FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

	Limits for General Population/Uncontrolled Exposure								
Frequency Range	Electric Field Strength	Magnetic Field Strength	Power Density	Averaging Time					
(MHz)	(V/m)	(A/m)	(mW/cm^2)	(Minutes)					
0.3-1.34	614	1.63	*(100)	30					
1.34-30	824/f	2.19/f	*(180/f ²)	30					
30-300	27.5	0.073	0.2	30					
300-1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Antenna Gain		Conducted Power		Evaluation	Power	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance(cm)	Density	(mW/cm^2)
						(mW/cm^2)	
2462	0	1	18.23	66.53	20	0.013	1

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance