

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TES	TR	EP	OF	₹Т
			•	•

Report No.: CTC20221569E01

FCC ID-----: WNA-GN256VH

Applicant·····: Shenzhen Skyworth Digital Technology Co.,LTD

14/F,Block A,Skyworth Building,Gaoxin Ave.1.S.,Nanshan Address-----:

District, Shenzhen, China

Manufacturer ·····: Shenzhen Skyworth Digital Technology Co.,LTD

14/F,Block A,Skyworth Building,Gaoxin Ave.1.S.,Nanshan Address----:

District, Shenzhen, China

Product Name·····: **GPON ONT**

Trade Mark------ /

Model/Type reference·····: GN256VH

Listed Model(s) ·····: WN37A, GN256V, GN256

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample...: Aug. 16, 2022

Date of testing...... Aug. 16, 2022 to Sep.28, 2022

Date of issue....: Oct. 9, 2022

Result....: **PASS**

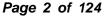
Compiled by:

(Printed name+signature) Lucy Lan

Supervised by:

(Printed name+signature) Miller Ma Incry Ion Miller Ma

Approved by:

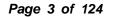

(Printed name+signature) Totti Zhao

Testing Laboratory Name.....: CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Address.....

Shenzhen, Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.


Table of Contents

Page

Report No.: CTC20221569E01

1. TE	EST SUMMARY	3
1.1.	Test Standards	3
1.2.		
1.3.	Test Description	4
1.4.	Test Facility	5
1.5.	Measurement Uncertainty	5
1.6.	Environmental conditions	6
2. GI	SENERAL INFORMATION	7
2.1.	CLIENT INFORMATION	7
2.2.		
2.3.	OPERATION STATE	8
2.4.	Measurement Instruments List	10
3. TE	EST ITEM AND RESULTS	11
3.1.	CONDUCTED EMISSION	11
3.2.	RADIATED EMISSION	14
3.3.	BAND EDGE EMISSIONS	36
3.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	61
3.5.	BANDWIDTH	94
3.6.	OUTPUT POWER	112
3.7.	Power Spectral Density	114
2.0	A	124

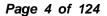
Accreditation Administration of the People's Republic of China: yz.cnca.cn

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.


ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Oct.9, 2022	Original

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

1.3. Test Description

FCC Part 15 Subpart C (15.247)					
Test Item	Standard Section	Result	Tool Engineer		
rest item	FCC	Result	Test Engineer		
Antenna Requirement	15.203	Pass	Alicia Liu		
Conducted Emission	15.207	Pass	Alicia Liu		
Band Edge Emissions	15.247(d)	Pass	Alicia Liu		
6dB Bandwidth	15.247(a)(2)	Pass	Alicia Liu		
Conducted Max Output Power	15.247(b)(3)	Pass	Alicia Liu		
Power Spectral Density	15.247(e)	Pass	Alicia Liu		
Transmitter Radiated Spurious	15.209&15.247(d)	Pass	Alicia Liu		

Note: The measurement uncertainty is not included in the test result.

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation . Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (F CC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn


Test Items Measurement Uncertainty Notes Transmitter power conducted 0.42 dB (1) 2.14 dB (1) Transmitter power Radiated Conducted spurious emissions 9kHz~40GHz 1.60 dB (1) Radiated spurious emissions 9kHz~40GHz 2.20 dB (1) Conducted Emissions 9kHz~30MHz 3.20 dB (1) Radiated Emissions 30~1000MHz 4.70 dB (1) Radiated Emissions 1~18GHz 5.00 dB (1) Radiated Emissions 18~40GHz 5.54 dB (1) Occupied Bandwidth (1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	25°C
Relative Humidity:	40%
Air Pressure:	101kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Skyworth Digital Technology Co.,LTD
Address:	14/F, Block A, Skyworth Building, Gaoxin Ave.1.S., Nanshan District, Shenzhen, China
Manufacturer :	Shenzhen Skyworth Digital Technology Co.,LTD
Address:	14/F, Block A, Skyworth Building, Gaoxin Ave.1.S., Nanshan District, Shenzhen, China
Factory:	Shenzhen Skyworth Digital Technology Co.,LTD. Baoan Branch Factory
Address:	2-5F,Integration Multi-Storied Building, Skyworth Science and Technology Industrial Park, Tangtou Industrial Zone, Shiyan Street, Baoan District, Shenzhen city, China

2.2. General Description of EUT

Product Name:	GPON ONT
Trade Mark:	/
Model/Type reference:	GN256VH
Listed Model(s):	WN37A, GN256V, GN256
Model Difference:	All these models are identical in the same PCB, layout and electrical circuit, Different is trade mark and model number.
Power supply:	DC12V 1.5A from AC/DC Adapter
Adapter Model:	BY-SKY120150U70P ^{Note1} Input: 100-240V~ 50/60Hz 0.6A Output: 12Vdc/1.5A
Hardware version:	/
Software version:	/
WIFI 802.11b/ g/ n(HT20)/n	n(HT40)
Modulation:	DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)/802.11n(HT40)
Operation frequency:	2412MHz~2462MHz for 802.11b/802.11g/802.11n(HT20) 2422MHz~2452MHz for 802.11n(HT40)
Channel number:	11 for 802.11b/802.11g/802.11n(HT20) 7 for 802.11n(HT40)
Channel separation:	5MHz
Antenna 1 and 2 type:	External Antenna
Antenna 1 gain:	5dBi
Antenna 2 gain:	5dBi

Note:

1. BY-SKY120150UYYP(YY=00-99, 2 digits, Represent different marketing purpose only, does not affect the safety and electromagnetic compatibility)

Page 8 of 124

Report No.: CTC20221569E01

2.3. Operation state

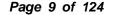
Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40)

Antenna Specification:


Ant.	Brand	Model Name	Antenna Type	Connector	Gain(dBi)
1	NA	NA	External Antenna	IPEX	5
2	NA	NA	External Antenna	IPEX	5

Note: Antenna Gain=5 dBi. For 2.4G, this EUT supports MIMO 2X2, any transmit signals are correlated with each other, so Directional gain = $G_{Ant.}+10log(N)dBi$, that is Directional gain=5+10log(2)dBi=8.So output power limit is 30-8+6=28, the power spectral density limit is 8-8+6=6. The power spectral density limit is 8-8+6=6.

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(HT20)	HT-MCS8	
802.11n(HT40)	HT-MCS8	

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%). EUT support for SISO and MIMO Transmission,802.11b/g only supports SISO Mode, SISO mode sets the same power level as MIMO mode, so MIMO mode is the worst case. Recorded in the report.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

2.4. Measurement Instruments List

Tonsc	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	Keysight	N9020A	MY46471737	Dec.23, 2022	
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Mar. 15, 2023	
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec.23, 2022	
4	Signal Generator	Agilent	E8257D	MY46521908	Dec.23, 2022	
5	Power Sensor	Agilent	U2021XA	MY5365004	Mar. 15, 2023	
6	Power Sensor	Agilent	U2021XA	MY5365006	Mar. 15, 2023	
7	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Mar. 15, 2023	
8	Climate Chamber	TABAI	PR-4G	A8708055	Dec.23, 2022	
9	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec.23, 2022	
10	Climate Chamber	ESPEC	MT3065	/	Dec.23, 2022	
11	300328 v2.2.2 test system	TONSCEND	v2.6	/	/	

	Radiated emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-759	Nov. 09, 2022	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 23, 2022	
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 23, 2022	
4	Broadband Premplifier	SCHWARZBECK	BBV9743B	259	Dec. 23, 2022	
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 23, 2022	
6	3m chamber 3	YIHENG	EE106	/	Sep. 09, 2023	

		Con	ducted emission		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 23, 2022
2	LISN	R&S	ENV216	101113	Dec. 23, 2022
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 23, 2022
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 23, 2022
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 23, 2022

Note:1. The Cal. Interval was one year.

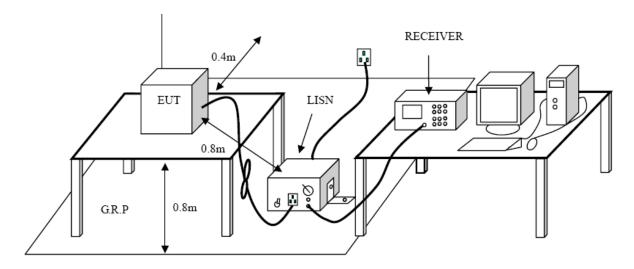
2. The cable loss has calculated in test result which connection between each test instruments.

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

3. TEST ITEM AND RESULTS

3.1. Conducted Emission

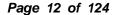

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8:

Frequency renge (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*} Decreases with the logarithm of the frequency.

Test Configuration

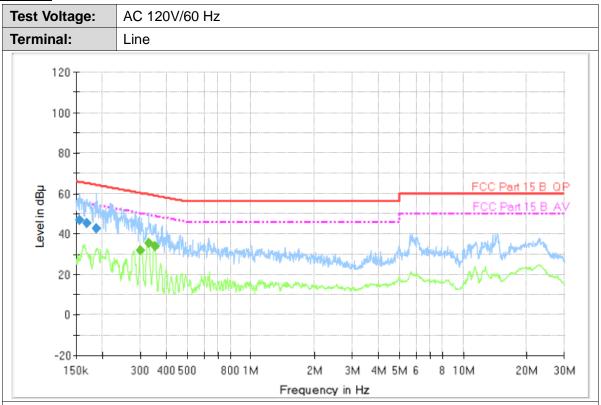


Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

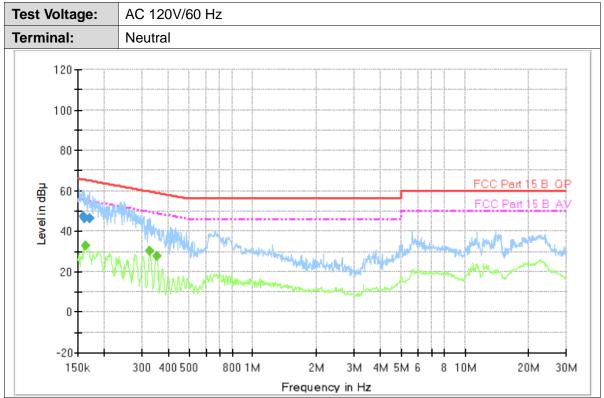


Test Mode:

Please refer to the clause 2.3.

Test Results

Final Measurement Detector 1


Frequency (MHz)	QuasiPeak (dB µ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.155490	47.1	1000.00	9.000	On	L1	9.7	18.6	65.7	
0.168410	45.4	1000.00	9.000	On	L1	9.7	19.6	65.0	·
0.186090	42.7	1000.00	9.000	On	L1	9.7	21.5	64.2	

Final Measurement Detector 2

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.301640	31.6	1000.00	9.000	On	L1	9.7	18.6	50.2	
0.328020	35.4	1000.00	9.000	On	L1	9.7	14.1	49.5	
0.351050	33.8	1000.00	9.000	On	L1	9.7	15.1	48.9	

Emission Level= Read Level+ Correct Factor

Final Measurement Detector 1

									
Frequency (MHz)	QuasiPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.157990	47.3	1000.00	9.000	On	N	10.0	18.3	65.6	
0.161180	46.2	1000.00	9.000	On	N	10.0	19.2	65.4	
0.169080	46.4	1000.00	9.000	On	N	10.0	18.6	65.0	

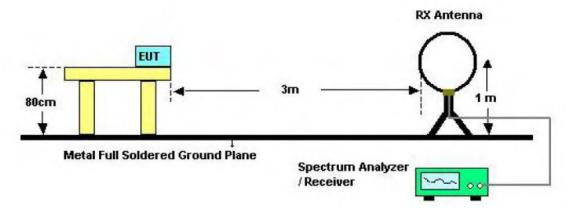
Final Measurement Detector 2

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.162470	32.6	1000.00	9.000	On	N	10.0	22.7	55.3	
0.326710	30.3	1000.00	9.000	On	N	10.0	19.2	49.5	
0.351050	27.7	1000.00	9.000	On	Ν	10.0	21.2	48.9	

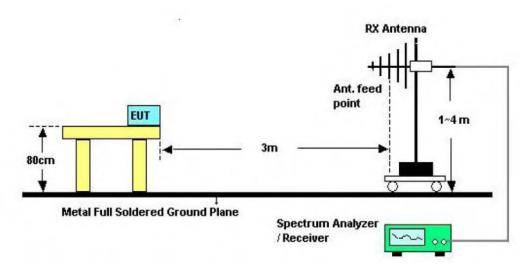
Emission Level= Read Level+ Correct Factor

3.2. Radiated Emission

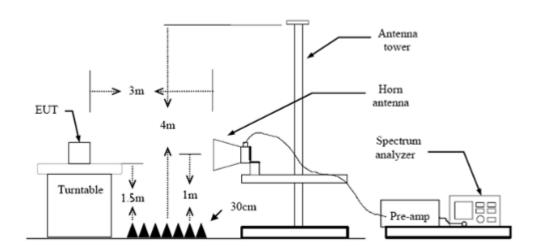
<u>Limit</u>


FCC CFR Title 47 Part 15 Subpart C Section 15.209:

Frequency	Limit (dBuV/m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
Above 1 CHz	54.00	Average
Above 1 GHz	74.00	Peak


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration

Below 30MHz Test Setup

Below1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

Test Mode

Please refer to the clause 2.3.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

EN 中国国家认证认可监督管理委员会

30MHz-1GHz

Ant.	Pol.	Hoi	orizontal									
Test	Mode:	802	02.11b Mode 2412MHz									
Rema	ark:	On	y wc	rse	ca	ase is reported						
90.0	dBuV/m											_
80												
70												-
60								FCC Part	15 RE-Class	В 30-1000М	ı	
50								Margin -6	dB			#
40					,	3.4	 pw/\		6 *			4
30		Å	Λ.	100	* W _{1,1}	Marine Market	C Y TOWN	4/4/W	yli Marque, Mary Johns	brander all	mulio	huft
20	~~~~~~	Allengarry	WW. AUN	MW ^{are} "		- WATA						-
10												_
0					+							-
-10 30.0	100	60.00				(MHz)		00.00				1000.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	64.2733	45.02	-17.00	28.02	40.00	-11.98	QP
2	100.1633	47.98	-16.37	31.61	43.50	-11.89	QP
3	137.9933	54.62	-19.90	34.72	43.50	-8.78	QP
4 *	147.3700	56.29	-19.70	36.59	43.50	-6.91	QP
5	210.7433	50.77	-15.76	35.01	43.50	-8.49	QP
6	500.1267	44.96	-9.19	35.77	46.00	-10.23	QP

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

1000.000

Ant. Pol. Vertical **Test Mode:** 802.11b Mode 2412MHz Remark: Only worse case is reported dBuV/m 90.0 70 60 FCC Part15 RE-Class B 30-1000M 50 Margin -6 dB 40 30 20 10 0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	30.0000	49.21	-16.01	33.20	40.00	-6.80	QP
2	37.7599	47.89	-15.33	32.56	40.00	-7.44	QP
3 *	63.9500	53.08	-16.93	36.15	40.00	-3.85	QP
4	102.7500	49.32	-16.39	32.93	43.50	-10.57	QP
5	147.3700	56.90	-19.70	37.20	43.50	-6.30	QP
6	171.9433	54.21	-18.51	35.70	43.50	-7.80	QP

(MHz)

300.00

Remarks:

-10 30.000

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

60.00

Adobe 1GHz

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2412MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4822.589	26.31	2.20	28.51	54.00	-25.49	AVG
2	4823.158	38.76	2.20	40.96	74.00	-33.04	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.	ANT1
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2412MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.791	26.55	2.20	28.75	54.00	-25.25	AVG
2	4825.464	38.96	2.20	41.16	74.00	-32.84	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

rizontal
B Mode 2437MHz
report for the emission which more than 10 dB below the prescribed it. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4872.736	38.46	2.30	40.76	74.00	-33.24	peak
2 *	4873.626	26.46	2.30	28.76	54.00	-25.24	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT1
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4872.919	26.59	2.30	28.89	54.00	-25.11	AVG
2	4873.224	38.51	2.30	40.81	74.00	-33.19	peak

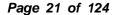
Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed
	limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4922.796	38.03	2.41	40.44	74.00	-33.56	peak
2 *	4924.053	26.49	2.41	28.90	54.00	-25.10	AVG

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT1
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4922.866	38.42	2.41	40.83	74.00	-33.17	peak
2 *	4924.597	26.45	2.41	28.86	54.00	-25.14	AVG

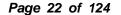
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4822.711	26.52	2.20	28.72	54.00	-25.28	AVG
2	4823.236	38.52	2.20	40.72	74.00	-33.28	peak

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4822.864	38.82	2.20	41.02	74.00	-32.98	peak
2 *	4824.263	26.51	2.20	28.71	54.00	-25.29	AVG

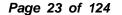
Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed
	limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4874.463	26.59	2.30	28.89	54.00	-25.11	AVG
2	4874.978	38.75	2.30	41.05	74.00	-32.95	peak

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4872.865	26.47	2.30	28.77	54.00	-25.23	AVG
2	4873.587	39.28	2.30	41.58	74.00	-32.42	peak

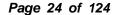
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed
	limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4922.563	38.22	2.41	40.63	74.00	-33.37	peak
2 *	4925.131	26.54	2.41	28.95	54.00	-25.05	AVG

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4922.563	38.22	2.41	40.63	74.00	-33.37	peak
2 *	4925.131	26.54	2.41	28.95	54.00	-25.05	AVG

Remarks:

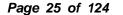
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.	ANT2
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2412MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.799	37.93	2.20	40.13	74.00	-33.87	peak
2 *	4824.985	26.47	2.20	28.67	54.00	-25.33	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value


Ant No.	ANT2
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2412MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4822.529	26.51	2.20	28.71	54.00	-25.29	AVG
2	4823.112	38.20	2.20	40.40	74.00	-33.60	peak

Remarks:

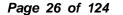
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant No.	ANT2
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed
	limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4872.927	38.82	2.30	41.12	74.00	-32.88	peak
2 *	4874.292	26.70	2.30	29.00	54.00	-25.00	AVG

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT2
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.615	38.66	2.30	40.96	74.00	-33.04	peak
2 *	4873.768	26.55	2.30	28.85	54.00	-25.15	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT2
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.037	38.51	2.41	40.92	74.00	-33.08	peak
2 *	4923.622	26.48	2.41	28.89	54.00	-25.11	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT2
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4925.134	26.44	2.41	28.85	54.00	-25.15	AVG
2	4925.328	38.47	2.41	40.88	74.00	-33.12	peak

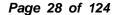
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.	ANT2
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 10 dB below the prescribed
	limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4822.799	26.41	2.20	28.61	54.00	-25.39	AVG
2	4824.456	38.63	2.20	40.83	74.00	-33.17	peak

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT2
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.730	26.59	2.20	28.79	54.00	-25.21	AVG
2	4824.680	38.43	2.20	40.63	74.00	-33.37	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT2
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4872.756	38.62	2.30	40.92	74.00	-33.08	peak
2 *	4873.411	26.74	2.30	29.04	54.00	-24.96	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT2
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.091	26.51	2.30	28.81	54.00	-25.19	AVG
2	4875.203	39.07	2.30	41.37	74.00	-32.63	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.	ANT2
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed
	limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4924.174	38.79	2.41	41.20	74.00	-32.80	peak
2 *	4925.083	26.67	2.41	29.08	54.00	-24.92	AVG

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	ANT2
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4924.858	26.56	2.41	28.97	54.00	-25.03	AVG
2	4925.424	38.08	2.41	40.49	74.00	-33.51	peak

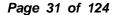
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.	MIMO
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2412MHz
Remark:	No report for the emission which more than 10 dB below the prescribed
	limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4822.507	27.07	2.20	29.27	54.00	-24.73	AVG
2	4823.346	38.47	2.20	40.67	74.00	-33.33	peak

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	MIMO
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2412MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.029	38.15	2.20	40.35	74.00	-33.65	peak
2 *	4824.449	26.60	2.20	28.80	54.00	-25.20	AVG

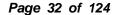
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.	MIMO
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4872.633	26.58	2.30	28.88	54.00	-25.12	AVG
2	4873.804	38.08	2.30	40.38	74.00	-33.62	peak

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	MIMO
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.392	26.54	2.30	28.84	54.00	-25.16	AVG
2	4873.481	38.38	2.30	40.68	74.00	-33.32	peak

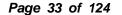
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

MIMO
Horizontal
TX N20 Mode 2462MHz
No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4925.220	26.51	2.41	28.92	54.00	-25.08	AVG
2	4925.388	38.45	2.41	40.86	74.00	-33.14	peak

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	MIMO
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.924	38.38	2.41	40.79	74.00	-33.21	peak
2 *	4924.743	26.50	2.41	28.91	54.00	-25.09	AVG

Remarks:

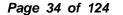
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	MIMO
Ant. Pol.	Horizontal
Test Mode:	TX N40 Mode 2422MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4842.625	38.43	2.24	40.67	74.00	-33.33	peak
2 *	4844.198	26.75	2.24	28.99	54.00	-25.01	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value


Ant No.	MIMO
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2422MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4843.652	26.91	2.24	29.15	54.00	-24.85	AVG
2	4844.949	38.57	2.24	40.81	74.00	-33.19	peak

Remarks:

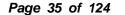
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

zontal
N40 Mode 2437MHz
report for the emission which more than 10 dB below the prescribed. Only worse case is reported
,

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4872.510	39.82	2.30	42.12	74.00	-31.88	peak
2 *	4873.724	26.92	2.30	29.22	54.00	-24.78	AVG

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	MIMO
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.405	27.01	2.30	29.31	54.00	-24.69	AVG
2	4874.607	38.97	2.30	41.27	74.00	-32.73	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.	MIMO
Ant. Pol.	Horizontal
Test Mode:	TX N40 Mode 2452MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4903.698	26.02	2.36	28.38	54.00	-25.62	AVG
2	4906.122	37.68	2.37	40.05	74.00	-33.95	peak

Remarks:

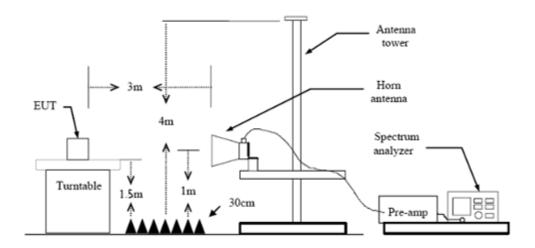
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.	MIMO
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2452MHz
Remark:	No report for the emission which more than 10 dB below the prescribed
	limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4902.682	26.08	2.36	28.44	54.00	-25.56	AVG
2	4905.121	37.50	2.36	39.86	74.00	-34.14	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value


3.3. Band Edge Emissions

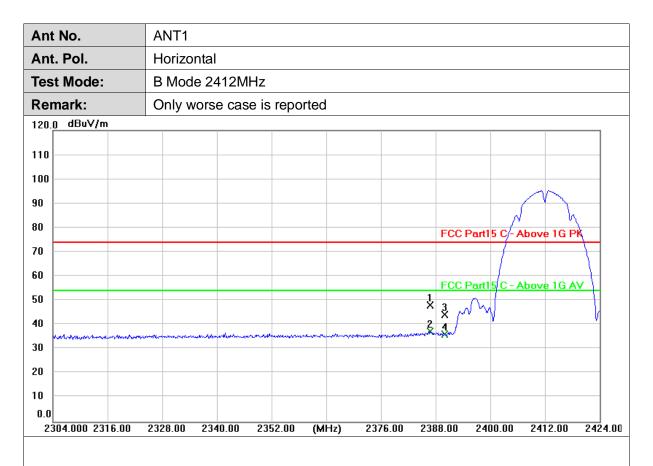
Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m)(at 3m)			
(MHz)	Peak	Average		
2310 ~2390	74	54		
2483.5 ~2500	74	54		

Test Configuration

Test Procedure


- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

Test Mode

Please refer to the clause 2.3.

Test Results

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2386.800	17.37	30.83	48.20	74.00	-25.80	peak
2 *	2386.800	6.46	30.83	37.29	54.00	-16.71	AVG
3	2390.000	13.27	30.84	44.11	74.00	-29.89	peak
4	2390.000	5.23	30.84	36.07	54.00	-17.93	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No. ANT1 Ant. Pol. Vertical **Test Mode:** B Mode 2412MHz Remark: Only worse case is reported dBuV/m 120.0 110 100 90 80 FCC Part15 C Above 1G PK 70 FCC BA(t15)C - Above 16 AV 60 50 40 30 20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2385.160	22.45	30.82	53.27	74.00	-20.73	peak
2 *	2385.160	15.16	30.82	45.98	54.00	-8.02	AVG
3	2390.000	20.70	30.84	51.54	74.00	-22.46	peak
4	2390.000	9.97	30.84	40.81	54.00	-13.19	AVG

(MHz)

2375.40

2387.40

2399.40

2411.40

2423.40

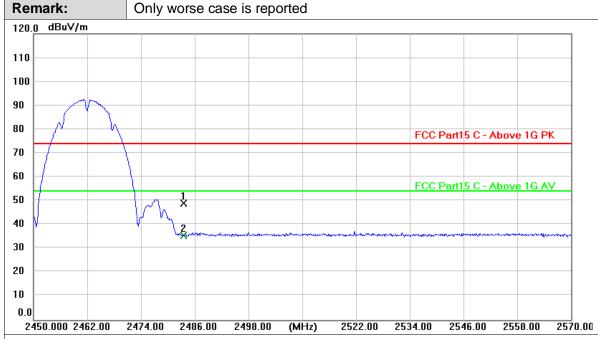
Remarks:

10 0.0

2303.400 2315.40

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value


2327.40

2339.40

2351.40

Ant No. ANT1
Ant. Pol. Horizontal
Test Mode: B Mode 2462 MHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	17.80	31.24	49.04	74.00	-24.96	peak
2 *	2483.500	4.35	31.24	35.59	54.00	-18.41	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No. ANT1

Report No.: CTC20221569E01

Ant. Pol. Vertical **Test Mode:** B Mode 2462 MHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	17.79	31.24	49.03	74.00	-24.97	peak
2	2483.500	6.71	31.24	37.95	54.00	-16.05	AVG
3	2487.280	20.42	31.26	51.68	74.00	-22.32	peak
4 *	2487.280	8.67	31.26	39.93	54.00	-14.07	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

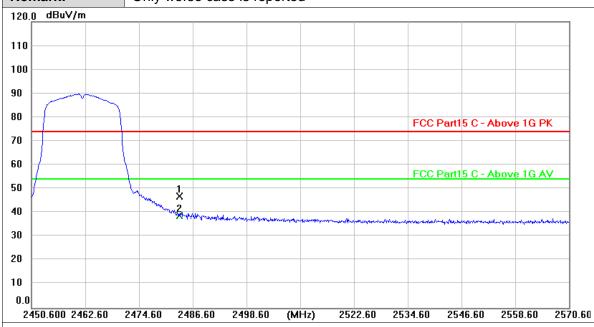
Ant	t No.	ANT1	NT1							
Ant	t. Pol.	Horizo	ntal							
Tes	t Mode:	G Mod	G Mode 2412MHz							
Rer	mark:	Only v	Only worse case is reported							
120.	0 dBuV/m									
110										
100										
90									~~	
80										
70							FCC P	art15 C - Ab	ove 1G PK	
60										1
50								<u>art15/C - At</u>	ove 1G AV	<u> </u>
40							Ž.	A COLOR		
	-and the control of t	and the same of the same	and a second	- Albania - Carana	de la company de	and an analysis of the	Annual Control of the State of			
30										
20										
10										
0.0	304.000 2316.00	2328.00	2340.00	2352.00	(MHz)	2376.00	2388.00	2400.00	2412.00	24

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	15.31	30.84	46.15	74.00	-27.85	peak
2 *	2390.000	8.29	30.84	39.13	54.00	-14.87	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant	No.		ANT1										
Ant.	Pol.		Vertic	al									
Test	t Mode:		G Mo	de 241	2MHz	<u>,</u>							
Ren	nark:		Only	worse	case i	s repo	rted						
120.0	dBuV/m											_	
110													
100													_
90											-		\dashv
80										FCC Part15	C - Above 1	IG PK	\dashv
70									1 X		/		
60										FOO DAY	C - Above 1	10.10	
50									Z	FULL Part 15	L - Above	IG AV	
40	and the second second second second	granger blandsomer	and a sales and	and the same of the same	الرحد دواديداد سيدور	***************************************		- Andrews and the second	****				
30													
20													
10													
0.0													


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	35.60	30.84	66.44	74.00	-7.56	peak
2 *	2390.000	19.00	30.84	49.84	54.00	-4.16	AVG

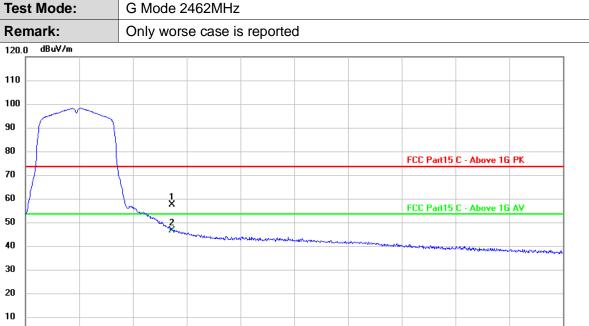
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No. ANT1 Ant. Pol. Horizontal **Test Mode:** G Mode 2462MHz Remark: Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	2483.500	15.79	31.24	47.03	74.00	-26.97	peak
2 *	2483.500	7.75	31.24	38.99	54.00	-15.01	AVG

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

 Ant No.
 ANT1

 Ant. Pol.
 Vertical

 Test Mode:
 G Mode 2462MHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	26.76	31.24	58.00	74.00	-16.00	peak
2 *	2483.500	15.94	31.24	47.18	54.00	-6.82	AVG

(MHz)

2522.60

2534.60

2546.60

2558.60

2570.60

Remarks:

0.0

2450.600 2462.60

2474.60

2486.60

2498.60

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2424.00

2412.00

Ant No. ANT2 Ant. Pol. Horizontal **Test Mode:** B Mode 2412MHz Remark: Only worse case is reported 120.0 dBuV/m 110 100 90 80 FCC Part15 C- Above 1G Pk 70 60 FCC Part15/C - Above 1G AV 50 40 30 20 10 0.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2387.080	15.41	30.83	46.24	74.00	-27.76	peak
2 *	2387.080	8.43	30.83	39.26	54.00	-14.74	AVG
3	2390.000	16.06	30.84	46.90	74.00	-27.10	peak
4	2390.000	4.76	30.84	35.60	54.00	-18.40	AVG

(MHz)

2376.00

2388.00

2400.00

Remarks:

2304.000 2316.00

2328.00

2340.00

2352.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No. ANT2 Ant. Pol. Vertical **Test Mode:** B Mode 2412MHz Remark: Only worse case is reported dBuV/m 120.0 110 100 90 80 FCC Part15 C Above 1G PK 70 FCC BA(t15)C - Above 16 AV 60 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2385.160	22.45	30.82	53.27	74.00	-20.73	peak
2 *	2385.160	15.16	30.82	45.98	54.00	-8.02	AVG
3	2390.000	20.70	30.84	51.54	74.00	-22.46	peak
4	2390.000	9.97	30.84	40.81	54.00	-13.19	AVG

(MHz)

2375.40

2387.40

2399.40

2411.40

2423.40

0.0

2303.400 2315.40

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

2327.40

2339.40

2351.40

Ant No. ANT2

Ant. Pol. Horizontal

Test Mode: B Mode 2462 MHz

Remark: Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	21.57	31.24	52.81	74.00	-21.19	peak
2	2483.500	4.64	31.24	35.88	54.00	-18.12	AVG
3	2488.280	22.71	31.26	53.97	74.00	-20.03	peak
4 *	2488.280	8.34	31.26	39.60	54.00	-14.40	AVG

Remarks:

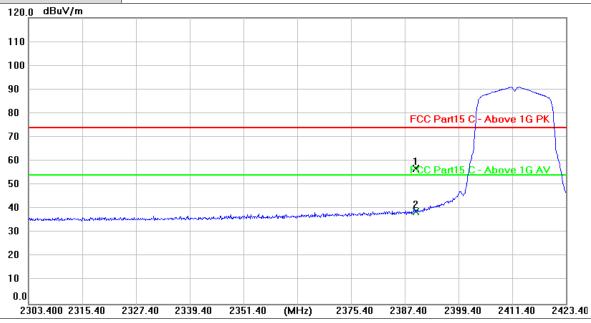
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.	ANT2	
Ant. Pol.	Vertical	
Test Mode:	B Mode 2462 MHz	
Remark:	Only worse case is reported	
120.0 dBuV/m		
110		
100		
80		FCC Part15 C - Above 1G PK
70		
60		FCC Part15 C - Above 1G AV
40	2, 2	
30	& Want Manuel Made and Assessment	mingelyne frakt hatte en gefalle branch gebruik beganne de frakt men en e
20		
10		
0.0 2451.900 2463.90	2475.90 2487.90 2499.90 (MHz) 2523.90 2538	5.90 2547.90 2559.90 2 5 7

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	21.34	31.24	52.58	74.00	-21.42	peak
2	2483.500	10.19	31.24	41.43	54.00	-12.57	AVG
3	2487.700	24.41	31.26	55.67	74.00	-18.33	peak
4 *	2487.700	17.07	31.26	48.33	54.00	-5.67	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No. ANT2

Ant. Pol. Horizontal

Test Mode: G Mode 2412MHz

Remark: Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	26.11	30.84	56.95	74.00	-17.05	peak
2 *	2390.000	8.14	30.84	38.98	54.00	-15.02	AVG

Remarks:

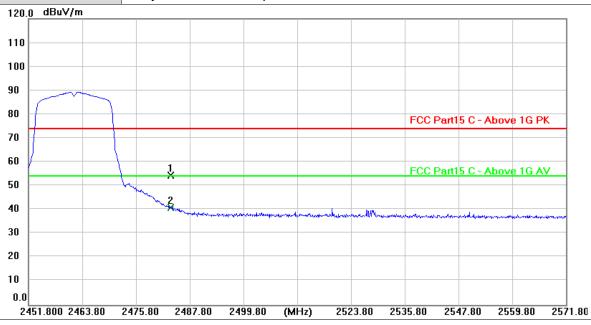
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.	ANT2
Ant. Pol.	Vertical
Test Mode:	G Mode 2412MHz
Remark:	Only worse case is reported
120.0 dBuV/m	
110	
100	
90	
80	FCC Part15 C - Above 1G PK
70	FEE PARTS C - ADOVE TO FK
60	TX FCC Part15 Q~Above 1G AV
50	TEL PARTIS ABOVE IN AV
40	many and the self-many between the self-many and
30	
20	
10	
0.0 2302.200 2314.20	2326.20 2338.20 2350.20 (MHz) 2374.20 2386.20 2398.20 2410.20 2422.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	30.49	30.84	61.33	74.00	-12.67	peak
2 *	2390.000	17.52	30.84	48.36	54.00	-5.64	AVG

Remarks:

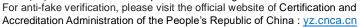
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No. ANT2

Ant. Pol. Horizontal

Test Mode: G Mode 2462MHz


Remark: Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	23.13	31.24	54.37	74.00	-19.63	peak
2 *	2483.500	9.65	31.24	40.89	54.00	-13.11	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No. ANT2 Ant. Pol. Vertical **Test Mode:** G Mode 2462MHz Remark: Only worse case is reported dBuV/m 120.0 110 100 90 80 FCC Part15 C - Above 1G PK 70 1 X 60 FCC Part15 C - Above 16 AV 50 40 30 20

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	2483.500	32.04	31.24	63.28	74.00	-10.72	peak
2 *	2483.500	18.69	31.24	49.93	54.00	-4.07	AVG

(MHz)

2523.20

2535.20

2547.20

2559.20

2571.20

Remarks:

10 0.0

2451.200 2463.20

2475.20

2487.20

2499.20

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No. MIMO Ant. Pol. Horizontal **Test Mode:** N(HT20) Mode 2412MHz Remark: Only worse case is reported 120.0 dBuV/m 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 - Above 1G AV 50 X 40 30 20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	16.35	30.84	47.19	74.00	-26.81	peak
2 *	2390.000	6.29	30.84	37.13	54.00	-16.87	AVG

(MHz)

2375.40

2387.40

2399.40

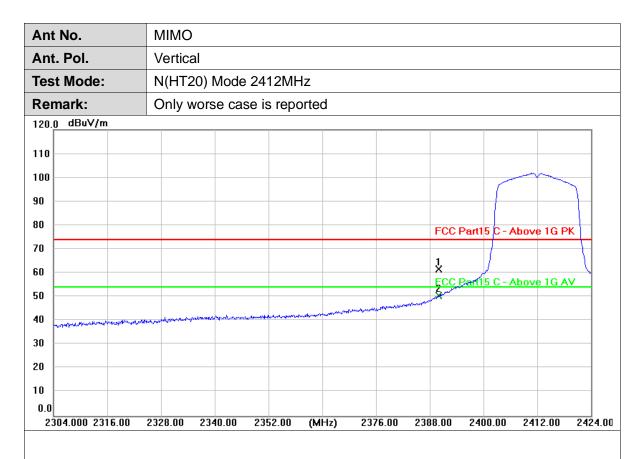
2411.40

2423.40

Remarks:

10 0.0

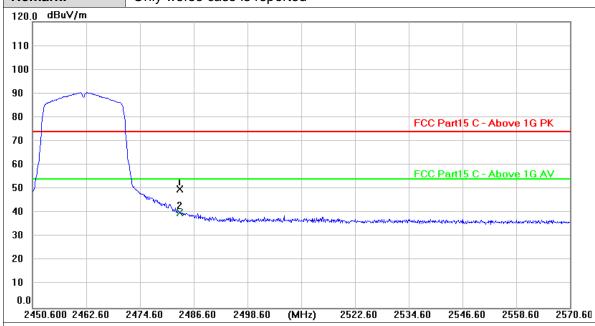
2303.400 2315.40


2327.40

2339.40

2351.40

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector
1	2390.000	30.71	30.84	61.55	74.00	-12.45	peak
2 *	2390.000	19.65	30.84	50.49	54.00	-3.51	AVG

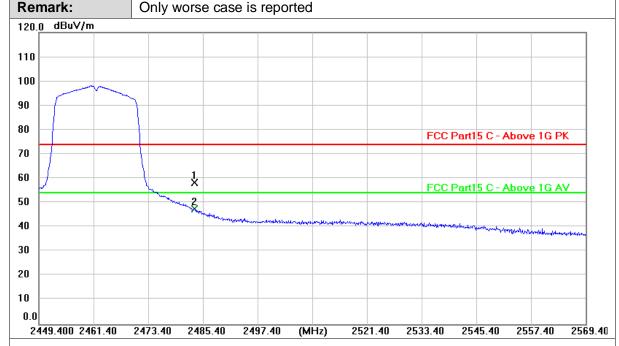
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No. MIMO Ant. Pol. Horizontal **Test Mode:** N(HT20) Mode 2462MHz Remark: Only worse case is reported

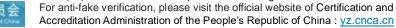
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	18.63	31.24	49.87	74.00	-24.13	peak
2 *	2483.500	8.74	31.24	39.98	54.00	-14.02	AVG

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

 Ant No.
 MIMO

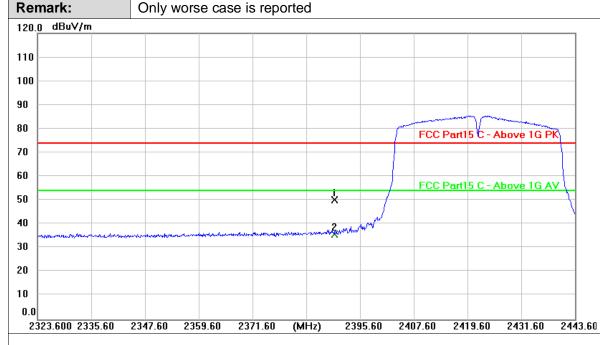
 Ant. Pol.
 Vertical


 Test Mode:
 N(HT20) Mode 2462MHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	2483.500	27.19	31.24	58.43	74.00	-15.57	peak
2 *	2483.500	16.29	31.24	47.53	54.00	-6.47	AVG

Remarks:

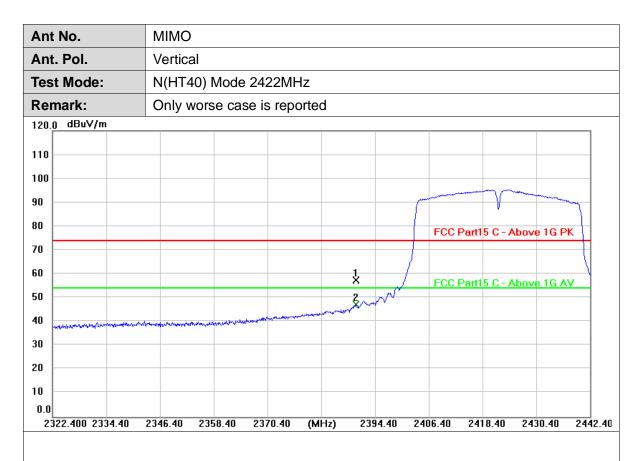
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No. MIMO
Ant. Pol. Horizontal

Test Mode: N(HT40) Mode 2422MHz

Remark: Only worse case is reported



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	19.31	30.84	50.15	74.00	-23.85	peak
2 *	2390.000	5.03	30.84	35.87	54.00	-18.13	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	26.72	30.84	57.56	74.00	-16.44	peak
2 *	2390.000	16.37	30.84	47.21	54.00	-6.79	AVG

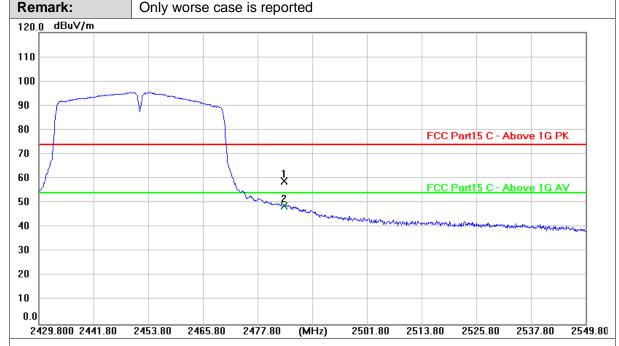
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.	MIMO						
Ant. Pol.	. Pol. Horizontal						
Test Mode:	t Mode: N(HT40) Mode 2452MHz						
Remark:	Only worse case is reported						
120.0 dBuV/m							
110							
100							
90							
80	FCC Part15 C - Above 1G PK						
70							
60	FCC Part15 C - Above 1G AV						
50	1						
40	When and a management of the second of the s						
30							
20							
10							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	17.22	31.24	48.46	74.00	-25.54	peak
2 *	2483.500	8.78	31.24	40.02	54.00	-13.98	AVG

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

 Ant No.
 MIMO

 Ant. Pol.
 Vertical

 Test Mode:
 N(HT40) Mode 2452MHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	27.68	31.24	58.92	74.00	-15.08	peak
2 *	2483.500	17.54	31.24	48.78	54.00	-5.22	AVG

Remarks:

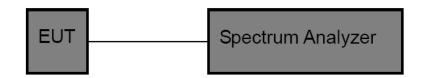
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 61 of 124

Report No.: CTC20221569E01



3.4. Band edge and Spurious Emissions (Conducted)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

Test Mode

Please refer to the clause 2.4.

Test Results

Band edge measurements

TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
	Ant1	Low	2412	8.33	-34.22	≤-21.67	PASS
11B	Ant2	Low	2412	6.52	-35.9	≤-23.48	PASS
IID	Ant1	High	2462	8.56	-43.49	≤-21.44	PASS
	Ant2	High	2462	6.18	-49.03	≤-23.82	PASS
	Ant1	Low	2412	6.17	-35.48	≤-23.83	PASS
11G	Ant2	Low	2412	4.47	-37.72	≤-25.53	PASS
116	Ant1	High	2462	5.96	-41.31	≤-24.04	PASS
	Ant2	High	2462	4.78	-47.28	≤-25.22	PASS
	Ant1	Low	2412	5.07	-37.12	≤-24.93	PASS
11N20MIMO	Ant2	Low	2412	2.20	-39.88	≤-27.8	PASS
TTINZUIVIIVIO	Ant1	High	2462	7.51	-41.16	≤-22.49	PASS
	Ant2	High	2462	3.63	-46.02	≤-26.37	PASS
	Ant1	Low	2422	4.32	-31.78	≤-25.68	PASS
11N40MIMO	Ant2	Low	2422	-2.17	-42.96	≤-22.17	PASS
TTINGUIVIIVIO	Ant1	High	2452	4.74	-38.78	≤-25.26	PASS
	Ant2	High	2452	0.63	-45.17	≤-29.37	PASS

Conducted Spurious Emission

T (3.4)	•	0, ,	FreqRange	RefLevel	Result	Limit	N
TestMode	Antenna	Channel	[Mhz]	[dBm]	[dBm]	[dBm]	Verdict
			Reference	8.23	8.23		PASS
	Ant1	2412	30~1000	8.23	-69.23	≤-21.77	PASS
_			1000~26500	8.23	-43.38	≤-21.77	PASS
			Reference	6.44	6.44		PASS
	Ant2	2412	30~1000	6.44	-68.68	≤-23.56	PASS
_			1000~26500	6.44	-45.21	≤-23.56	PASS
			Reference	7.94	7.94		PASS
	Ant1	2437	30~1000	7.94	-68.39	≤-22.06	PASS
11B			1000~26500	7.94	-46.04	≤-22.06	PASS
	4 . 10	0.407	Reference	6.29	6.29		PASS
	Ant2	2437	30~1000	6.29	-69.01	≤-23.71	PASS
-			1000~26500	6.29	-47.02	≤-23.71	PASS
	Ant1	2462	Reference	8.38	8.38 -68,22		PASS PASS
	Anti	2402	30~1000 1000~26500	8.38 8.38	-48.94	≤-21.62 ≤-21.62	PASS
-			Reference	6.05	6.05	≥-Z1.0Z 	PASS
	Ant2	2462	30~1000	6.05	-69	≤-23.95	PASS
	AIIL	2402	1000~26500	6.05	-49.44	≤-23.95	PASS
			Reference	6.45	6.45	<u></u>	PASS
	Ant1	2412	30~1000	6.45	-68.96	≤-23.55	PASS
	7 11 11 1	2112	1000~26500	6.45	-43.38	≤-23.55	PASS
-			Reference	4.90	4.90		PASS
	Ant2	2412	30~1000	4.90	-68.94	≤-25.1	PASS
			1000~26500	4.90	-50.59	≤-25.1	PASS
		2437	Reference	5.60	5.60		PASS
	Ant1		30~1000	5.60	-68.95	≤-24.4	PASS
11G			1000~26500	5.60	-48.3	≤-24.4	PASS
110		2437	Reference	4.56	4.56		PASS
	Ant2		30~1000	4.56	-68.28	≤-25.45	PASS
_			1000~26500	4.56	-50.45	≤-25.45	PASS
		2462	Reference	6.62	6.62		PASS
	Ant1		30~1000	6.62	-69.02	≤-23.38	PASS
_			1000~26500	6.62	-49.87	≤-23.38	PASS
		0.400	Reference	4.13	4.13		PASS
	Ant2	2462	30~1000	4.13	-69.05	≤-25.87	PASS
			1000~26500	4.13	-50.4	≤-25.87	PASS PASS
	Ant1	2412	Reference 30~1000	5.24 5.24	5.24 -69.2	<u></u> ≤-24.76	PASS
	Anti	2412	1000~26500	5.24	-43.43	≤-24.76 ≤-24.76	PASS
-	Ant2	2412	Reference	1.81	1.81	<u> </u>	PASS
			30~1000	1.81	-67.64	≤-28.19	PASS
			1000~26500	1.81	-49.46	≤-28.19	PASS
-			Reference	6.13	6.13		PASS
	Ant1	2437	30~1000	6.13	-68.76	≤-23.87	PASS
441100141140			1000~26500	6.13	-49.39	≤-23.87	PASS
11N20MIMO			Reference	3.29	3.29		PASS
	Ant2	2437	30~1000	3.29	-68.69	≤-26.71	PASS
			1000~26500	3.29	-50.88	≤-26.71	PASS
-			Reference	7.61	7.61		PASS
	Ant1	2462	30~1000	7.61	-68.65	≤-22.4	PASS
			1000~26500	7.61	-48.3	≤-22.4	PASS
			Reference	3.49	3.49		PASS
	Ant2	2462	30~1000	3.49	-68.47	≤-26.51	PASS
			1000~26500	3.49	-50.34	≤-26.51	PASS
			Reference	4.13	4.13		PASS
	Ant1	2422	30~1000	4.13	-68.7	≤-25.87	PASS
			1000~26500	4.13	-64.02	≤-25.87	PASS
			Reference	4.12	4.12		PASS
11N40MIMO	Ant2	2422	30~1000	4.12	-68.54	≤-25.88	PASS
			1000~26500	4.12	-50.31	≤-25.88	PASS
			Reference	4.46	4.46		PASS
	Ant1	2437	30~1000	4.46	-69.2	≤-25.54	PASS
			1000~26500	4.46	-50.31	≤-25.54	PASS

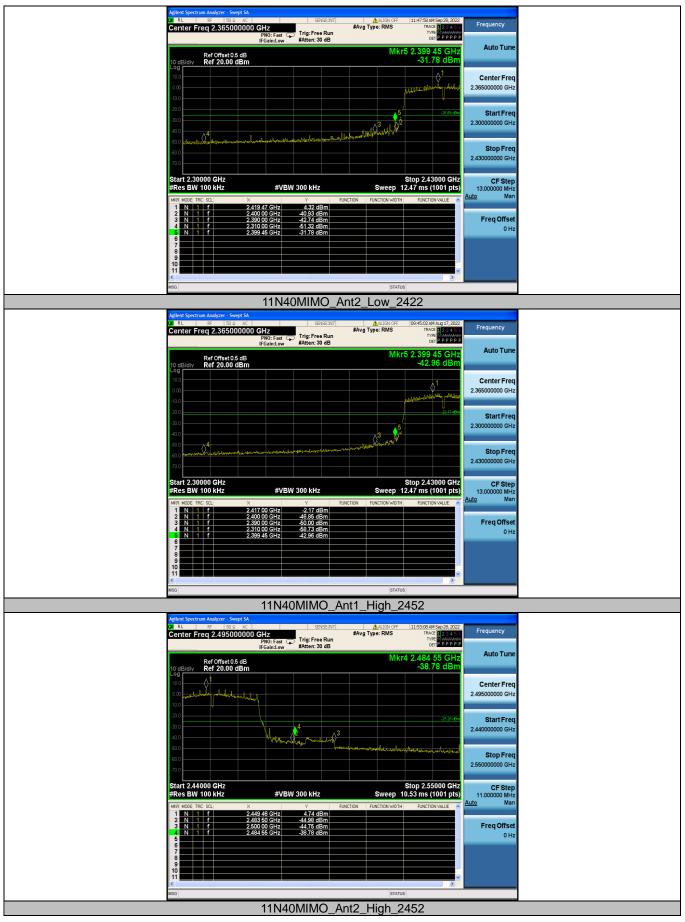
CTC Laboratories, Inc.

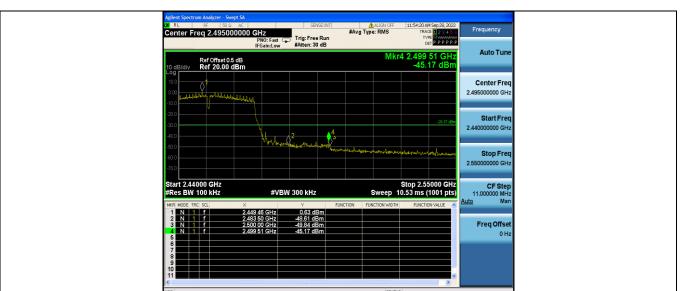

0.67 0.67 PASS Reference PASS Ant2 2437 30~1000 0.67 -69.06 ≤-29.33 1000~26500 0.67 -50.19 ≤-29.33 PASS **PASS** Reference 4.72 4.72 ≤-25.28 2452 4.72 -69.36 **PASS** Ant1 30~1000 1000~26500 **PASS** 4.72 -49.66 ≤-25.28 PASS 0.63 0.63 Reference 30~1000 -69.05 ≤-29.38 PASS Ant2 2452 0.63 1000~26500 0.63 -50.67 ≤-29.38 PASS

Report No.: CTC20221569E01

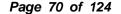
Band edge Test Graphs

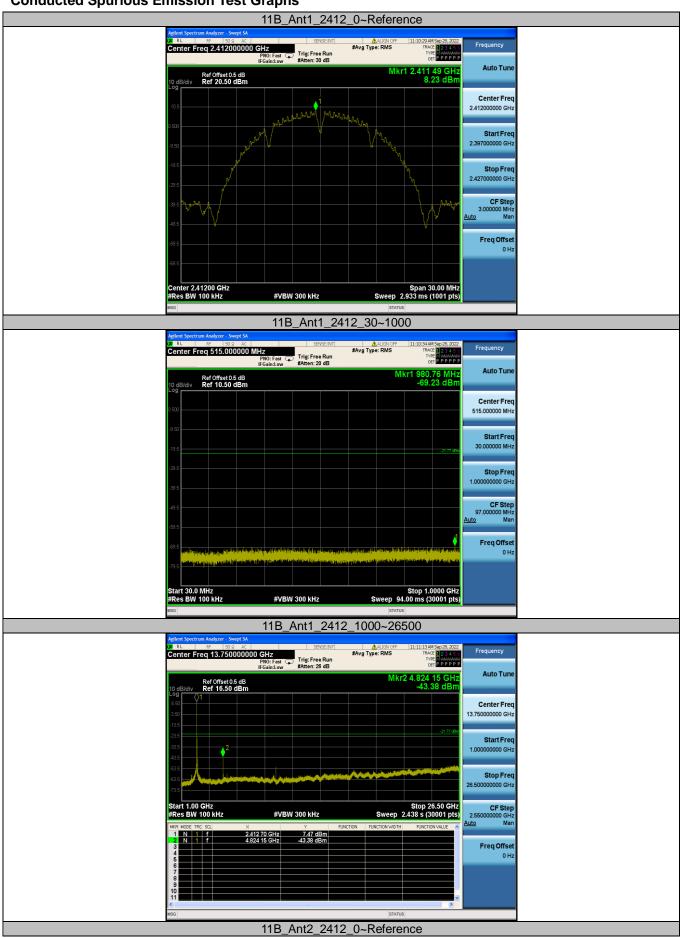




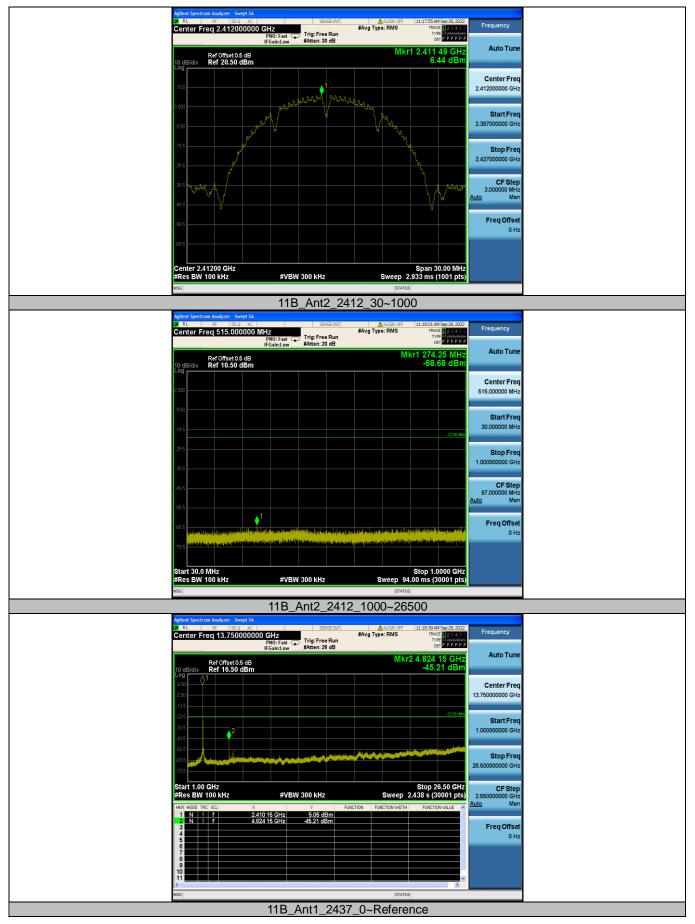


Accreditation Administration of the People's Republic of China: yz.cnca.cn


EN 中国



CTC Laboratories, Inc.



Conducted Spurious Emission Test Graphs

