

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TEST REPORT

For DFS

Report No.: CTC20221783E05

FCC ID-----: WNA-HP46E-R

Applicant Shenzhen Skyworth Digital Technology Co.,LTD

Address 14/F,Block A,Skyworth Building,Gaoxin Ave.1.S.,Nanshan

District, Shenzhen, China

Manufacturer ······: Shenzhen Skyworth Digital Technology Co.,LTD

Address...... 14/F,Block A,Skyworth Building,Gaoxin Ave.1.S.,Nanshan

District, Shenzhen, China

Product Name ----- 4K UHD Streaming TV Box

Trade Mark-----: STRONG, SKYWORTH, MECOOL, THOMSON

Model/Type reference·····: Leap-S3

Listed Model(s) LEAP-S3, HP46E, HP4618, KM7 PLUS, THA 200, THA200

Standard-----: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample...: Oct. 11, 2022

Date of testing...... Oct. 11, 2022 ~ Oct. 28, 2022

Date of issue...... Nov. 30, 2022

Result..... PASS

Compiled by:

(Printed name+signature) Lucy Lan

Incry lem
Ziczhang

Supervised by:

(Printed name+signature) Eric Zhang

Approved by:

(Printed name+signature) Totti Zhao

Testing Laboratory Name.....: CTC Laboratories, Inc.

Shenzhen, Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

TABLE OF CONTENTS

Report No.: CTC20221783E05

1. T	FEST SUMMARY	
1.1		
1.2		
1.3		
1.4		
1.5		
1.6	ENVIRONMENTAL CONDITIONS	5
2. G	GENERAL INFORMATION	6
2.1	GENERAL DESCRIPTION OF EUT	F
2.2		
2.3		
2.5	ACCESSORY EQUIPMENT INFORMATION	С
3. D	DYNAMIC FREQUENCY SELECTION	g
3.1	APPLICABILITY OF DFS REQUIREMENTS	g
3.2		10
3.3		
3.4	TEST SETUP	13
3.5		
3.6		
3.	3.6.1 DFS DETECTION THRESHOLD	
3.	3.6.2 DFS In-Service Monitoring	
	TCT DUOTOS	10

Page 3 of 19

Report No.: CTC20221783E05

1. TEST SUMMARY

1.1 Test Standards

The tests documented in this report were performed in accordance with FCC CFR 47 CFR Part 15, Subpart E, KDB 905462 D02.

1.2 Report version

Revised No.	Date of issue	Description
01	Nov. 30, 2022	Original

1.3 Test Description

CFR 47 Part 15 Subpart E 15.407 (h), KDB 905462 D02							
Test Item	Test Item Test require						
DFS Detection Threshold	FCC 15.407, KDB 905462 D02	Pass	Lucy Lan				
Channel Availability Check Time	FCC 15.407, KDB 905462 D02	N/A	N/A				
Non-Occupancy Period	FCC 15.407, KDB 905462 D02	Pass	Lucy Lan				
U-NII Detection Bandwidth	FCC 15.407, KDB 905462 D02	N/A	N/A				
Channel Closing Transmission Time	FCC 15.407, KDB 905462 D02	Pass	Lucy Lan				
Channel Move Time	FCC 15.407, KDB 905462 D02	Pass	Lucy Lan				
Statistical Performance Check	FCC 15.407, KDB 905462 D02	N/A	N/A				

Note:

- 1. The measurement uncertainty is not included in the test result.
- 2. N/A: Means this test item is not applicable for this device according to the technology characteristic of device.

Page 4 of 19

Report No.: CTC20221783E05

1.4 Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the eidentified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (F CC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5 Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6 Environmental conditions

	Temperature	22 °C ~ 28°C
Normal Condition	Relative humidity	50% ~ 65%
	Voltage	The equipment shall be the nominal voltage for which the equipment was designed.
Extreme	Temperature	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer
Condition	Voltage	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer

Normal Condition		T _N =Normal Temperature	22 °C ~ 28°C
	Extreme Condition	T _L =Lower Temperature	0 °C
	Extreme Condition	T _H =Higher Temperature	45 °C

2. GENERAL INFORMATION

2.1 General Description of EUT

Product Name:	4	4K UHD Streaming TV Box					
Trade Mark:	S	STRONG, SKYWORTH, MECOOL, THOMSON					
Model/Type reference:	Le	eap-S3					
Listed Model(s):	LE	EAP-S3, HP46E,	HP4618, KM7 F	PLUS, THA 200), THA2	00	
Model Difference:		I these models arifferent is trade m		-	ayout a	nd ele	ectrical circuit,
Power supply:	D	C12V 1A from AC	C/DC Adapter				
Adapter model 1:	In	J-SKY120100U60 put: 100-240V~ 5 utput: 12Vdc/1A					
Adapter model 2:	In	S-SKY120100U0 put: 100-240V~ 5 utput: 12Vdc/1A					
Hardware version:	54	1024					
Software version:	P	2.0.3_20220929					
Antenna 1 and 2 type:	Р	CBA Antenna					
Antenna 1 & 2 gain:	2.	2dBi					
Technical index for 5G WIFI							
Operation Band:		⊠U-NII-1	⊠U-NII-2A	⊠U-NII-2C		⊠U	I-NII-3
		U-NII-1:	5150MHz~525	0MHz			
Operation Frequency Range:		U-NII-2A:	5250MHz~535	0MHz			
Operation requeitly realige.		U-NII-2C:	5470MHz~560	0MHz; 5650MF	łz~5725	MHz	
		U-NII-3:	5725MHz~585	0MHz			
		802.11a	⊠ 20MHz				
Support bandwidth:		802.11n	⊠ 20MHz	⊠ 40MHz			
802.11ac					☐ 160MHz		
Modulation:	802.11a: OFDM (BIT/SK, QPSK, BPSK, 16QAM) 802.11n: OFDM (BIT/SK, QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (BIT/SK, QPSK, BPSK, 16QAM, 64QAM, 256QAM)						
Bit Rate of Transmitter:	802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 300Mbps 802.11ac: at most 866.7 Mbps						

Note:

中国国家认证认可监督管理委员会

- 1. RJ-SKY120100AXXS, (A = E or B , stands for different plug, E means for Europe plug, B means for UK plug, M or U means for US plug. XX = 00-99. stands for customer code)
- 2. YS-SKY120100N0XP (N = E, B, 1character indicate difference plug type: E denote EU plug, B denote UK plug, X = 0-9, 1 digit, only for marketing purpose, no impact on safety)

Operation Frequency List:

	20MHz E	IHz Bandwidth 40MHz Bandwidth		80MHz E	Bandwidth	
Band (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	36	5180	38	5190		
U-NII-1	40	5200	30	42	42	5210
O-IVII-1	44	5220	46	5230	42	3210
	48	5240	40	3230		
	52	5260	54	5270		
U-NII-2A	56	5280	54	3270	58	5290
U-INII-ZA	60	5300	62	5310	56	5290
	64	5320	02	5510		
	100	5500	102	5510	106	
	104	5520	102	3310		
	108	5540				
U-NII-2C	112	5560	110	5550		106
U-MII-2C	116	5580			100	5550
	132	5660				
	136	5680	134	5670		
	140	5700				
	149	5745	151	5755		
	153	5765	101	5755		
U-NII-3	157	5785			155	5775
	161	5805	159	5795		
	165	5825				

2.2 Measurement Instruments List

Tonsc	Tonscend JS0806-2 Test system						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until		
1	Spectrum Analyzer	Keysight	N9020A	MY46471737	Dec.23, 2022		
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Mar. 15, 2023		
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec.23, 2022		
4	Signal Generator	Agilent	E8257D	MY46521908	Dec.23, 2022		
5	Power Sensor	Agilent	U2021XA	MY5365004	Mar. 15, 2023		
6	Power Sensor	Agilent	U2021XA	MY5365006	Mar. 15, 2023		
7	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Mar. 15, 2023		
8	Climate Chamber	TABAI	PR-4G	A8708055	Dec.23, 2022		
9	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec.23, 2022		
10	Climate Chamber	ESPEC	MT3065	/	Dec.23, 2022		
11	300328 v2.2.2 test system	TONSCEND	v2.6	/	/		

Note: The cable loss has calculated in test result which connection between each test instruments.

2.3 Accessory Equipment information

Equipment Information							
Name	Model	S/N	Manufacturer				
Notebook	ThinkBook 14 G3ACL	/	Lenovo				
GPON Terminal	EG8247Q (FCC ID: QISEG8247Q)	/	HUAWEI				
Displayer	EW3270-T	EW3270U	BenQ				
Cable Information	Cable Information						
Name	Shielded Type	Ferrite Core	Length				
Lan Cable	Without	Without	1.5M				

Page 9 of 19

Report No.: CTC20221783E05

3. Dynamic Frequency Selection

3.1 Applicability of DFS requirements

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Table 1:70phicability of bit of requirements i flor to ose of a chariner					
	Operational Mode				
Requirement	□Master		□Client With Radar		
	⊔iviastei	Radar Detection	Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2: Applicability of DFS requirements during normal operation

Table 2. Applicability of bit 3 requirements during normal operation					
	Operation	nal Mode			
Requirement	☐Master Device or Client with Radar Detection	☑Client Without Radar Detection			
DFS Detection Threshold	Yes	Not required			
Channel Closing Transmission Time	Yes	Yes			
Channel Move Time	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required			

Additional requirements for devices with multiple bandwidth modes	☐Master Device or Client with Radar Detection	☑Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

3.2 Limits

(1) DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

(2) DFS Response Requirements

Table 4: DFS Response Requirement Values

Parameter	Value	
Non-occupancy period	Minimum 30 minutes	
Channel Availability Check Time	60 seconds	
Channel Move Time	10 seconds	
Charmer Move Time	See Note 1.	
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.	
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.	

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Page 11 of 19

Report No.: CTC20221783E05

3.3 Parameters of radar test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Table 5 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials	
0	1	1428	18	See Note 1	See Note 1	
		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	$ \operatorname{Roundup} \left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{\operatorname{PRI}_{\mu \text{sec}}} \right) \right\} $			
1	1	Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A		60%	30	
2	1-5	150-230	23-29	60%	30	
3	6-10	200-500	16-18	60%	30	
4	11-20	200-500	12-16	60%	30	
Aggregate (Radar Types 1-4) 80% 120 Note 1: Short Bulse Badar Type 0 should be used for the detection bandwidth test, shappel mayo time						

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses

would be Round up
$$\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Round up } \{17.2\} = 18$$

Table 5a - Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)	
1	1930.5	518	
2	1858.7	538	

Page 12 of 19 Report No.: CTC20221783E05

1792.1	558
1730.1	578
1672.2	598
1618.1	618
1567.4	638
1519.8	658
1474.9	678
1432.7	698
1392.8	718
1355.0	738
1319.3	758
1285.3	778
1253.1	798
1222.5	818
1193.3	838
1165.6	858
1139.0	878
1113.6	898
1089.3	918
1066.1	938
326.2	3066
	1730.1 1672.2 1618.1 1567.4 1519.8 1474.9 1432.7 1392.8 1355.0 1319.3 1285.3 1253.1 1222.5 1193.3 1165.6 1139.0 1113.6 1089.3 1066.1

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-

4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detection				
1	35	29	82.9%				
2	30	18	60%				
3	30	27	90%				
4	50	44	88%				
	Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%						

Table 6 – Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveforms are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type wave forms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Table 7 – Frequency Hopping Radar Test Waveform

CTC Laboratories, Inc.

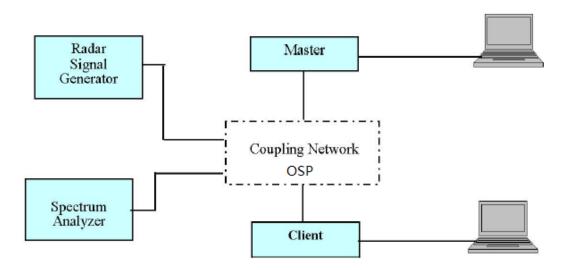
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	222	٥	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each wave form. The hopping sequence is different for each wave form and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250–5724MHz.Next,the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

3.4 Test Setup

SYSTTEMITEST CONFIGURATION


Description of Test Configuration:

The EUT was configured for testing in an engineering mode which was provided by the manufacturer. Stream the test file from the Master Device to the Client Device for IP based systems or frame based systems which dynamically allocate the talk/listen ratio.

Software to ping the client is used to simulate data transfer with a minimum channel loading of approximately 17% or greater.EUT Exercise Software

The test was performed under: DOS command, which was provided by the manufacturer.

System Block Diagram

Conducted Method

7.2.1 Setup for Master with injection at the Master

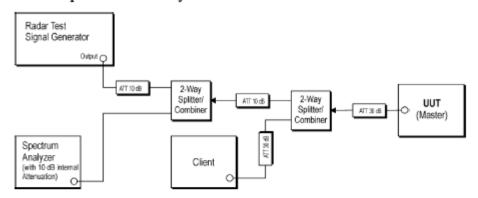


Figure 2: Example Conducted Setup where UUT is a Master and Radar Test Waveforms are injected into the Master

7.2.2 Setup for Client with injection at the Master

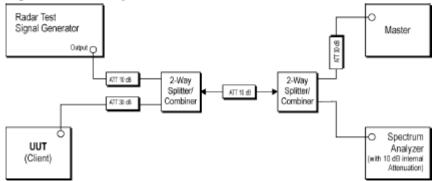


Figure 3: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

7.2.3 Setup for Client with injection at the Client

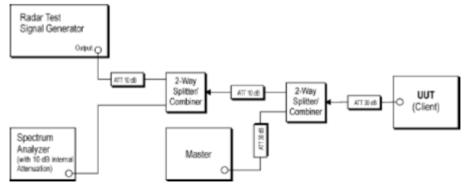


Figure 4: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Client

Page 15 of 19

Report No.: CTC20221783E05

3.5 Test Procedure

Please refer to KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02 Clause 7.8.

6.5.4 In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

These tests define how the following DFS parameters are verified during In-Service Monitoring:

- Channel Closing Transmission Time
- Channel Move Time
- Non-Occupancy Period

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U- NII device (In- Service Monitoring).

- a) One frequency will be chosen from the Operating Channels of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected.
- b) In case the UUT is a U-NII device operating as a Client Device (with or without DFS), a U-NII device operating as a Master Device will be used to allow the UUT (Client device) to Associate with the Master Device. In case the UUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will Associate with the UUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.
- c) Stream the channel loading test file from the Master Device to the Client Device on the test Channel for the entire period of the test.
- d) At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
- e) Observe the transmissions of the UUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing Transmission Time.
- f) When operating as a Master Device, monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this Channel. Perform this test once and record the measurement result.
- g) In case the UUT is a U-NII device operating as a Client Device with In-Service Monitoring, perform steps a) to f).

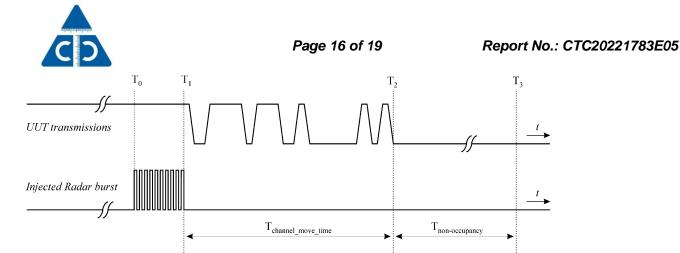


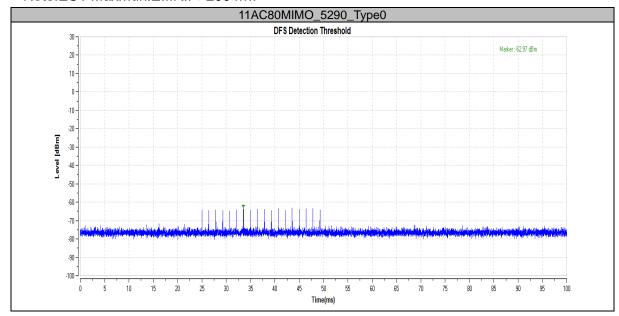
Figure 17: Example of Channel Closing Transmission Time & Channel Closing Time

Page 17 of 19

Report No.: CTC20221783E05

3.6 Test Result

3.6.1 DFS DETECTION THRESHOLD


The EUT operates in 5230-5350 MHZ and 5470-5723 MHZ range

The maximum conducted output power of EUT is 21.6dbm antenna gain is 2.2dBi, the Maximum EIRP=21.6+2.2=23.8dBm, Therefore the required interference threshold level

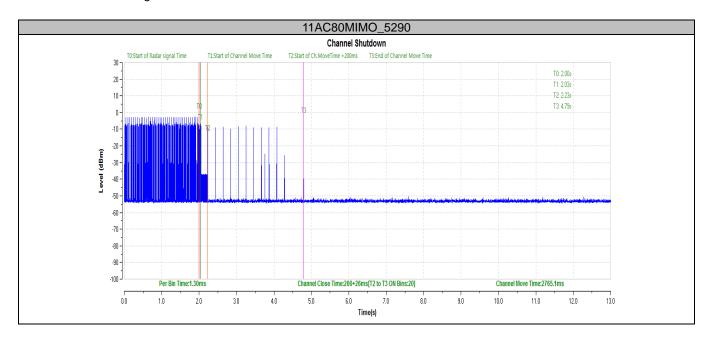
is -64dbm, the required radiated threshold at antenna port is -64dbm. The calibrated radiated DFS detection threshold level is set to-64dBm, threshold level=-64dBm + antenna gain=-59dBm.

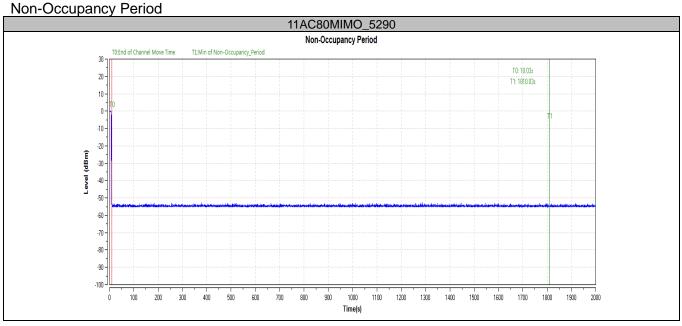
DFS Threshold Level						
DFS Threshold Level Value Limit Result						
-62.97dBm	≤ -61.8dBm	Pass				

Note:EUT'Maxmun.E.I.R.P>200 mw

3.6.2 DFS In-Service Monitoring

DFS In-Service Monitoring (5290 MHz;80 MHz)


Test according to FCC title 47 part 15 §15.407(h), KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02


TestMode	Channel	CCT[ms]	Limit[ms]	CMT[ms]	Limit[ms]	Verdict
11AC80MIMO	5290	200+26	200+60	2765.1	10000	PASS

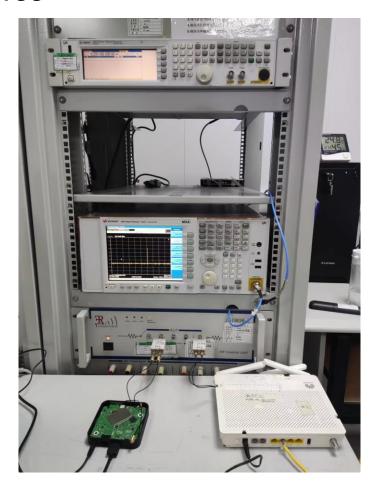
TestMode	Channel	Result	Limit[s]	Verdict
80M	5290	see test graph	>=1800	PASS

CMT: Channel Move Time

CCT: Channel Closing Transmission Time



CTC Laboratories, Inc.


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

EUT TEST PHOTOS

