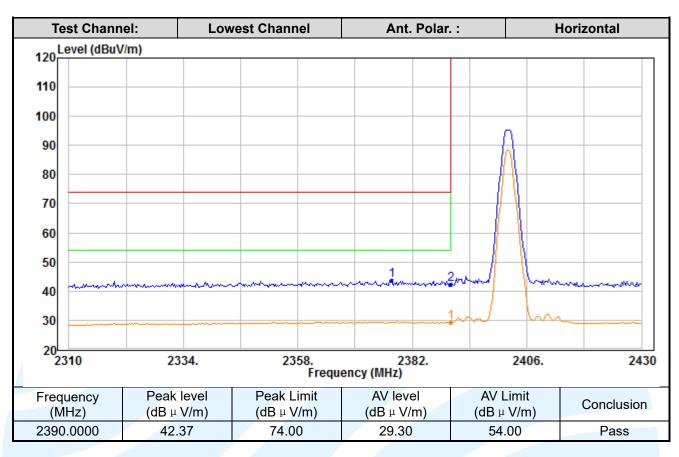
Limits:

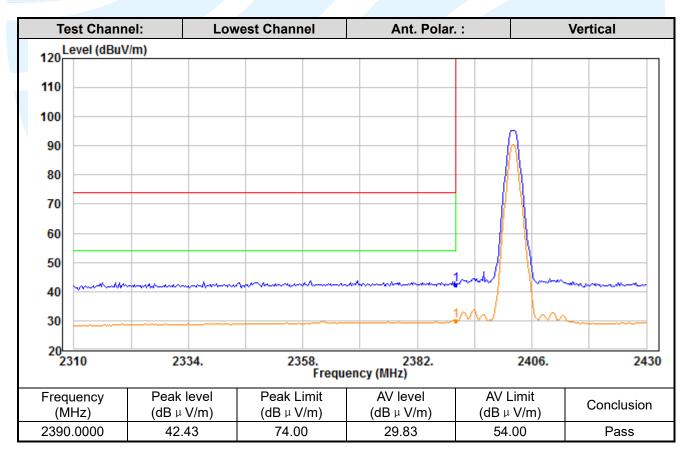
Radiated emissions which fall in the restricted bands, as defined in section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a).

Frequency	Limit (dBµV/m @3m)	Remark
30 MHz-88 MHz	40.0	Quasi-peak Value
88 MHz-216 MHz	43.5	Quasi-peak Value
216 MHz-960 MHz	46.0	Quasi-peak Value
960 MHz-1 GHz	54.0	Quasi-peak Value
Above 1 GHz	54.0	Average Value
Above I GHZ	74.0	Peak Value

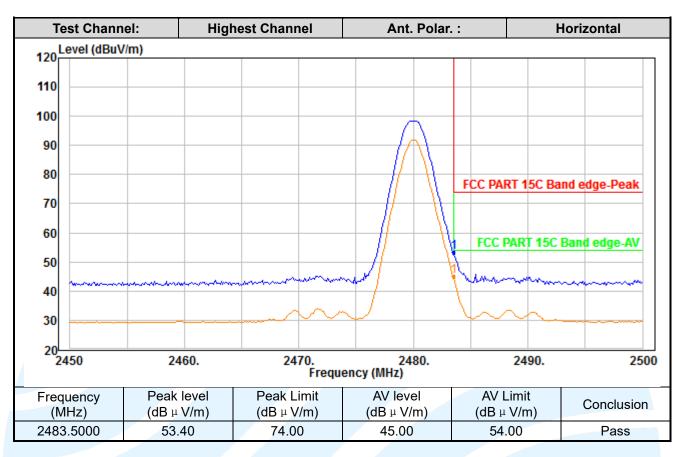
Test Setup: Refer to section 4.4.1 for details.

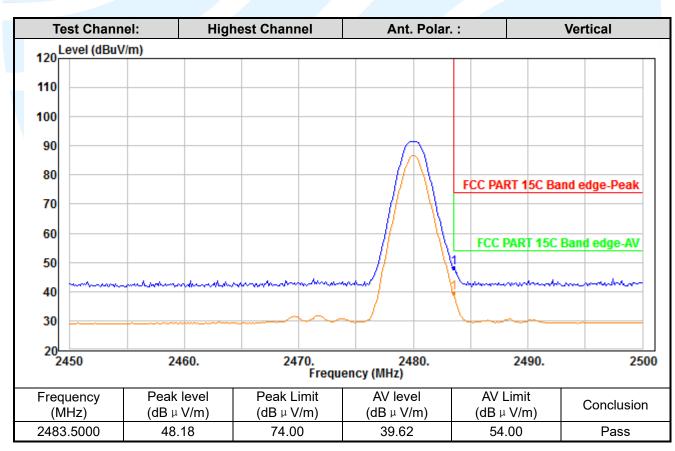
Test Procedures:

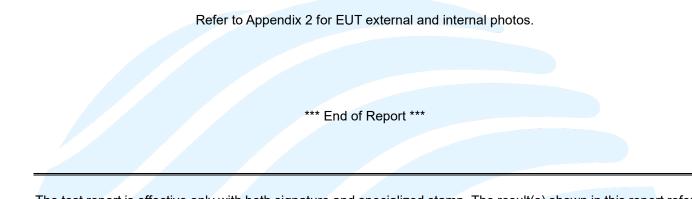

Radiated band edge measurements at 2390 MHz and 2483.5 MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).


- 1. Use radiated spurious emission test procedure described in clause 5.10. The transmitter output (antenna port) was connected to the test receiver.
- 2. Set the PK and AV limit line.
- 3. Record the fundamental emission and emissions out of the band-edge.
- 4. Determine band-edge compliance as required. **Equipment Used:** Refer to section 3 for details.

Test Result: Pass


The measurement data as follows:





APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

Report No.: 210406006RFC-2

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.