

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 Http://www.sz-ctc.org.cn

TEST REPORT

Report No.: CTC20231490E02

FCC ID.....: WNA-LC2203

Applicant: Shenzhen Skyworth Digital Technology Co.,LTD

District, Shenzhen, China

Manufacturer...... Shenzhen Skyworth Digital Technology Co.,LTD

District, Shenzhen, China

Product Name: Smart Camera

Trade Mark: SKYWORTH

Model/Type reference...... LC2203

Listed Model(s) LC2202, LC2203, LC2204, LC2205, LC2206, LC2207, LC2208,

LC2209, LQB00, LCQ00

Standard FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of receipt of test sample........ Jul. 06, 2023

Date of testing...... Jul. 06, 2023 ~ Jul. 24, 2023

Date of issue...... Aug. 07, 2023

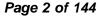
Result..... PASS

Compiled by:

(Printed name+signature) Lucy Lan

Supervised by:

(Printed name+signature) Eric Zhang


Approved by:

(Printed name+signature) Totti Zhao

Testing Laboratory Name: CTC Laboratories, Inc.

High-Tech Park, Longhua District, Shenzhen, Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The Test Result in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely corresponds to the test sample.

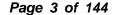


Table of Contents

Page

Report No.: CTC20231490E02

1.	TEST	SUMMARY	3
	1.1.	Test Standards	2
		TEST STANDARDS	
	1.2.	REPORT VERSION	
	1.3.	TEST DESCRIPTION	
	1.4.	TEST FACILITY	
	1.5.	MEASUREMENT UNCERTAINTY	6
	1.6.	ENVIRONMENTAL CONDITIONS	6
2.	CEN	ERAL INFORMATION	_
۷.	GEN	ERAL INFORMATION	/
	2.1.	CLIENT INFORMATION	7
	2.2.	GENERAL DESCRIPTION OF EUT	8
	2.3.	ACCESSORY EQUIPMENT INFORMATION	9
	2.4.	OPERATION STATE	
	2.5.	MEASUREMENT INSTRUMENTS LIST	13
_			
3.	TEST	TITEM AND RESULTS	15
	3.1.	CONDUCTED EMISSION	15
	3.2.	RADIATED EMISSION	18
	3.3.	BAND EDGE EMISSIONS	56
	3.4.	Bandwidth	94
	3.5.	OUTPUT POWER	123
	3.6.	Power Spectral Density	125
	3.7.	FREQUENCY STABILITY	139
	3.8.	Antenna Requirement	

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.407</u>: for 802.11a/n/ac/ax, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description	
01	Aug. 07, 2023	Original	

1.3. Test Description

FCC Part 15 Subpart E (15.407)				
Test Item	Standard Section	Result	Test Engineer	
Antenna Requirement	15.203	Pass	Lucy	
Conducted Emission	15.207	Pass	Lucy	
Band Edge Emissions	15.407(b)	Pass	Lucy	
26dB Bandwidth & 99% Bandwidth	15.407(a)	Pass	Lucy	
6dB Bandwidth (only for UNII-3)	15.407(e)	Pass	Lucy	
Peak Output Power	15.407(a)	Pass	Lucy	
Power Spectral Density	15.407(a)	Pass	Lucy	
Transmitter Radiated Spurious Emission	15.407(b) &15.209	Pass	Lucy	
Frequency Stability	15.407(g)	Pass	Lucy	
Dynamic Frequency Selection (DFS)	15.407(h)	Pass	Lucy	
Automatically Discontinue Transmission	15.407(c)	Pass	Note 3	

Note:

- 1. The measurement uncertainty is not included in the test result.
- 2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.
- 3. During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. the EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.
- 4. Dynamic Frequency Selection (DFS), please reference to the test report No.: CTC20231490E03.

Page 5 of 144

Report No.: CTC20231490E02

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Emission Bandwidth	±0.0196%	(1)
Maximum Conduct Output Power	±0.766dB	(1)
Power Spectral Density	±1.22dB	(1)
Band Edge Measurements	±1.328dB	(1)
Unwanted Emissions Measurement	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Frequency Stability	±2.76%	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

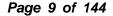
	Temperature	15 °C to 35 °C
Normal	Relative Humidity	20 % to 75 %
Condition	Air Pressure	101 kPa
	Voltage	The normal test voltage for the equipment shall be the nominal voltage for which the equipment was designed.
Extreme	Temperature	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer.
Condition	Voltage	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer.

Normal Condition	T _N =Normal Temperature	25 °C
Evtrama Canditian	T _L =Lower Temperature	-5 °C
Extreme Condition	T _H =Higher Temperature	45 °C

Page 7 of 144

Report No.: CTC20231490E02

2. GENERAL INFORMATION


2.1. Client Information

Applicant:	Shenzhen Skyworth Digital Technology Co.,LTD	
Address:	14/F,Block A,Skyworth Building,Gaoxin Ave.1.S.,Nanshan District,Shenzhen,China	
Manufacturer:	Shenzhen Skyworth Digital Technology Co.,LTD	
Address: 14/F,Block A,Skyworth Building,Gaoxin Ave.1.S.,Nanshan District,Shenzhen,China		
Factory: Shenzhen Skyworth Digital Technology Co.,LTD. Baoan Branch F		
Address:	2-5F,Integration Multi-Storied Building, Skyworth Science and Technology Industrial Park, Tangtou Industrial Zone, Shiyan Street, Baoan District, Shenzhen city, China	

2.2. General Description of EUT

Product Name:	Smart Camera	Smart Camera			
Trade Mark:	SKYWORTH				
Model/Type reference:	LC2203				
Listed Model(s):	LC2202, LC2203, LC2204, LC2205, LC2206, LC2207, LC2208, LC2209, LQB00, LCQ00				
Model Difference:		is the product r		nd the color of	product shell
Power Supply:	DC 5V 1A fron	n AC/DC Adapte	er		
Adapter Model:	UT-236A-5100 Input: 100-240 Output:5V/1A	V 50/60Hz 0.2A	1		
Hardware Version:	5800-2ALCQ0	0			
Software Version: V00001					
5G Wi-Fi					
Operation Band:	⊠U-NII-1	⊠U-NII-2A	⊠U-NII-2C	⊠U-NII-3	
	U-NII-1	5150MHz~5250MHz			
Operation Frequency:	U-NII-2A	5250MHz~5350MHz			
Operation Frequency.	U-NII-2C	5470MHz~572	25MHz		
	U-NII-3	5725MHz~585	50MHz		
Commant Danadovidtho	802.11a				
Support Bandwidth:	802.11n				
Modulation: 802.11a: OFDM (BIT/SK, QPSK, BPSK, 16QAM) 802.11n: OFDM (BIT/SK, QPSK, BPSK, 16QAM, 64QAM)					
Bit Rate of Transmitter: 802.11a: 6/9/12/18/24/36/48/54Mbps 802.11n: up to 300Mbps					
Antenna Type:	ntenna Type: PIFA Antenna				
Antenna Gain:	3.85dBi				

2.3. Accessory Equipment Information

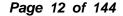
Equipment Information					
Name	Model	S/N	Manufacturer		
Notebook	ThinkBook 14G3 ACL	MP246QDR	Lenovo		
Cable Information					
Name	Shielded Type	Ferrite Core	Length		
/	1	/	/		
Test Software Information	Test Software Information				
Name	Version	/	1		
SecureCRT	/	/	1		

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting.

Operation Frequency List:

Operating	20MH:	z Bandwidth	40MH:	z Bandwidth
Band	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	36	5180	38	5190
U-NII-1	40	5200	30	5190
U-MII-1	44	5220	40	5000
	48	5240	46	5230
	52	5260	54	F270
LLNULOA	56	5280	54	5270
U-NII-2A	60	5300	60	5240
	64	5320	62	5310
	100	5500	400	5540
	104	5520	102	5510
	108	5540	440	5550
	112	5560	110	5550
	116	5580	440	5500
U-NII-2C	120	5600	118	5590
	124	5620	100	
	128	5640	126	5630
	132	5660		
	136	5680	134	5670
	140	5700		
	149	5745	454	5755
	153	5765	151	5755
U-NII-3	157	5785		
	161	5805	159	5795
	165	5825		


Test channel is below:

Operating	Test	20MHz	Bandwidth	40MHz	Bandwidth
Band	Channel	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	CH∟	36	5180	38	5190
U-NII-1	СНм	40	5200	/	/
	СНн	48	5240	46	5230
	CH∟	52	5260	54	5270
U-NII-2A	СНм	56	5280	/	/
	СНн	64	5320	62	5310
	CHL	100	5500	102	5510
U-NII-2C	CH _M	116	5580	110	5550
	СНн	140	5700	134	5670
	CHL	149	5745	151	5755
U-NII-3	СНм	157	5785	/	/
	СНн	165	5825	159	5795

Data Rated:

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is the worsted case mode.

Test Mode	Data Rate (worst mode)
802.11a	6Mbps
802.11n(HT20)/ 802.11n(HT40)	HT-MCS0

Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

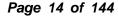
The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

For DFS test items:

The EUT has been tested under test mode condition. The Applicant provides software to control the EUT for staying in DFS mode for testing.

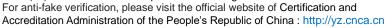


2.5. Measurement Instruments List

Tonsce	Tonscend RF Test System								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until				
1	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 16, 2023				
2	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023				
3	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024				
4	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 16, 2023				
5	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 16, 2023				
6	Power Sensor	Keysight	U2021XA	MY55130004	Mar. 14, 2024				
7	Power Sensor	Keysight	U2021XA	MY55130006	Mar. 14, 2024				
8	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 16, 2023				
9	High and low temperature box	ESPEC	MT3035	/	Mar. 24, 2024				
10	JS1120 RF Test System	TONSCEND	v2.6	/	/				

Radiate	Radiated emission(3m chamber 2)								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until				
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Dec. 07, 2024				
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 07, 2024				
3	Loop Antenna	ETS	6507	1446	Dec. 16, 2023				
4	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023				
5	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024				
6	Pre-Amplifier	SONOMA	310	186194	Dec. 16, 2023				
7	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 16, 2023				
8	Test Receiver	R&S	ESCI7	100967	Dec. 16, 2023				
9	3m chamber 2	Frankonia	EE025	/	Oct. 23, 2024				

Radiate	Radiated Emission (3m chamber 3)									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until					
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024					
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024					
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023					
4	Broadband Premplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023					
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 16, 2023					
6	3m chamber 3	YIHENG	EE106	/	Sep. 09, 2023					



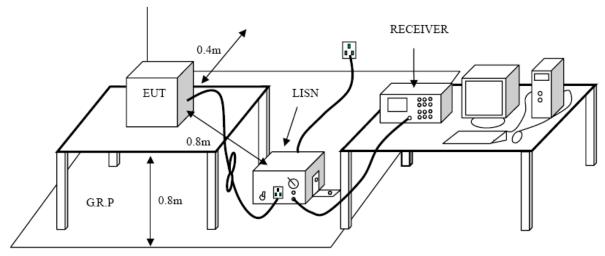
Conducted Emission Manufacturer Serial No. Item Test Equipment Model No. Calibrated Until 1 LISN R&S **ENV216** 101112 Dec. 16, 2023 2 LISN R&S **ENV216** 101113 Dec. 16, 2023 ESCS30 3 R&S **EMI Test Receiver** 100353 Dec. 16, 2023 4 ISN CAT6 Schwarzbeck NTFM 8158 CAT6-8158-0046 Dec. 16, 2023 5 ISN CAT5 Schwarzbeck NTFM 8158 CAT5-8158-0046 Dec. 16, 2023

Note: 1. The Cal. Interval was one year.

- 2. The Cal. Interval was three years of the antenna.
- 3. The cable loss has been calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207

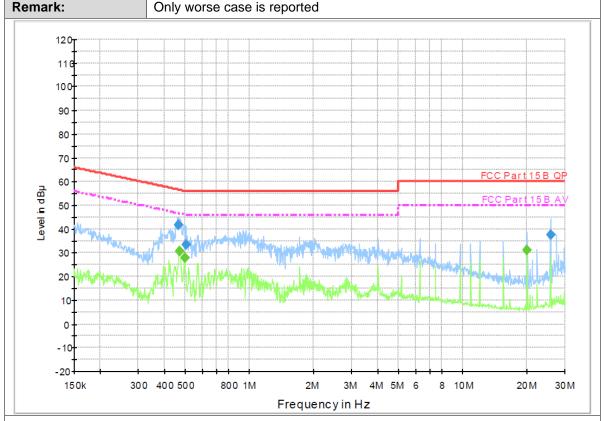
Fraguency (MHz)	Conducted Limit (dBµV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 to 56 *	56 to 46 *			
0.5 - 5	56	46			
5 - 30	60	50			

^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm / 50 µH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.


Test Mode

Please refer to the clause 2.4.

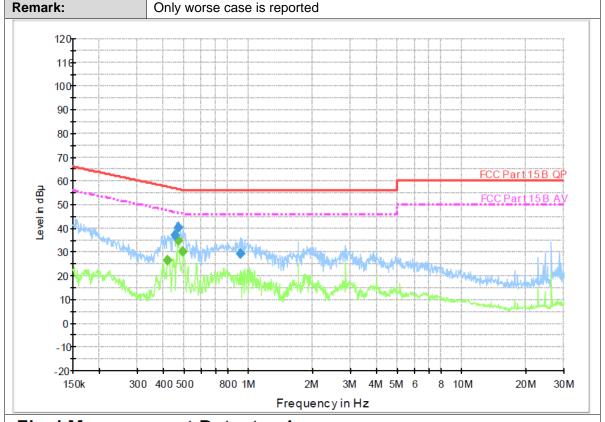
For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Test Result

Test Voltage:	AC 120V/60Hz
Terminal:	Line
B 1	

Final Measurement Detector 1

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµ ∨)	Time	(kHz)			(dB)	(dB)	(dBµ	
		(ms)						(V)	
0.464230	41.9	1000.00	9.000	On	L1	9.7	14.7	56.6	
0.502810	33.2	1000.00	9.000	On	L1	9.7	22.8	56.0	
25.651550	37.6	1000.00	9.000	On	L1	10.1	22.4	60.0	


Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.467950	30.8	1000.00	9.000	On	L1	9.7	15.8	46.6	
0.494850	28.0	1000.00	9.000	On	L1	9.7	18.1	46.1	
19.947560	31.0	1000.00	9.000	On	L1	10.0	19.0	50.0	

Emission Level = Read Level + Correct Factor

Test Voltage: AC 120V/60Hz
Terminal: Neutral

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.453240	36.9	1000.00	9.000	On	N	10.0	19.9	56.8	
0.469820	40.5	1000.00	9.000	On	N	10.0	16.0	56.5	
0.918750	29.3	1000.00	9.000	On	N	10.0	26.7	56.0	

Final Measurement Detector 2

Frequer (MHz		Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.418	460	26.3	1000.00	9.000	On	N	10.0	21.2	47.5	
0.467	950	34.6	1000.00	9.000	On	N	10.0	12.0	46.6	
0.492	880	30.0	1000.00	9.000	On	N	10.0	16.1	46.1	

Emission Level = Read Level + Correct Factor

3.2. Radiated Emission

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

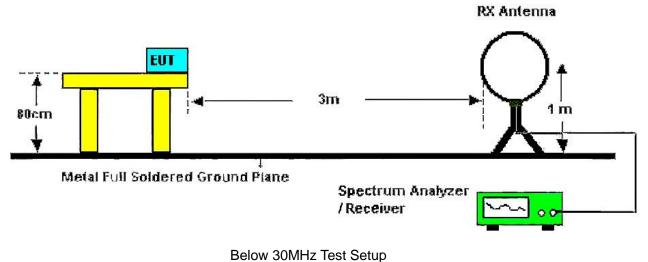
Fraguency Panga (MHz)	dBµV/m	(at 3 meters)	
Frequency Range (MHz)	Peak	Average	
Above 1000	74	54	

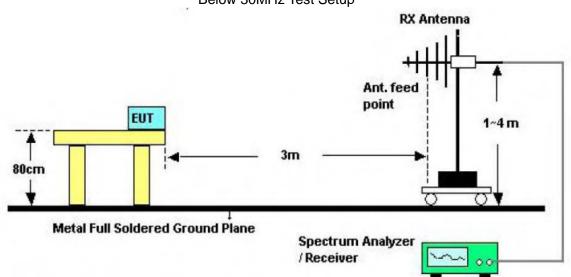
Note:

(1) The tighter limit applies at the band edges.

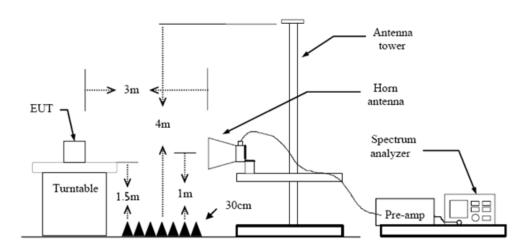
(2) Emission Level ($dB\mu V/m$)=20log Emission Level ($\mu V/m$).

Limits of unwanted emission out of the restricted bands FCC CFR Title 47 Part 15 Subpart E Section 15. 407(b)


Frequency	EIRP Limits	Equivalent Field Strength
(MHz)	(dBm)	at 3m (dBµV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27 (Note 2)	68.2
5725~5825	10 (Note 2)	105.2
3725~3623	15.6 (Note 2)	110.8
	27 (Note 2)	122.2


Note:

1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $E = \frac{1000000\sqrt{30P}}{3} \mu V/m$, where P is the eirp (Watts).


2. According to FCC 16-24, all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

30-1000MHz Test Setup

Above 1GHz Test Setup

Page 20 of 144

Report No.: CTC20231490E02

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the quidelines.
- Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 kHz~30 MHz

From 9 kHz to 30 MHz: The conclusion is PASS.

Note: 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2. Pre-scan all antenna, only show the test data for worse case antenna on the test report.

CTC Laboratories, Inc.

Ant	. No.			Aı	nt 1											
Ant	. Pol.			Н	oriz	ont	al									
Tes	t Mode	:		T	X 80	02.	11a	a Mode 5180MHz	(U-NII-1)							
Remark:				0	Only worse case is reported.											
90.0	dBuV/π														1	
80																
70																
60										FCC Part15	i Class B	3M Ra	diatio	n		
50										Margin -6 c	IB					
40						_ŗ								3 5 (6	
30						¥,	2 X			3				₩ ,		
20	li dia		p./Mayles		اد	J"	1	make for a part of the part of	L Mul M	Mary Mary Mary	May Lath		Mallyld	۷ البر	ساسالها	
10	WWW.	Jan	***	and a faith	MAN Y		η	HVAVA a salas	WARE MARKET	LMIN HOLE.						
0																
-10	0.000			0.00				(MHz)		200.00					100	 0.000
31	J. UUU		ы	0.00				(MITZ)	3	300.00					100	U. UUU

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	84.9993	52.07	-21.89	30.18	40.00	-9.82	QP
2	92.1386	52.35	-21.60	30.75	43.50	-12.75	QP
3	300.3672	47.48	-17.16	30.32	46.00	-15.68	QP
4	750.1082	44.51	-8.50	36.01	46.00	-9.99	QP
5	801.7863	42.16	-7.28	34.88	46.00	-11.12	QP
6	851.0353	41.44	-6.58	34.86	46.00	-11.14	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No			An	nt 1											
Ant. Po	l.		Ve	rtic	al										
Test Mc	de:		TX	(80	2.1	l1a	Mode 5180MHz	(U-NI	I-1)						
Remark	ς:		Or	ıly ı	wor	se	case is reported								
90.0 dB	uV/m									1	İ				$\overline{}$
80															
70															
60						_				FCC Part15	i Class F	3M Ba	diation		\square
50										Margin -6 o			didion		4
40					_	Į.							5 X	ě X	Ш
30	l de	-1/4 _{6/4} /4/ _{6/4}	MANA MANA	المرسية		1	What had ware		M.	. Marina Marin	. w. m M				
20	Digway war		- 111				d. Mushin	AND THE BEST OF THE PERSON OF	lin JAN	MA	WAY WAY			- Y	W _{res} IVV
10	·														
o				_	_										\square
-10							a								1000
30.000		60	.00				(MHz)		3	00.00					1000.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	34.7602	54.47	-18.07	36.40	40.00	-3.60	QP
2!	87.4177	57.73	-21.83	35.90	40.00	-4.10	QP
3!	89.2764	60.68	-21.78	38.90	43.50	-4.60	QP
4!	92.1388	60.60	-21.60	39.00	43.50	-4.50	QP
5!	651.9417	50.53	-9.79	40.74	46.00	-5.26	QP
6!	801.7863	48.96	-7.28	41.68	46.00	-4.32	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10359.113	40.68	13.60	54.28	74.00	-19.72	peak
2 *	10359.350	25.57	13.60	39.17	54.00	-14.83	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	10359.692	40.74	13.60	54.34	74.00	-19.66	peak
2 *	10360.566	26.03	13.59	39.62	54.00	-14.38	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10399.389	25.64	13.67	39.31	54.00	-14.69	AVG
2	10400.120	41.99	13.67	55.66	74.00	-18.34	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No	0.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	*	10400.442	25.87	13.67	39.54	54.00	-14.46	AVG
2		10400.747	40.81	13.67	54.48	74.00	-19.52	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10479.349	25.91	13.80	39.71	54.00	-14.29	AVG
2	10479.941	39.79	13.80	53.59	74.00	-20.41	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10479.744	39.07	13.80	52.87	74.00	-21.13	peak
2 *	10479.983	23.97	13.80	37.77	54.00	-16.23	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l e	Margin (dB)	Detector
1 *	10359.303	25.12	13.60	38.72	54.00	-15.28	AVG
2	10360.579	39.91	13.59	53.50	74.00	-20.50	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10359.061	25.34	13.60	38.94	54.00	-15.06	AVG
2	10360.010	41.14	13.60	54.74	74.00	-19.26	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10399.659	25.08	13.67	38.75	54.00	-15.25	AVG
2	10400.618	39.03	13.67	52.70	74.00	-21.30	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10399.859	25.91	13.67	39.58	54.00	-14.42	AVG
2	10400.209	40.10	13.67	53.77	74.00	-20.23	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10479.972	24.86	13.80	38.66	54.00	-15.34	AVG
2	10480.920	38.96	13.80	52.76	74.00	-21.24	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10479.741	40.92	13.80	54.72	74.00	-19.28	peak
2 *	10480.267	25.78	13.80	39.58	54.00	-14.42	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l e	Margin (dB)	Detector
1	10379.999	39.46	13.63	53.09	74.00	-20.91	peak
2 *	10380.743	25.08	13.63	38.71	54.00	-15.29	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10380.141	39.56	13.63	53.19	74.00	-20.81	peak
2 *	10380.573	24.95	13.63	38.58	54.00	-15.42	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10459.362	24.98	13.77	38.75	54.00	-15.25	AVG
2	10459.808	38.33	13.77	52.10	74.00	-21.90	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10459.246	38.90	13.77	52.67	74.00	-21.33	peak
2 *	10459.762	24.43	13.77	38.20	54.00	-15.80	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5260MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10519.365	26.25	13.89	40.14	54.00	-13.86	AVG
2	10520.419	40.53	13.89	54.42	74.00	-19.58	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5260MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10519.343	40.81	13.89	54.70	74.00	-19.30	peak
2 *	10520.337	26.17	13.89	40.06	54.00	-13.94	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5280MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10559.139	26.37	13.97	40.34	54.00	-13.66	AVG
2	10559.467	40.06	13.97	54.03	74.00	-19.97	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5280MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10559.349	26.00	13.97	39.97	54.00	-14.03	AVG
2	10559.600	39.95	13.97	53.92	74.00	-20.08	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5320MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	10639.271	39.75	14.15	53.90	74.00	-20.10	peak
2 *	10640.110	25.76	14.16	39.92	54.00	-14.08	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5320MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10639.981	40.54	14.16	54.70	74.00	-19.30	peak
2 *	10640.844	25.80	14.16	39.96	54.00	-14.04	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5260MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1	10520.707	40.13	13.89	54.02	74.00	-19.98	peak
2 *	10520.876	25.97	13.89	39.86	54.00	-14.14	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5260MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	10519.643	39.95	13.89	53.84	74.00	-20.16	peak
2 *	10520.043	25.83	13.89	39.72	54.00	-14.28	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5280MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	10559.808	39.75	13.97	53.72	74.00	-20.28	peak
2 *	10560.699	25.63	13.97	39.60	54.00	-14.40	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5280MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10559.409	41.54	13.97	55.51	74.00	-18.49	peak
2 *	10560.287	25.81	13.97	39.78	54.00	-14.22	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5320MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector
1	10639.713	40.03	14.16	54.19	74.00	-19.81	peak
2 *	10640.258	25.82	14.16	39.98	54.00	-14.02	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5320MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10639.673	26.00	14.16	40.16	54.00	-13.84	AVG
2	10639.983	40.83	14.16	54.99	74.00	-19.01	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5270MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10539.688	40.05	13.93	53.98	74.00	-20.02	peak
2 *	10540.103	23.53	13.93	37.46	54.00	-16.54	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5270MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10539.537	24.60	13.93	38.53	54.00	-15.47	AVG
2	10540.920	39.47	13.93	53.40	74.00	-20.60	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5310MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10619.457	38.31	14.11	52.42	74.00	-21.58	peak
2 *	10620.607	23.36	14.11	37.47	54.00	-16.53	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5310MHz (U-NII-2A)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10619.829	24.40	14.11	38.51	54.00	-15.49	AVG
2	10619.937	38.93	14.11	53.04	74.00	-20.96	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5500MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10999.323	39.02	14.97	53.99	74.00	-20.01	peak
2 *	11000.238	23.85	14.97	38.82	54.00	-15.18	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5500MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector
1	10999.596	39.70	14.97	54.67	74.00	-19.33	peak
2 *	11000.539	24.17	14.97	39.14	54.00	-14.86	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5580MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11159.185	39.30	14.98	54.28	74.00	-19.72	peak
2 *	11159.547	24.07	14.98	39.05	54.00	-14.95	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5580MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11159.715	39.79	14.98	54.77	74.00	-19.23	peak
2 *	11160.851	24.74	14.98	39.72	54.00	-14.28	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5700MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11399.412	38.23	14.99	53.22	74.00	-20.78	peak
2 *	11400.006	23.38	14.99	38.37	54.00	-15.63	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5700MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1 *	11399.698	23.91	14.99	38.90	54.00	-15.10	AVG
2	11400.611	39.79	14.99	54.78	74.00	-19.22	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5500MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1 *	10999.665	23.71	14.97	38.68	54.00	-15.32	AVG
2	11000.569	38.74	14.97	53.71	74.00	-20.29	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5500MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1 *	10999.706	24.08	14.97	39.05	54.00	-14.95	AVG
2	11000.269	38.89	14.97	53.86	74.00	-20.14	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5580MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	11159.201	38.96	14.98	53.94	74.00	-20.06	peak
2 *	11159.769	24.24	14.98	39.22	54.00	-14.78	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5580MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1 *	11159.915	25.35	14.98	40.33	54.00	-13.67	AVG
2	11160.424	39.13	14.98	54.11	74.00	-19.89	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5700MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1	11399.744	38.38	14.99	53.37	74.00	-20.63	peak
2 *	11400.548	23.28	14.99	38.27	54.00	-15.73	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5700MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1 *	11399.106	23.69	14.99	38.68	54.00	-15.32	AVG
2	11399.751	39.64	14.99	54.63	74.00	-19.37	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5510MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11020.384	23.54	14.97	38.51	54.00	-15.49	AVG
2	11020.654	38.69	14.97	53.66	74.00	-20.34	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5510MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector
1	11020.131	38.22	14.97	53.19	74.00	-20.81	peak
2 *	11020.481	23.87	14.97	38.84	54.00	-15.16	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5550MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1	11099.051	39.49	14.98	54.47	74.00	-19.53	peak
2 *	11100.302	23.75	14.98	38.73	54.00	-15.27	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5550MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11100.011	23.70	14.98	38.68	54.00	-15.32	AVG
2	11100.227	39.07	14.98	54.05	74.00	-19.95	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5670MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11340.599	38.76	14.99	53.75	74.00	-20.25	peak
2 *	11340.855	23.70	14.99	38.69	54.00	-15.31	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5670MHz (U-NII-2C)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector
1	11339.848	38.75	14.99	53.74	74.00	-20.26	peak
2 *	11339.870	23.80	14.99	38.79	54.00	-15.21	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11489.621	23.54	15.00	38.54	54.00	-15.46	AVG
2	11490.653	38.62	15.01	53.63	74.00	-20.37	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11489.801	37.82	15.00	52.82	74.00	-21.18	peak
2 *	11490.677	23.19	15.01	38.20	54.00	-15.80	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.030	38.49	15.06	53.55	74.00	-20.45	peak
2 *	11570.007	24.44	15.07	39.51	54.00	-14.49	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No		Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector
1		11569.505	38.78	15.06	53.84	74.00	-20.16	peak
2	*	11569.511	24.27	15.06	39.33	54.00	-14.67	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11650.030	38.07	15.13	53.20	74.00	-20.80	peak
2 *	11650.950	23.61	15.14	38.75	54.00	-15.25	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11649.229	24.26	15.13	39.39	54.00	-14.61	AVG
2	11649.802	38.81	15.13	53.94	74.00	-20.06	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	11489.661	37.73	15.00	52.73	74.00	-21.27	peak
2 *	11490.695	23.28	15.01	38.29	54.00	-15.71	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11489.849	23.74	15.00	38.74	54.00	-15.26	AVG
2	11490.871	39.33	15.01	54.34	74.00	-19.66	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1	11569.581	39.64	15.06	54.70	74.00	-19.30	peak
2 *	11569.652	23.82	15.06	38.88	54.00	-15.12	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.125	39.34	15.06	54.40	74.00	-19.60	peak
2 *	11570.799	24.04	15.07	39.11	54.00	-14.89	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11649.678	38.50	15.13	53.63	74.00	-20.37	peak
2 *	11650.683	23.64	15.14	38.78	54.00	-15.22	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	11649.050	38.75	15.13	53.88	74.00	-20.12	peak
2 *	11650.630	23.45	15.14	38.59	54.00	-15.41	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1 *	11509.768	23.43	15.00	38.43	54.00	-15.57	AVG
2	11510.730	38.83	15.01	53.84	74.00	-20.16	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11510.345	23.04	15.01	38.05	54.00	-15.95	AVG
2	11510.774	38.79	15.01	53.80	74.00	-20.20	peak

Remarks:

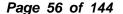
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	11589.291	38.58	15.08	53.66	74.00	-20.34	peak
2 *	11589.321	23.73	15.08	38.81	54.00	-15.19	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11590.294	23.63	15.09	38.72	54.00	-15.28	AVG
2	11590.863	38.99	15.09	54.08	74.00	-19.92	peak

Remarks:

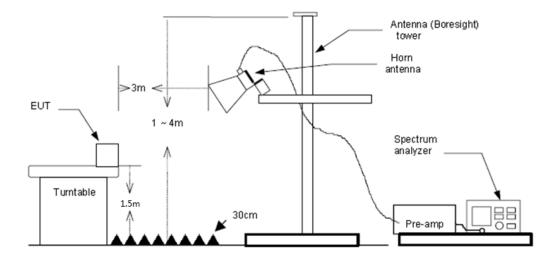
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3.3. Band Edge Emissions

Limit

Limits of unwanted emission out of the restricted bands

FCC CFR Title 47 Part 15 Subpart E Section 15. 407(b)


OO OF K Title 47 Tart 13 Subpart L Sect		
Frequency	EIRP Limits	Equivalent Field Strength
(MHz)	(dBm)	at 3m (dBµV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27 (Note 2)	68.2
5725~5825	10 (Note 2)	105.2
3723~3023	15.6 (Note 2)	110.8
	27 (Note 2)	122.2

Note:

1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $E = \frac{1000000\sqrt{30P}}{3} \mu V/m$, where P is the eirp (Watts).

2. According to FCC 16-24, all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Test Configuration

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

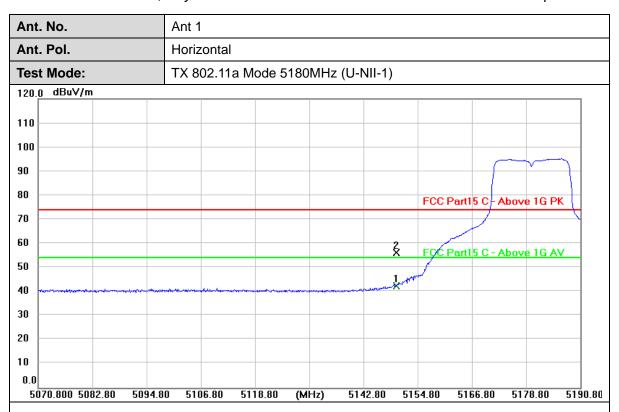
RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause Duty Cycle.

Test Mode

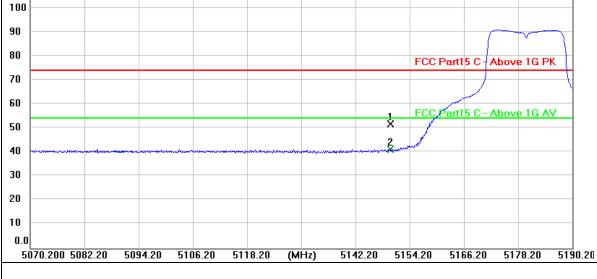
Please refer to the clause 2.4.


Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Test Result

Note: 1. Pre-scan both 4500-5150MHz, 5350-5460MHz were investigated, report only shows the test data for worst case.

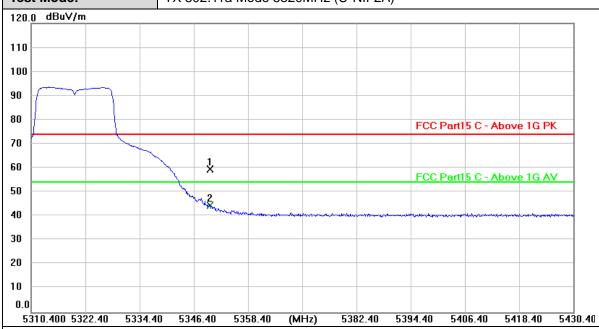
2. Pre-scan all antenna, only show the test data for worse case antenna on the test report.


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	5150.000	5.23	37.15	42.38	54.00	-11.62	AVG
2	5150.160	19.25	37.15	56.40	74.00	-17.60	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

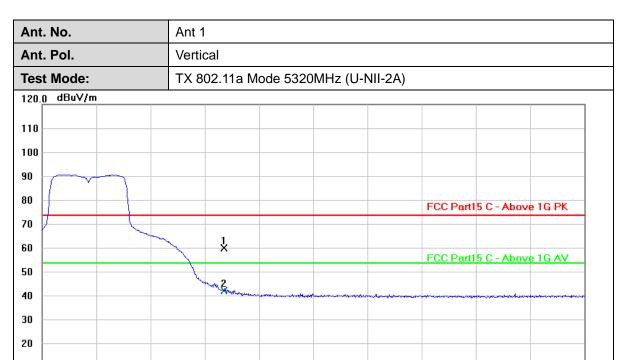
Ant. No. Ant 1 Ant. Pol. Vertical **Test Mode:** TX 802.11a Mode 5180MHz (U-NII-1) 120.0 dBuV/m 110 100 90 80 FCC Part15 C Above 1G PK 70


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	14.54	37.15	51.69	74.00	-22.31	peak
2 *	5150.000	4.02	37.15	41.17	54.00	-12.83	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No. Ant 1 Ant. Pol. Horizontal **Test Mode:** TX 802.11a Mode 5320MHz (U-NII-2A)



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	22.18	37.41	59.59	74.00	-14.41	peak
2 *	5350.000	7.26	37.41	44.67	54.00	-9.33	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1	5350.000	23.15	37.41	60.56	74.00	-13.44	peak
2 *	5350.000	5.35	37.41	42.76	54.00	-11.24	AVG

(MHz)

5381.80

5393.80

5405.80

5417.80

5429.80

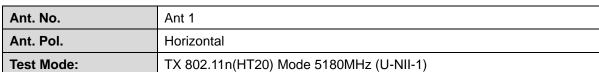
Remarks

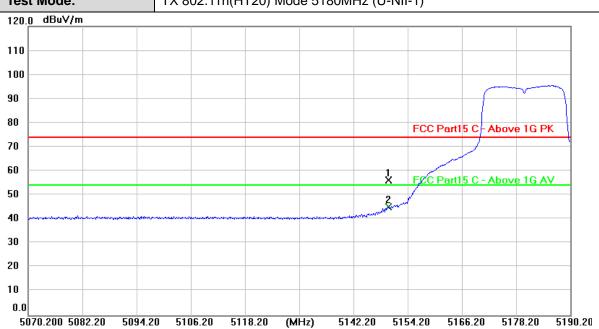
10 0.0

5309.800 5321.80

5333.80

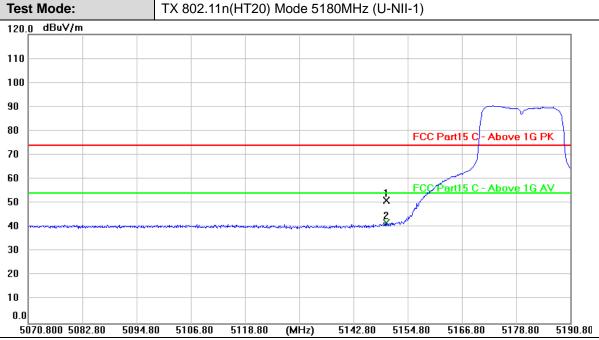
5345.80


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


5357.80

2.Margin value = Level -Limit value

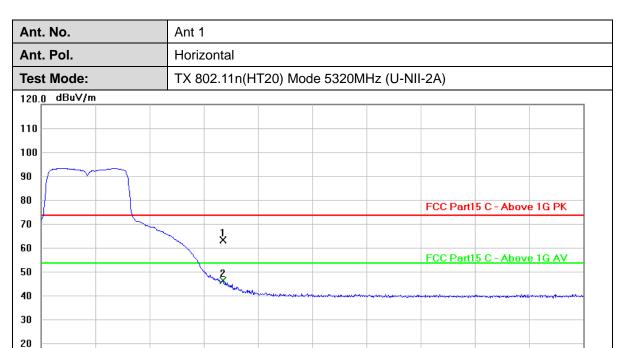
中国国家认证认可监督管理委员会


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	19.14	37.15	56.29	74.00	-17.71	peak
2 *	5150.000	7.90	37.15	45.05	54.00	-8.95	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No. Ant 1 Ant. Pol. Vertical



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	14.01	37.15	51.16	74.00	-22.84	peak
2 *	5150.000	4.55	37.15	41.70	54.00	-12.30	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	26.33	37.41	63.74	74.00	-10.26	peak
2 *	5350.000	9.48	37.41	46.89	54.00	-7.11	AVG

(MHz)

5381.80

5393.80

5405.80

5417.80

5429.80

Remarks:

10 0.0

5309.800 5321.80

5333.80

5345.80

5357.80

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No. Ant 1 Ant. Pol. Vertical **Test Mode:** TX 802.11n(HT20) Mode 5320MHz (U-NII-2A) 120.0 dBuV/m 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 × FCC Part15 C - Above 1G AV 50 40 30

ĺ	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
ľ	1	5350.000	20.33	37.41	57.74	74.00	-16.26	peak
	2 *	5350.000	5.79	37.41	43.20	54.00	-10.80	AVG

(MHz)

5382.40

5394.40

5406.40

5418.40

5430.40

Remarks:

20 10 0.0


5310.400 5322.40

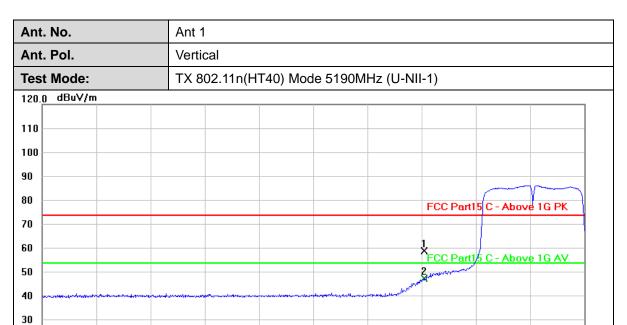
5334.40

5346.40

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5358.40

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	5150.000	27.06	37.15	64.21	74.00	-9.79	peak
2 *	5150.000	14.49	37.15	51.64	54.00	-2.36	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	22.13	37.15	59.28	74.00	-14.72	peak
2 *	5150.000	10.59	37.15	47.74	54.00	-6.26	AVG

(MHz)

5129.00

5149.00

5169.00

5189.00

5209.00

Remarks:

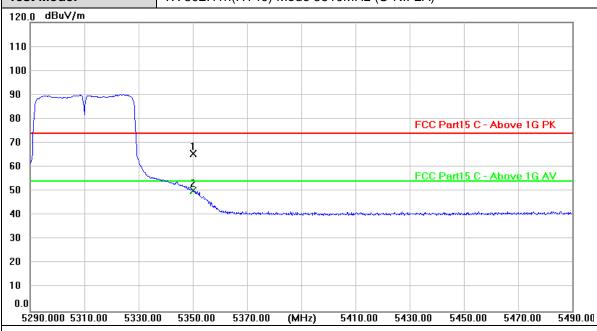
20 10 0.0

5009.000 5029.00

5049.00

5069.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

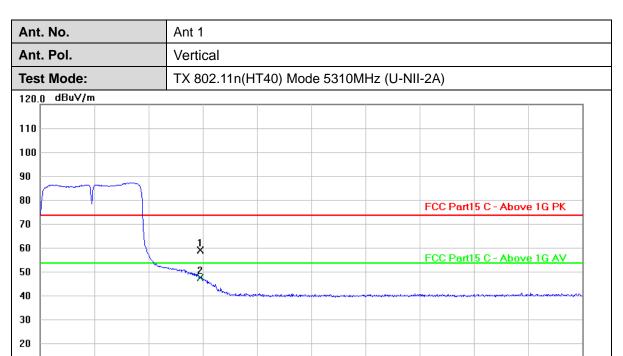

5089.00

 Ant. No.
 Ant 1

 Ant. Pol.
 Horizontal

 Test Mode:
 TX 802.11n(HT40) Mode 5310MHz (U-NII-2A)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	28.00	37.41	65.41	74.00	-8.59	peak
2 *	5350.000	12.80	37.41	50.21	54.00	-3.79	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	5350.000	22.05	37.41	59.46	74.00	-14.54	peak
2 *	5350.000	10.88	37.41	48.29	54.00	-5.71	AVG

(MHz)

5411.00

5431.00

5451.00

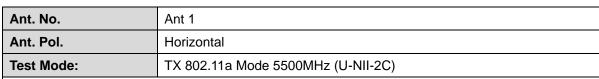
5471.00

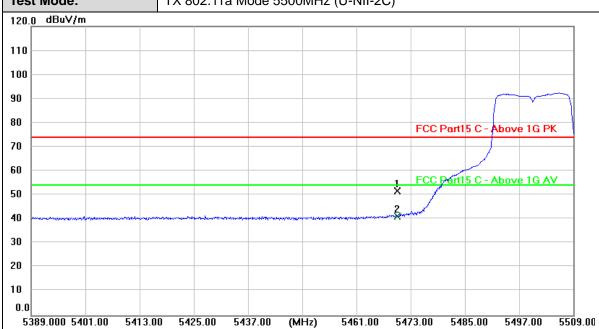
5491.00

Remarks:

10 0.0

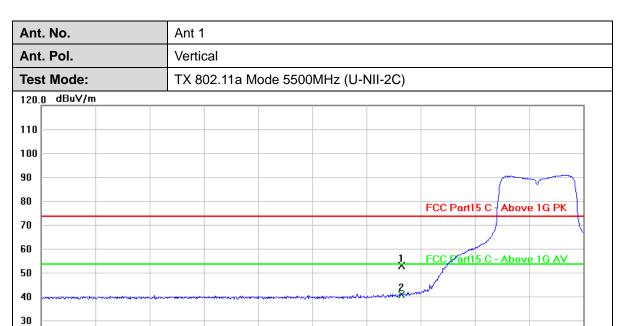
5291.000 5311.00


5331.00


5351.00

5371.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5470.000	14.18	37.57	51.75	74.00	-22.25	peak
2 *	5470.000	3.61	37.57	41.18	54.00	-12.82	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5470.000	16.04	37.57	53.61	74.00	-20.39	peak
2 *	5470.000	3.90	37.57	41.47	54.00	-12.53	AVG

(MHz)

5462.20

5474.20

5486.20

5498.20

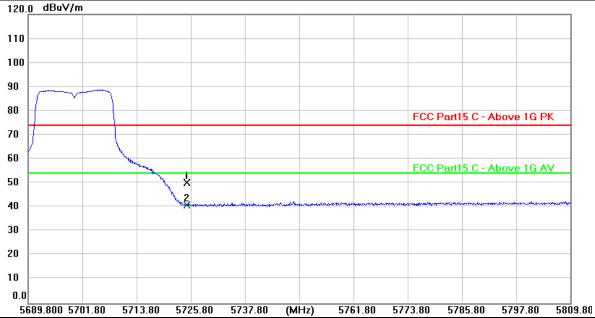
5510.20

Remarks:

20 10 0.0

5390.200 5402.20

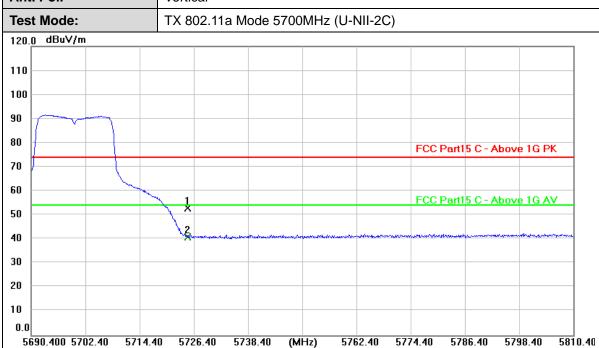
5414.20


5426.20

5438.20

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

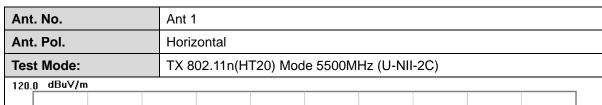
Ant. No. Ant 1 Ant. Pol. Horizontal **Test Mode:** TX 802.11a Mode 5700MHz (U-NII-2C) 120.0 dBuV/m

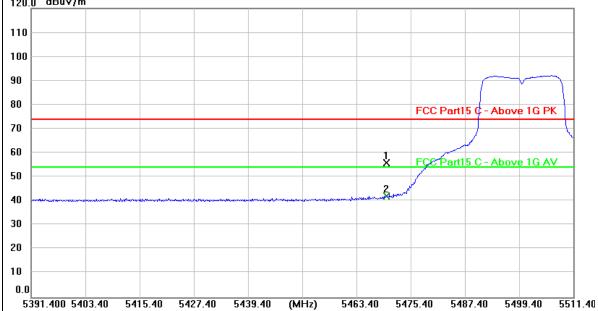

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5725.000	12.13	38.07	50.20	74.00	-23.80	peak
2 *	5725.000	2.75	38.07	40.82	54.00	-13.18	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

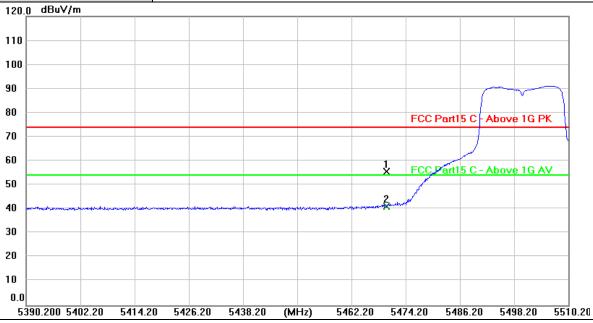
Ant. No. Ant 1 Ant. Pol. Vertical




No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5725.000	14.88	38.07	52.95	74.00	-21.05	peak
2 *	5725.000	2.92	38.07	40.99	54.00	-13.01	AVG

Remarks:

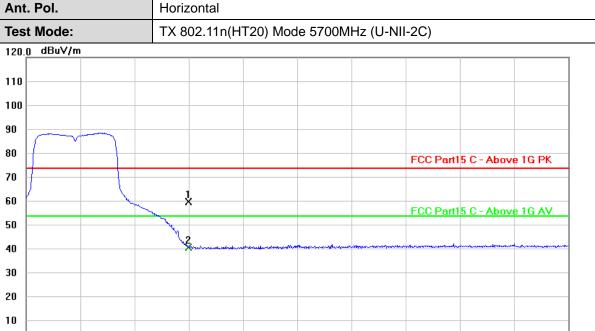
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5470.000	18.28	37.57	55.85	74.00	-18.15	peak
2 *	5470.000	4.54	37.57	42.11	54.00	-11.89	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No. Ant 1 Ant. Pol. Vertical **Test Mode:** TX 802.11n(HT20) Mode 5500MHz (U-NII-2C)


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1	5470.000	17.98	37.57	55.55	74.00	-18.45	peak
2 *	5470.000	3.71	37.57	41.28	54.00	-12.72	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No. Ant 1
Ant. Pol. Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5725.000	22.11	38.07	60.18	74.00	-13.82	peak
2 *	5725.000	3.27	38.07	41.34	54.00	-12.66	AVG

(MHz)

5761.20

5773.20

5785.20

5797.20

5809.20

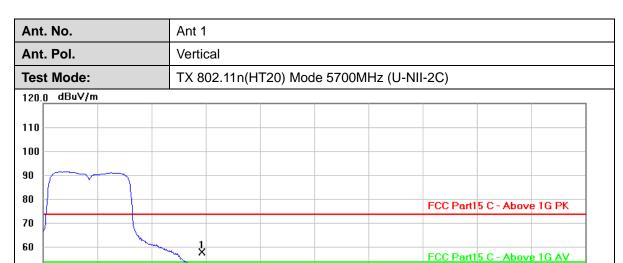
Remarks:

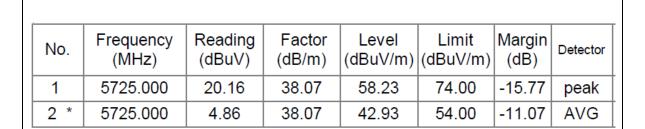
0.0

5689.200 5701.20

5713.20

5725.20


5737.20


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

(MHz)

5761.80

5773.80

5785.80

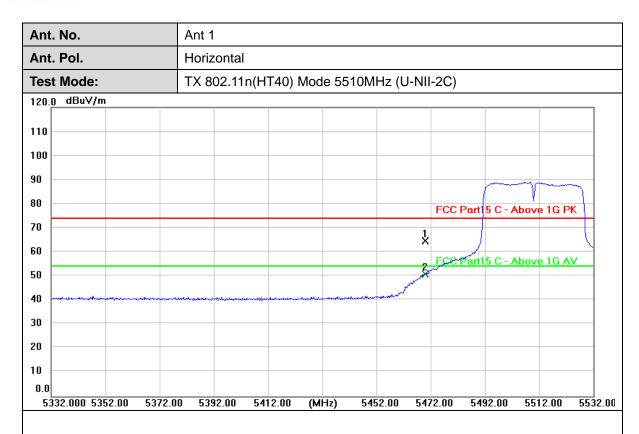
5797.80

5809.80

Remarks:

5689.800 5701.80

5713.80


5725.80

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

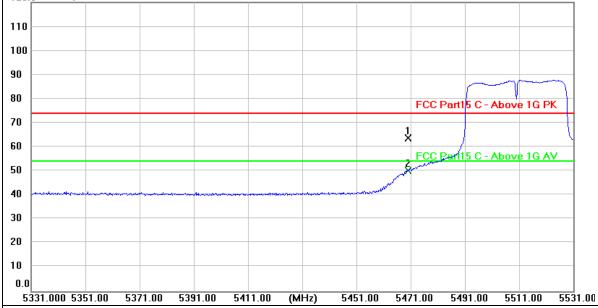
5737.80

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5470.000	27.16	37.57	64.73	74.00	-9.27	peak
2 *	5470.000	13.21	37.57	50.78	54.00	-3.22	AVG

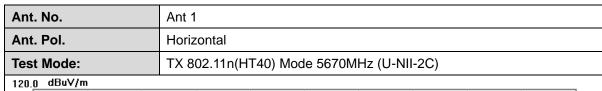
Remarks:

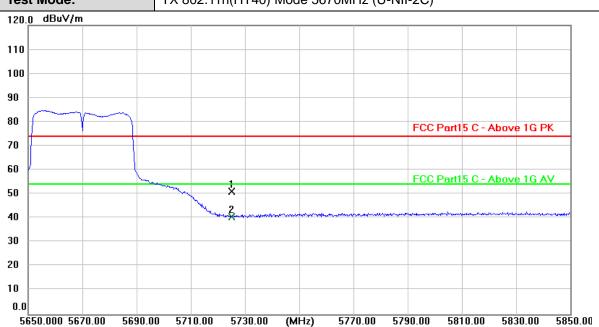

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

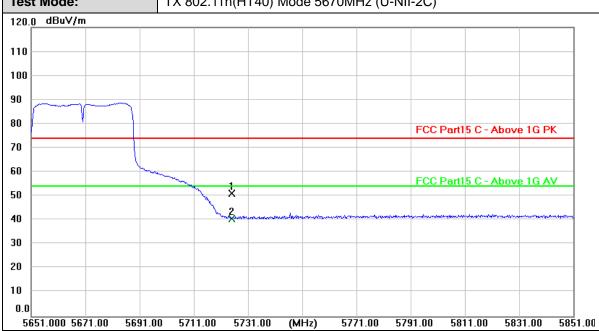
Ant. No. Ant 1 Ant. Pol. Vertical **Test Mode:** TX 802.11n(HT40) Mode 5510MHz (U-NII-2C) 120.0 dBuV/m 110 100




No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5470.000	26.15	37.57	63.72	74.00	-10.28	peak
2 *	5470.000	12.70	37.57	50.27	54.00	-3.73	AVG

Remarks:

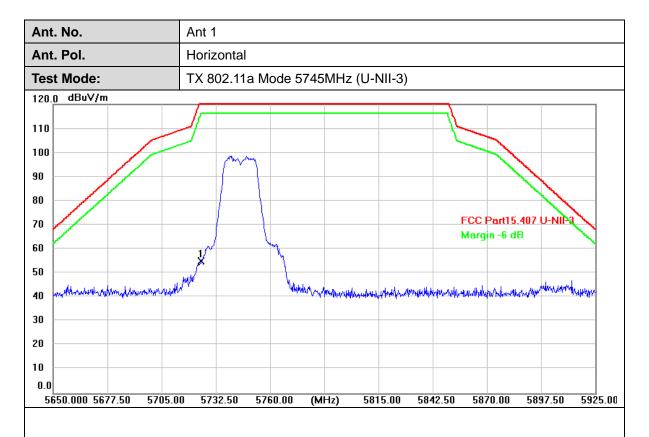
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5725.000	12.96	38.07	51.03	74.00	-22.97	peak
2 *	5725.000	2.51	38.07	40.58	54.00	-13.42	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant 1 Ant. No. Ant. Pol. Vertical **Test Mode:** TX 802.11n(HT40) Mode 5670MHz (U-NII-2C)



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5725.000	13.16	38.07	51.23	74.00	-22.77	peak
2 *	5725.000	2.48	38.07	40.55	54.00	-13.45	AVG

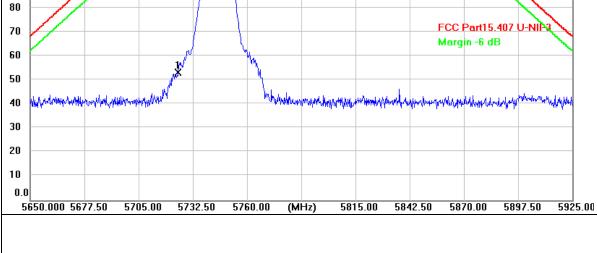
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	50.37	4.54	54.91	122.20	-67.29	peak

Remarks:

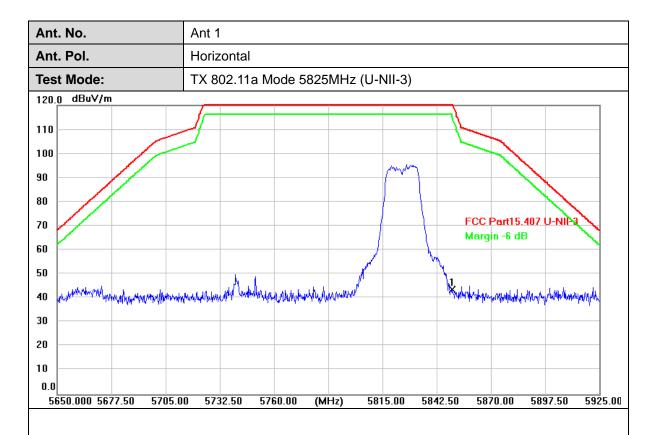
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant. No. Ant 1

Ant. Pol. Vertical

Test Mode: TX 802.11a Mode 5745MHz (U-NII-3)

120.0 dBuV/m


110
100
90
80
80
80
80

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	48.64	4.54	53.18	122.20	-69.02	peak

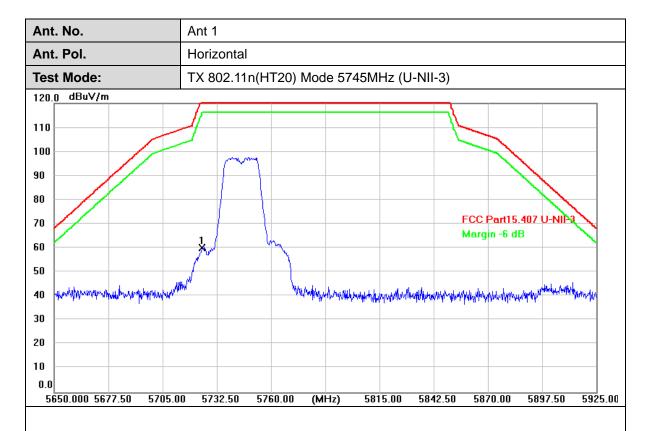
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	38.80	4.95	43.75	122.20	-78.45	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5825MHz (U-NII-3)
120.0 dBuV/m	
110	
100	
90	
80	
70	FCC Part15.407 U-NIP3
60	Margin -6 dB
50	<i></i>
	adopted the second of the seco
30	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20	
10	
0.0	
5650.000 5677.50 5705.	00 5732.50 5760.00 (MHz) 5815.00 5842.50 5870.00 5897.50 5925.

No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector
1 *	5850.000	38.59	4.95	43.54	122.20	-78.66	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	5725.000	55.56	4.54	60.10	122.20	-62.10	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No. Ant 1

Ant. Pol. Vertical

Test Mode: TX 802.11n(HT20) Mode 5745MHz (U-NII-3)

120.0 dBuV/m

110
100
90
80
70
FCC Part15.407 U-NIP3
Margin -6 dB

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector

4.54

(MHz)

5815.00

56.20

5842.50

122.20

5870.00

5897.50

-66.00

5925.00

peak

Remarks:

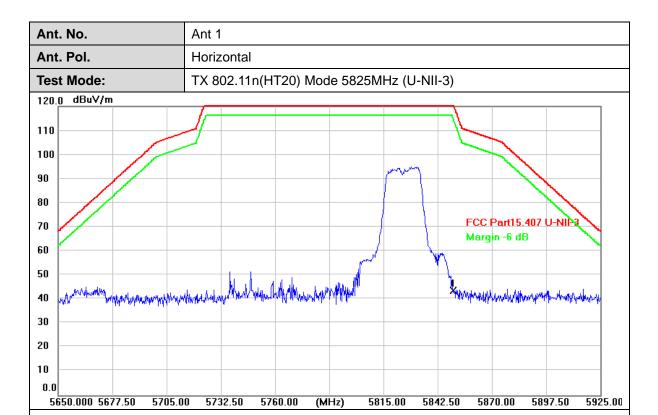
1

5650.000 5677.50

5705.00

5732.50

51.66

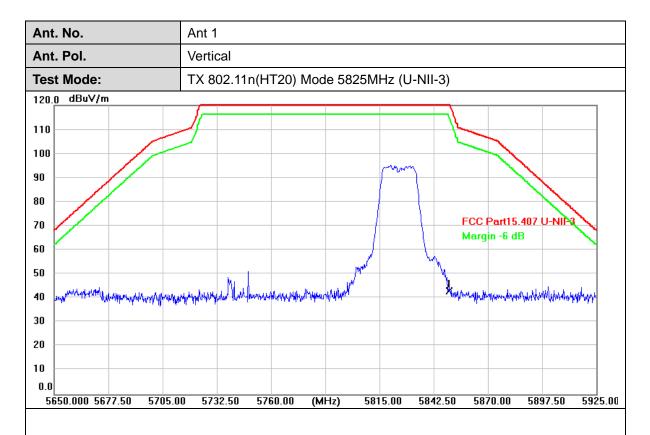

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5760.00

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

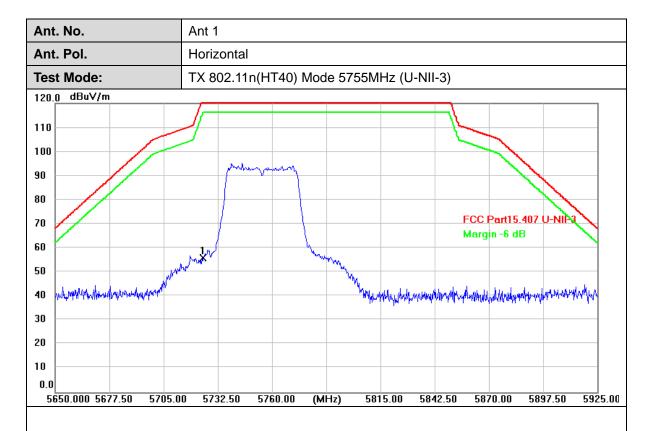
5725.000



No.	Frequency (MHz)			Level (dBuV/m)			Detector
1 *	5850.000	38.70	4.95	43.65	122.20	-78.55	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	38.00	4.95	42.95	122.20	-79.25	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	51.51	4.54	56.05	122.20	-66.15	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant 1 Ant. No. Ant. Pol. Vertical **Test Mode:** TX 802.11n(HT40) Mode 5755MHz (U-NII-3) 120.0 dBuV/m 110 100 90 80 FCC Part15.407 U-NIP3 70 Margin -6 dB 60 50 captabolish (Alandapah) (Alandapah) 40 30 20 10 0.0

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	l e	Margin (dB)	Detector
1 *	5725.000	50.55	4.54	55.09	122.20	-67.11	peak

(MHz)

5815.00

5842.50

5870.00

5897.50

5925.00

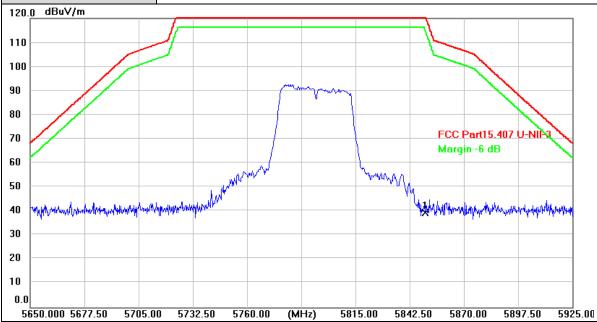
Remarks:

5650.000 5677.50

5705.00

5732.50

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


5760.00

 Ant. No.
 Ant 1

 Ant. Pol.
 Horizontal

 Test Mode:
 TX 802.11n(HT40) Mode 5795MHz (U-NII-3)

 120.0
 dBuV/m

No).	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	*	5850.000	34.51	4.95	39.46	122.20	-82.74	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5795MHz (U-NII-3)
120.0 dBuV/m	
110	
100	
90	Manage and the second
80	
	FCC Part15.407 U-NIP3
70	Margin -6 dB
60	material de la company de la c
50 40 40 40 30	· · · · · · · · · · · · · · · · · · ·
40 Hillion of Application of the state of th	which production of the produc
30	
20	
10	
0.0	
5650.000 5677.50 5705.0	00 5732.50 5760.00 (MHz) 5815.00 5842.50 5870.00 5897.50 5925.00

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	5850.000	37.53	4.95	42.48	122.20	-79.72	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3.4. Bandwidth

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a) & (e)

Test Item	Limit	Frequency Range (MHz)	
26dB Bandwidth& 99% Bandwidth	5150~5250		
	N/A	5250~5350	
		5500~5700	
6 dB Bandwidth	≥500 kHz	5725~5850	

Test Configuration


Test Procedure

Please refer to KDB789033 D02 for the measurement methods.

The setting of the spectrum analyzer as below:

	26dB Bandwidth Test					
Spectrum Parameters	Setting					
Attenuation	Auto					
Span	>26 dB Bandwidth					
RBW	Approximately 1% of the emission bandwidth					
VBW	>RBW					
Detector	Peak					
Trace	Max Hold					
Sweep Time	Auto					

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

C)

6dB Bandwidth Test						
Spectrum Parameters	Setting					
Attenuation	Auto					
Span	>6 dB Bandwidth					
RBW	100 kHz					
VBW	≥ 3*RBW					
Detector	Peak					
Trace	Max Hold					
Sweep Time	Auto					
	99% Occupied Bandwidth Test					
Spectrum Parameters	Setting					
Attenuation	Auto					
RBW	1% to 5% of the OBW					
VBW	≥ 3*RBW					
Detector	Peak					
Trace	Max Hold					

NOTE: The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

Test Result

26dB Bandwidth & 99% Occupied Bandwidth

TestMode	Antenna	Channel	26db EBW [MHz]	OCB [MHz]	Verdict
11A	Ant1	5180	20.64	17.263	PASS
		5200	20.48	17.183	PASS
		5240	20.60	17.303	PASS
		5260	23.72	17.542	PASS
		5280	23.60	17.423	PASS
		5320	28.32	17.742	PASS
		5500	20.48	17.383	PASS
		5580	20.52	17.423	PASS
		5700	20.32	17.143	PASS
		5745	20.64	16.903	PASS
		5785	20.64	16.983	PASS
		5825	20.32	17.183	PASS
		5180	21.40	18.102	PASS
		5200	21.36	18.222	PASS
	Ant1	5240	20.80	18.422	PASS
11N20SISO		5260	22.72	18.182	PASS
		5280	28.16	18.941	PASS
		5320	27.36	18.422	PASS
		5500	22.92	18.501	PASS
		5580	21.36	18.302	PASS
		5700	21.04	18.142	PASS
		5745	21.20	18.182	PASS
		5785	20.68	18.062	PASS
		5825	21.08	18.222	PASS
	Ant1	5190	41.52	36.364	PASS
		5230	40.88	36.923	PASS
11N40SISO		5270	50.80	36.843	PASS
		5310	43.28	36.523	PASS
		5510	43.44	36.923	PASS
		5550	41.28	36.683	PASS
		5670	42.24	36.444	PASS
		5755	41.12	36.603	PASS
		5795	42.08	36.603	PASS