FCC SAR Test Report

APPLICANT : Shanghai Longcheer 3g Technology Co.,Ltd

EQUIPMENT : LTE USB Modem

BRAND NAME : +F

MODEL NAME : FS020U

FCC ID : WLPFS020U

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

We, SPORTON INTERNATIONAL (XI'AN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (XI'AN) INC., the test report shall not be reproduced except in full.

Reviewed by: Eric Huang / Deputy Manager

Cole huans

Approved by: Jones Tsai / Manager

Report No. : FA480801

SPORTON INTERNATIONAL (XI'AN) INC.

1F, Building A3, No. 39 Chuangye Rd., Xi'an Hi-tech Zone, Shanxi Province, P. R. C.

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Sep. 19, 2014 Form version.: 140820 FCC ID: WLPFS020U Page 1 of 28

Table of Contents

1. Statement of Compliance	4
2. Administration Data	5
3. Guidance Standard	
4. Equipment Under Test (EUT)	6
4.1 General Information	
4.2 Maximum Tune-up Limit	
5. RF Exposure Limits	
5.1 Uncontrolled Environment	
5.2 Controlled Environment	
6. Specific Absorption Rate (SAR)	9
6.1 Introduction	9
6.2 SAR Definition	
7. System Description and Setup	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	
8.2 Power Reference Measurement	12
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	
9. Test Equipment List	
10. System Verification	15
10.1 Tissue Verification	15
10.2 System Performance Check Results	
11. RF Exposure Positions	17
12. Conducted RF Output Power (Unit: dBm)	
13. SAR Test Results	
13.1 Body SAR	
13.2 Repeated SAR Measurement	
14. Simultaneous Transmission Analysis	
15. Uncertainty Assessment	
16. References	28
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

Revision History

Report No. : FA480801

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA480801	Rev. 01	Initial issue of report	Sep. 19, 2014

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Sep. 19, 2014 Form version. : 140820 FCC ID: WLPFS020U Page 3 of 28

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Shanghai Longcheer 3g Technology Co.,Ltd, LTE USB Modem, FS020U** are as follows.

Report No. : FA480801

Equipment Class	Frequency Band	Operating Mode	Highest SAR Summary Body 1g SAR (W/kg) Gap(0.5cm)
	GSM850	Data	1.29
PCB	GSM1900	Data	1.32
	WCDMA Band V	Data	1.09
Date of Testing:		Se	p. 11, 2014 ~ Sep. 12, 2014

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003.

2. Administration Data

Testing Laboratory		
Test Site	SPORTON INTERNATIONAL (XI'AN) INC.	
1F, Building A3, No. 39 Chuangye Rd., Xi'an Hi-tech Zone, Shanxi Province, P. R. C.		
Test Site Location	TEL: +86-029-8860-8767	
FAX: +86-029-8860-8791		

Report No. : FA480801

Applicant Applicant		
Company Name	Shanghai Longcheer 3g Technology Co.,Ltd	
Address	No.1,Building 5, 299 Bisheng Rd, Zhangjiang Hi-Tech Park, Pudong, Shanghai, P.R. China	

Manufacturer		
Company Name	Shanghai Longcheer 3g Technology Co.,Ltd	
Address	No.1,Building 5, 299 Bisheng Rd, Zhangjiang Hi-Tech Park, Pudong, Shanghai, P.R. China	

3. Guidance Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2003
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03
- FCC KDB 865664 D02 SAR Reporting v01r01
- FCC KDB 447498 D01 General RF Exposure Guidance v05r02
- FCC KDB 447498 D02V02 SAR Measurement Procedures for USB Dongle Transmitters
- FCC KDB 941225 D01 SAR test for 3G devices v02
- FCC KDB 941225 D02 HSPA and 1x Advanced v02r02
- FCC KDB 941225 D03 SAR Test Reduction GSM GPRS EDGE v01

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791 Issued Date: Sep. 19, 2014 Form version.: 140820

FCC ID: WLPFS020U Page 5 of 28

4. Equipment Under Test (EUT)

4.1 General Information

Product Feature & Specification		
Equipment Name	LTE USB Modem	
Brand Name	+F	
Model Name	FS020U	
FCC ID	WLPFS020U	
IMEI Code	863401012096596	
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz	
Mode	•GSM/GPRS/EGPRS •RMC 12.2Kbps •HSDPA •HSUPA	
HW Version	LQTM012A_1.0	
SW Version	LQTJC05.1.0_M012	
EUT Stage	Identical Prototype	
EUT Stage	Identical Prototype	

Report No. : FA480801

Remark:

- The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. Voice call is not supported.
- 3. This device supports GRPS mode up to multi-slot class 10 and EGPRS mode up to multi-slot class 12.

4.2 Maximum Tune-up Limit

Mode	Burst average power(dBm)		
Mode	GSM 850	GSM 1900	
GPRS (GMSK, 1 Tx slot)	32.5	29.5	
GPRS (GMSK, 2 Tx slots)	29.0	26.5	
EDGE (8PSK, 1 Tx slot)	25.5	24.5	
EDGE (8PSK, 2 Tx slots)	22.5	22.5	
EDGE (8PSK, 3 Tx slots)	21.5	21.5	
EDGE (8PSK, 4 Tx slots)	20.0	20.5	

Report No. : FA480801

Mode	Average power(dBm)
Mode	WCDMA Band V
RMC 12.2Kbps	22.0
HSDPA Subtest-1	21.5
HSDPA Subtest-2	21.5
HSDPA Subtest-3	21.5
HSDPA Subtest-4	21.5
HSUPA Subtest-1	21.0
HSUPA Subtest-2	20.5
HSUPA Subtest-3	20.5
HSUPA Subtest-4	21.0
HSUPA Subtest-5	20.5

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Sep. 19, 2014 Form version. : 140820 FCC ID: WLPFS020U Page 7 of 28

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA480801

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

6. Specific Absorption Rate (SAR)

6.1 Introduction

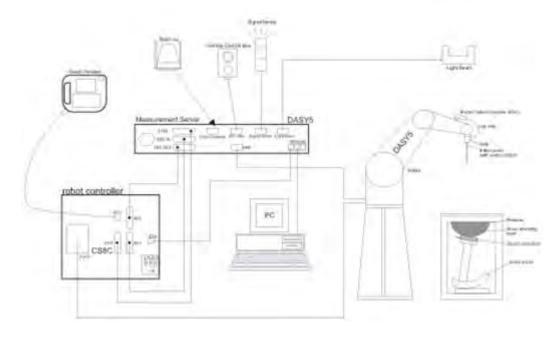
SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA480801

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$


SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA480801

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps,
- The phantom, the device holder and other accessories according to the targeted measurement.

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA480801

(b) Read the WWAN RF power level from the base station simulator.

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection at maximum RF power, in the highest power channel.
- b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA480801

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz} \le 12 \text{ mm}$ $4 - 6 \text{ GHz} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

SPORTON INTERNATIONAL (XI'AN) INC.

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No. : FA480801

Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·∆z	Zoom(n-1)
Minimum zoom scan volume	1 X V 7		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

SPORTON INTERNATIONAL (XI'AN) INC.

FCC ID: WLPFS020U Page 13 of 28 Form version.: 140820

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manufacturer	Name of Equipment	Type/Medel	Serial Number	Calib	ation	
Manuracturer	Name of Equipment	Type/Model	Serial Nulliber	Last Cal.	Due Date	
SPEAG	835MHz System Validation Kit	D835V2	4d151	Mar. 25, 2013	Mar. 23, 2015	
SPEAG	1900MHz System Validation Kit	D1900V2	5d170	Mar. 27, 2013	Mar. 25, 2015	
SPEAG	Data Acquisition Electronics	DAE4	1358	Apr. 30, 2014	Apr. 29, 2015	
SPEAG	Dosimetric E-Field Probe	ES3DV3	3227	Apr. 30, 2014	Apr. 29, 2015	
SPEAG	SAM Twin Phantom	QD 000 P40 CD	TP-1754	NCR	NCR	
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR	
Agilent	Wireless Communication Test Set	E5515C	MY52102600	Dec. 30, 2013	Dec. 29, 2014	
Agilent	ENA Series Network Analyzer	E5071C	MY46111157	Dec. 30, 2013	Dec. 29, 2014	
Agilent	Dielectric Probe Kit	85070E	MY44300751	NCR	NCR	
Anritsu	Power Meter	ML2495A	1005002	Feb. 27, 2014	Feb. 26, 2015	
Anritsu	Power Sensor	MA2411B	917070	Feb. 27, 2014	Feb. 26, 2015	
AR	Amplifier	5S1G4	342137	NCR	NCR	
R&S	Spectrum Analyzer	FSP7	101045	Dec. 30, 2013	Dec. 29, 2014	
Agilent	Dual Directional Coupler	778D	50422	No	te1	
Woken	Attenuator 1	WK0602-XX	N/A	No	te1	
PE	Attenuator 2	PE7005-10	N/A	No	te1	
PE	Attenuator 3	PE7005- 3	N/A	No	te1	
AR	Power Amplifier	5S1G4M2	0328767	Note1		
Mini-Circuits	Power Amplifier	ZVE-3W	162601250	Note1		
Mini-Circuits	Power Amplifier	ZHL-42W+	13440021344			

Report No. : FA480801

General Note:

- 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.
- 2. Referring to KDB 865664 D01v01r03, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The justification data of dipole D835V2, SN: 4d151, D1900V2, SN: 5d170 can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration.

10. System Verification

10.1 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No. : FA480801

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity	Permittivity (εr)					
(IVI⊓Z)	(70)	(70)	(70)	(70)	(70)	(70)	(σ)	(13)					
	For Body												
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2					
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3					

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
835	Body	22.7	0.974	54.204	0.97	55.20	0.41	-1.80	±5	Sep. 11, 2014
1900	Body	22.7	1.557	53.068	1.52	53.30	2.43	-0.44	±5	Sep. 12, 2014

10.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured SAR (W/kg)	Targeted SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)
Sep. 11, 2014	835	Body	250	4d151	3227	1358	2.33	9.43	9.32	-1.17
Sep. 12, 2014	1900	Body	250	5d170	3227	1358	10.80	41.20	43.2	4.85

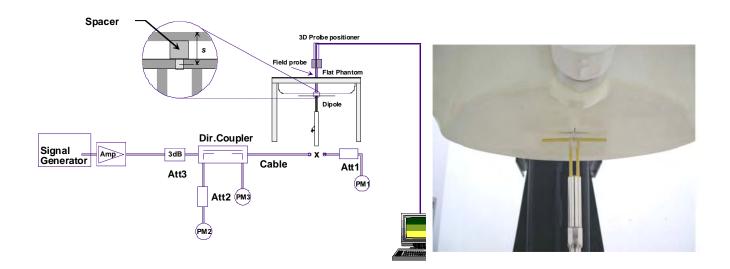
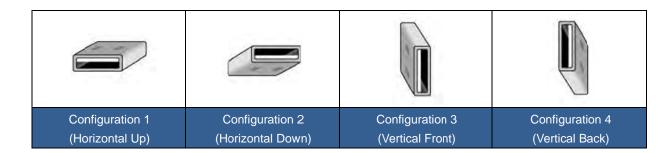


Fig 8.3.1 System Performance Check Setup


Fig 8.3.2 Setup Photo

Report No.: FA480801

11. RF Exposure Positions

This EUT was tested in five different USB configurations. They are "direct laptop plug-in for configuration 2 and 4", "USB cable plug-in for configuration 1 and 3", and "USB cable plug-in for Tip Mode (the tip of the EUT)" shown as below. Both direct laptop plug-in and USB cable plug-in test configurations are tested with 5 mm separation between the particular dongle orientation and the flat phantom. Please refer to Appendix D for the test setup photos.

Report No. : FA480801

12. Conducted RF Output Power (Unit: dBm)

<GSM Conducted Power>

1. Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.

Report No. : FA480801

2. For body SAR testing, the EUT was set in GPRS 1 Tx slot for GSM850 and GSM1900.

Band GSM850	Burst Ave	erage Pov	ver (dBm)	Tune-up	Frame-Av	erage Pov	wer (dBm)	Tune-up
TX Channel	128	189	251	Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GPRS (GMSK, 1 Tx slot) – CS1	31.88	31.89	<mark>31.91</mark>	32.5	22.88	22.89	22.91	23.5
GPRS (GMSK, 2 Tx slots) – CS1	28.88	28.79	28.68	29.0	22.88	22.79	22.68	23.0
EDGE (8PSK, 1 Tx slot)	25.48	25.46	25.30	25.5	16.48	16.46	16.30	16.5
EDGE (8PSK, 2 Tx slots)	22.00	21.95	21.84	22.5	16.00	15.95	15.84	16.5
EDGE (8PSK, 3 Tx slots)	21.05	21.04	20.91	21.5	16.79	16.78	16.65	17.24
EDGE (8PSK, 4 Tx slots)	19.50	19.46	19.48	20.0	16.50	16.46	16.48	17.0
Band GSM1900	Burst Ave	erage Pov	ver (dBm)	Tune-up	Frame-Av	erage Pov	wer (dBm)	Tune-up
TX Channel	512	661	810	Limit	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GPRS (GMSK, 1 Tx slot) – CS1	28.74	29.18	<mark>29.48</mark>	29.5	19.74	20.18	<mark>20.48</mark>	20.5
GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1	28.74 25.37	29.18 25.75	29.48 26.17	29.5 26.5	19.74 19.37	20.18 19.75	20.48 20.17	20.5 20.5
,								
GPRS (GMSK, 2 Tx slots) – CS1 EDGE (8PSK, 1 Tx slot) EDGE (8PSK, 2 Tx slots)	25.37	25.75	26.17	26.5	19.37	19.75	20.17	20.5
GPRS (GMSK, 2 Tx slots) – CS1 EDGE (8PSK, 1 Tx slot)	25.37 23.84	25.75 24.02	26.17 24.36	26.5 24.5	19.37 14.84	19.75 15.02	20.17 15.36	20.5 15.5

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

<WCDMA Conducted Power>

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 2. The procedures in KDB 941225 D01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.

Report No.: FA480801

A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)

support HSDPA in release 6 and later releases.

- vi. Select HSDPA Uplink Parameters
- vii. Set Delta ACK, Delta NACK and Delta CQI = 8
- viii. Set Ack-Nack Repetition Factor to 3
- ix. Set CQI Feedback Cycle (k) to 4 ms
- x. Set CQI Repetition Factor to 2
- xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βd	β _d (SF)	β₀/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, $\Delta_{\rm ACK}$ and $\Delta_{\rm NACK}$ = 30/15 with β_{hs} = 30/15 * β_c , and $\Delta_{\rm CQI}$ = 24/15

with β_{ls} = 24/15 * β_c . Note 3: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HSDPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that

Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15.

Setup Configuration

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No.: FA480801

- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- v. Set UE Target Power

SPORTON INTERNATIONAL (XI'AN) INC.

- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βε	βa	β _d (SF)	βc/βd	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: CM = 1 for $\beta_0/\beta_d = 12/15$, $\beta_{1s}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

< WCDMA Conducted Power>

General Note:

Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded..

Report No. : FA480801

	Band			WCDMA	Band V	
	Tx Chan	nel	4132	4182	4233	Tune-up
	Rx Chan	nel	4357	4407	4458	Limit
	Frequency	(MHz)	826.4	836.4	846.6	(dBm)
MPR (dB)	3GPP Rel 99	RMC 12.2Kbps	21.87	<mark>21.89</mark>	21.88	22.0
0	3GPP Rel 6	HSDPA Subtest-1	21.35	21.46	21.31	21.5
0	3GPP Rel 6	HSDPA Subtest-2	21.33	21.44	21.30	21.5
0.5	3GPP Rel 6	HSDPA Subtest-3	21.31	21.43	21.28	21.5
0.5	3GPP Rel 6	HSDPA Subtest-4	21.26	21.38	21.23	21.5
0	3GPP Rel 6	HSUPA Subtest-1	20.91	20.98	20.89	21.0
2	3GPP Rel 6	HSUPA Subtest-2	20.25	20.32	20.22	20.5
1	3GPP Rel 6	HSUPA Subtest-3	20.20	20.27	20.19	20.5
2	3GPP Rel 6	HSUPA Subtest-4	20.46	20.58	20.43	21.0
0	3GPP Rel 6	HSUPA Subtest-5	20.16	20.23	20.15	20.5

13. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No. : FA480801

- b. Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2. Per KDB 447498 D01v05r02, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded..

SPORTON INTERNATIONAL (XI'AN) INC.TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

13.1 **Body SAR**

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	GPRS(GMSK 1 TX slots)	Horizontal Up	0.5	251	848.8	31.91	32.50	1.146	-0.01	1.000	1.146
	GSM850	GPRS(GMSK 1 TX slots)	Horizontal Down	0.5	251	848.8	31.91	32.50	1.146	0.03	1.000	1.146
	GSM850	GPRS(GMSK 1 TX slots)	Vertical Front	0.5	251	848.8	31.91	32.50	1.146	0.03	0.518	0.593
	GSM850	GPRS(GMSK 1 TX slots)	Vertical Back	0.5	251	848.8	31.91	32.50	1.146	-0.09	0.484	0.554
	GSM850	GPRS(GMSK 1 TX slots)	Tip Mode	0.5	251	848.8	31.91	32.50	1.146	0.15	0.188	0.215
	GSM850	GPRS(GMSK 1 TX slots)	Horizontal Up	0.5	128	824.2	31.88	32.50	1.153	-0.03	1.030	1.188
	GSM850	GPRS(GMSK 1 TX slots)	Horizontal Up	0.5	189	836.4	31.89	32.50	1.151	-0.02	1.000	1.151
1	GSM850	GPRS(GMSK 1 TX slots)	Horizontal Down	0.5	128	824.2	31.88	32.50	1.153	-0.14	1.120	<mark>1.292</mark>
	GSM850	GPRS(GMSK 1 TX slots)	Horizontal Down	0.5	189	836.4	31.89	32.50	1.151	-0.09	1.050	1.208
	GSM1900	GPRS(GMSK 1 TX slots)	Horizontal Up	0.5	810	1909.8	29.48	29.50	1.005	0.08	1.160	1.165
	GSM1900	GPRS(GMSK 1 TX slots)	Horizontal Down	0.5	810	1909.8	29.48	29.50	1.005	0.01	1.200	1.206
	GSM1900	GPRS(GMSK 1 TX slots)	Vertical Front	0.5	810	1909.8	29.48	29.50	1.005	0.13	0.568	0.571
	GSM1900	GPRS(GMSK 1 TX slots)	Vertical Back	0.5	810	1909.8	29.48	29.50	1.005	0.02	0.730	0.733
	GSM1900	GPRS(GMSK 1 TX slots)	Tip Mode	0.5	810	1909.8	29.48	29.50	1.005	0.16	0.069	0.069
	GSM1900	GPRS(GMSK 1 TX slots)	Horizontal Up	0.5	512	1850.2	28.74	29.50	1.191	0.02	0.962	1.146
	GSM1900	GPRS(GMSK 1 TX slots)	Horizontal Up	0.5	661	1880	29.18	29.50	1.076	0.04	1.030	1.109
2	GSM1900	GPRS(GMSK 1 TX slots)	Horizontal Down	0.5	512	1850.2	28.74	29.50	1.191	0.02	1.110	<mark>1.322</mark>
	GSM1900	GPRS(GMSK 1 TX slots)	Horizontal Down	0.5	661	1880	29.18	29.50	1.076	0.05	1.110	1.195

Report No. : FA480801

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-U p Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measure d 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA Band V	RMC 12.2K	Horizontal Up	0.5	4182	836.4	21.89	22.00	1.026	-0.12	0.827	0.848
	WCDMA Band V	RMC 12.2K	Horizontal Down	0.5	4182	836.4	21.89	22.00	1.026	-0.03	0.947	0.971
	WCDMA Band V	RMC 12.2K	Vertical Front	0.5	4182	836.4	21.89	22.00	1.026	0.17	0.481	0.493
	WCDMA Band V	RMC 12.2K	Vertical Back	0.5	4182	836.4	21.89	22.00	1.026	0.06	0.459	0.471
	WCDMA Band V	RMC 12.2K	Tip Mode	0.5	4182	836.4	21.89	22.00	1.026	-0.08	0.147	0.151
	WCDMA Band V	RMC 12.2K	Horizontal Up	0.5	4132	826.4	21.87	22.00	1.030	0.02	0.805	0.829
	WCDMA Band V	RMC 12.2K	Horizontal Up	0.5	4233	846.6	21.88	22.00	1.028	0.02	0.771	0.793
3	WCDMA Band V	RMC 12.2K	Horizontal Down	0.5	4132	826.4	21.87	22.00	1.030	0.06	1.060	1.092
	WCDMA Band V	RMC 12.2K	Horizontal Down	0.5	4233	846.6	21.88	22.00	1.028	-0.07	0.788	0.810

13.2 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Power				Measured 1g SAR (W/kg)		Reported 1g SAR (W/kg)
1st	GSM850	GPRS(GMSK 1 TX slots)	Horizontal Down	0.5	128	824.2	31.88	32.50	1.153	-0.14	1.120	1	1.292
2nd	GSM850	GPRS(GMSK 1 TX slots)	Horizontal Down	0.5	128	824.2	31.88	32.50	1.153	0.03	1.090	1.028	1.257
1st	GSM1900	GPRS(GMSK 1 TX slots)	Horizontal Down	0.5	810	1909.8	29.48	29.50	1.005	0.01	1.200	1	1.206
2nd	GSM1900	GPRS(GMSK 1 TX slots)	Horizontal Down	0.5	810	1909.8	29.48	29.50	1.005	0.18	1.150	1.044	1.155

Report No. : FA480801

General Note:

- 1. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg
- 2. Per KDB 865664 D01v01r03, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated *measured SAR*.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

SPORTON INTERNATIONAL (XI'AN) INC.

14. Simultaneous Transmission Analysis

NO.	Simultaneous Transmission Configurations
1.	None

Report No.: FA480801

Test Engineer: Kat Yin

SPORTON INTERNATIONAL (XI'AN) INC.

15. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Report No.: FA480801

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 14.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (1g)	Standard Uncertainty (10g)			
Measurement System										
Probe Calibration	6.0	Normal	1	1	1	± 6.0 %	± 6.0 %			
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	± 1.9 %	± 1.9 %			
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	± 3.9 %	± 3.9 %			
Boundary Effects	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %			
Linearity	4.7	Rectangular	√3	1	1	± 2.7 %	± 2.7 %			
System Detection Limits	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %			
Readout Electronics	0.3	Normal	1	1	1	± 0.3 %	± 0.3 %			
Response Time	0.8	Rectangular	√3	1	1	± 0.5 %	± 0.5 %			
Integration Time	2.6	Rectangular	√3	1	1	± 1.5 %	± 1.5 %			
RF Ambient Noise	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %			
RF Ambient Reflections	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %			
Probe Positioner	0.4	Rectangular	√3	1	1	± 0.2 %	± 0.2 %			
Probe Positioning	2.9	Rectangular	√3	1	1	± 1.7 %	± 1.7 %			
Max. SAR Eval.	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %			
Test Sample Related										
Device Positioning	2.9	Normal	1	1	1	± 2.9 %	± 2.9 %			
Device Holder	3.6	Normal	1	1	1	± 3.6 %	± 3.6 %			
Power Drift	5.0	Rectangular	√3	1	1	± 2.9 %	± 2.9 %			
Phantom and Setup										
Phantom Uncertainty	4.0	Rectangular	√3	1	1	± 2.3 %	± 2.3 %			
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	± 1.8 %	± 1.2 %			
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	0.43	± 1.6 %	± 1.1 %			
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	0.49	± 1.7 %	± 1.4 %			
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	0.49	± 1.5 %	± 1.2 %			
Combined Standard Uncertainty	± 11.0 %	± 10.8 %								
Coverage Factor for 95 %	K=2									
Expanded Uncertainty	± 22.0 %	± 21.5 %								

Report No. : FA480801

Table 14.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Sep. 19, 2014 Form version. : 140820 FCC ID: WLPFS020U

16. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No. : FA480801

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014
- [6] FCC KDB 447498 D02V02 SAR Measurement Procedures for USB Dongle Transmitters , Nov, 2009.
- [7] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007
- [8] FCC KDB 941225 D02 v02r02, "SAR Guidance for HSPA, HSPA+, DC-HSDPA and 1x-Advanced", May 2013.
- [9] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008
- [10] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014.
- [11] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013.

Appendix A. Plots of System Performance Check

Report No. : FA480801

The plots are shown as follows.

SPORTON INTERNATIONAL (XI'AN) INC.

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2014/9/11

System Check Body 835MHz 140911

DUT: D835V2-SN: 4d151

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

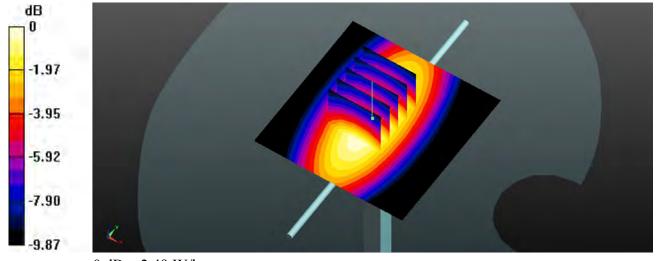
Medium: MSL_835_140911 Medium parameters used: f = 835 MHz; $\sigma = 0.974$ S/m; $\varepsilon_r = 54.204$; $\rho = 0.974$ S/m; $\varepsilon_r = 0.974$ S/m;

 1000 kg/m^3

Ambient Temperature: 23.6°C; Liquid Temperature: 22.7°C

DASY5 Configuration:

- Probe: ES3DV3 SN3227; ConvF(6.32, 6.32, 6.32); Calibrated: 2014/4/30;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2014/4/30
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)


Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.51 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 50.470 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.40 W/kg

SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.56 W/kg

Maximum value of SAR (measured) = 2.49 W/kg

0 dB = 2.49 W/kg

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2014/9/12

System Check Body 1900MHz 140912

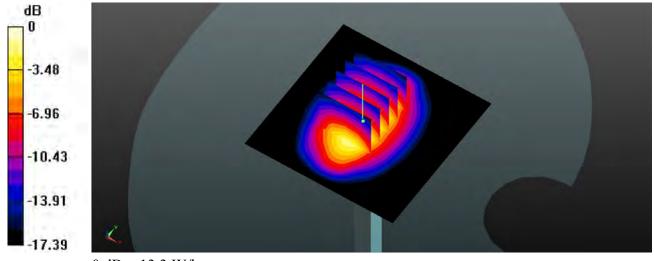
DUT: D1900V2-SN: 5d170

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900_140912 Medium parameters used: f = 1900 MHz; σ = 1.557 S/m; ϵ_r = 53.068; ρ

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.8 °C; Liquid Temperature : 22.7 °C


DASY5 Configuration:

- Probe: ES3DV3 SN3227; ConvF(4.94, 4.94, 4.94); Calibrated: 2014/4/30;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2014/4/30
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.6 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 89.451 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 10.8 W/kg; SAR(10 g) = 5.68 W/kgMaximum value of SAR (measured) = 13.3 W/kg

0 dB = 13.3 W/kg

Appendix B. Plots of High SAR Measurement

Report No. : FA480801

The plots are shown as follows.

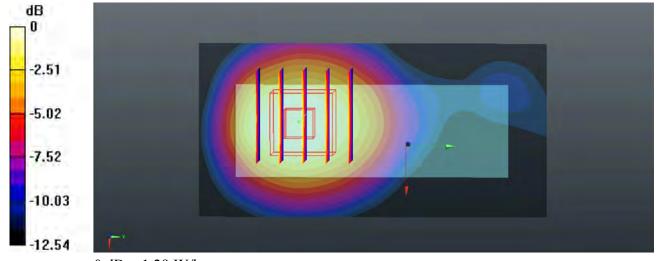
SPORTON INTERNATIONAL (XI'AN) INC.

#01 GSM850_GPRS(GMSK 1 TX slots)_Horizontal Down_0.5cm_Ch128

Communication System: GPRS (GMSK 1 Tx slot); Frequency: 824.2 MHz; Duty Cycle: 1:8.3 Medium: MSL_835_140911 Medium parameters used: f = 824.2 MHz; $\sigma = 0.964$ S/m; $\epsilon_r = 54.288$; $\rho = 1000$ kg/m³

Date: 2014/9/11

Ambient Temperature: 23.6°C; Liquid Temperature: 22.7°C


DASY5 Configuration:

- Probe: ES3DV3 SN3227; ConvF(6.32, 6.32, 6.32); Calibrated: 2014/4/30;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2014/4/30
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Ch128/Area Scan (41x81x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.40 W/kg

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.991 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 1.64 W/kg SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.714 W/kg

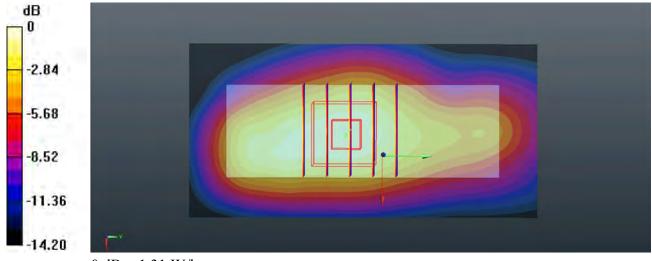
Maximum value of SAR (measured) = 1.29 W/kg

0 dB = 1.29 W/kg

#02 GSM1900_GPRS(GMSK 1 TX slots)_Horizontal Down_0.5cm_Ch512

Communication System: GPRS (GMSK 1 Tx slot); Frequency: 1850.2 MHz; Duty Cycle: 1:8.3 Medium: MSL_1900_140912 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.499$ S/m; $\epsilon_r = 53.197$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.8 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: ES3DV3 SN3227; ConvF(4.94, 4.94, 4.94); Calibrated: 2014/4/30;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2014/4/30
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Ch512/Area Scan (41x81x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.31 W/kg

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.407 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.64 W/kg SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.681 W/kg

Maximum value of SAR (measured) = 1.31 W/kg

0 dB = 1.31 W/kg

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL_835_140933 Medium parameters used: f = 826.4 MHz; $\sigma = 0.966$ S/m; $\varepsilon_r = 54.27$; $\rho = 1000 \text{ kg/m}^3$

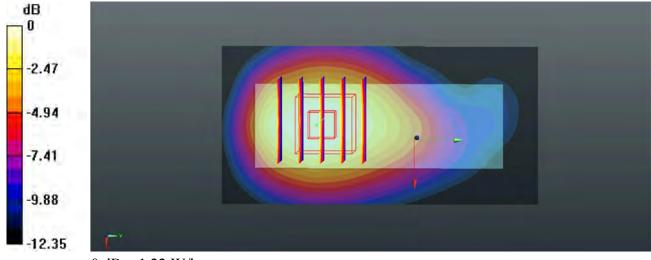
Date: 2014/9/11

Ambient Temperature: 23.6°C; Liquid Temperature: 22.7°C

DASY5 Configuration:

- Probe: ES3DV3 SN3227; ConvF(6.32, 6.32, 6.32); Calibrated: 2014/4/30;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2014/4/30
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Ch4132/Area Scan (41x81x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.26 W/kg


Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.688 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.691 W/kg

Maximum value of SAR (measured) = 1.22 W/kg

0 dB = 1.22 W/kg

Appendix C. DASY Calibration Certificate

Report No. : FA480801

The DASY calibration certificates are shown as follows.

SPORTON INTERNATIONAL (XI'AN) INC.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Servica sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Sporton-KS (Auden)

Certificate No: D835V2-4d151 Mar13

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d151

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

March 25, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	G837480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	dure13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	112

Issued: March 26, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Approved by:

Technical Manager

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.49 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.18 W/kg ± 16.5 % (k=2)

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1,02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	-	-

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.23 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7 Ω - 2.2 Ω	
Return Loss	- 31.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.1 Ω - 4.3 ΙΩ	
Return Loss	- 25.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 27, 2012	

DASY5 Validation Report for Head TSL

Date: 25.03.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d151

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_f = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;

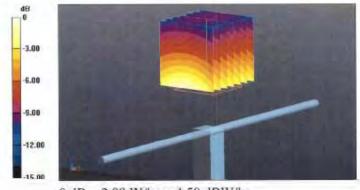
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

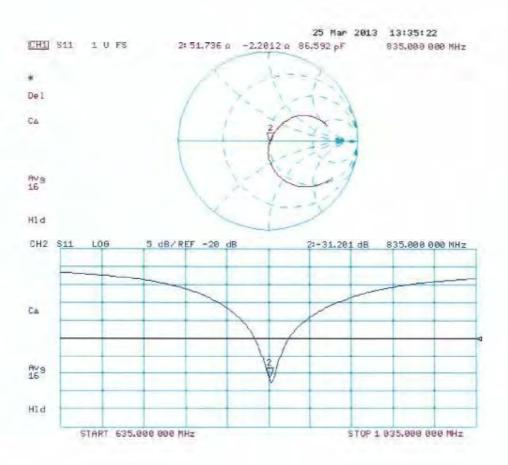
DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.742 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.74 W/kg


SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 2.88 W/kg

0 dB = 2.88 W/kg = 4.59 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 25.03.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d151

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.02 \text{ S/m}$; $\varepsilon_r = 54.1$; $\rho = 1000 \text{ kg/m}^3$

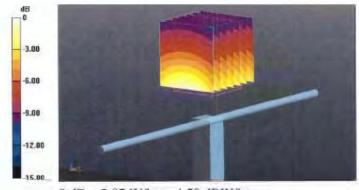
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

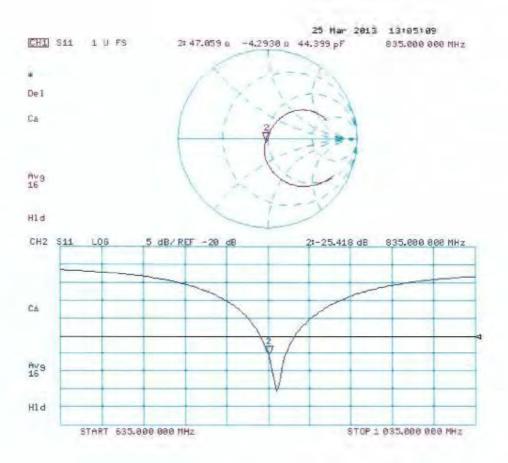
- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28,12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L.; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.816 V/m; Power Drift = 0.01 dB

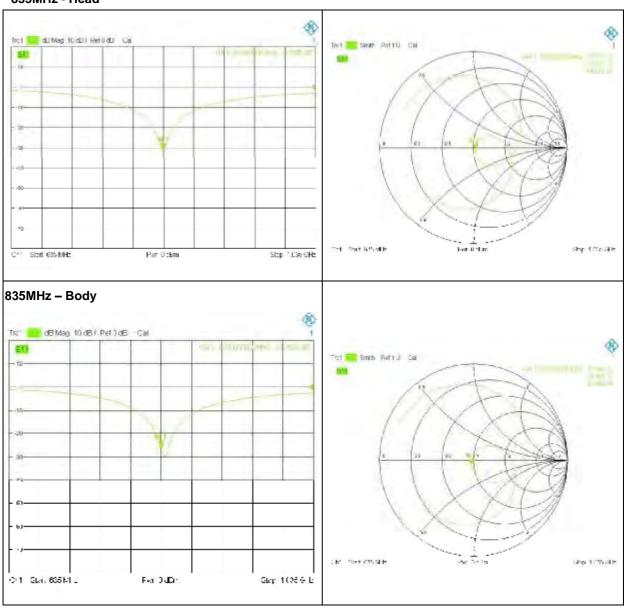
Peak SAR (extrapolated) = 3.63 W/kg


SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg

Maximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 4.58 dBW/kg

Impedance Measurement Plot for Body TSL



Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r03, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Dipole Verification Data> - D835V2, serial no. 4d151(Date of Measurement 03.24.2014) 835MHz - Head

TEL: 886-3-327-3456 FAX: 886-3-328-4978

<Justification of the extended calibration>

	D835V2 – serial no. 4d151											
TSL	TSL Head			Body								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
03.25.2013	-31.201		51.736		-2.201		-25.418		47.059		-4.2930	
03.24.2014	-30.505	2.23	51.767	0.031	-2.252	-0.051	-25.828	-1.613	47.599	0.54	-4.453	-0.16

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration.

Therefore the verification result should support extended calibration.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Sporton KS (Auden)

Certificate No: D1900V2-5d170 Mar13

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d170

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

March 27, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Heference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	1D.W	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-92 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oci-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by	Leit Klysner	Laboratory Technician	Seil flow
Approved by:	Katja Pokovic	Technical Manager	2011

Issued: March 27, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1,38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.1 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	41.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.49 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 4.7 Ω		
Return Loss	- 24.7 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω + 5.0 μΩ		
Return Loss	- 26.0 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns
	1122110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	June 08, 2012	

DASY5 Validation Report for Head TSL

Date: 27.03.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170

Communication System; CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 39.3$; $\rho = 1000$ kg/m³

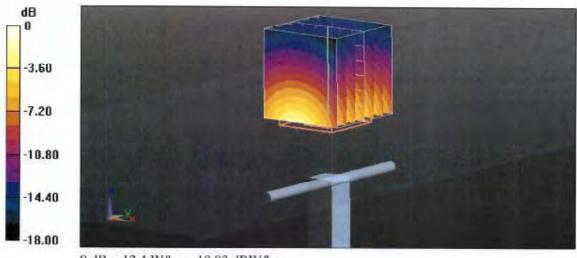
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

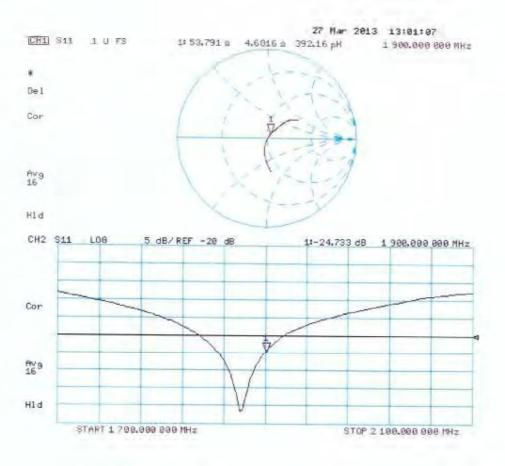
- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28,12,2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.871 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 18.2 W/kg


SAR(1 g) = 10 W/kg; SAR(10 g) = 5.25 W/kg

Maximum value of SAR (measured) = 12.4 W/kg

0 dB = 12.4 W/kg = 10.93 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 27.03.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;

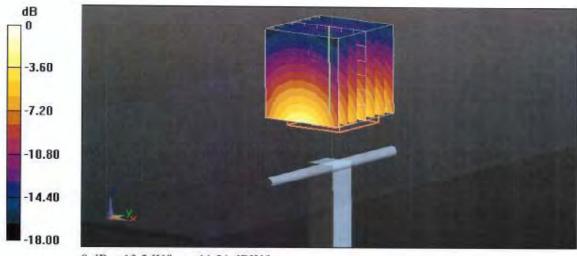
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

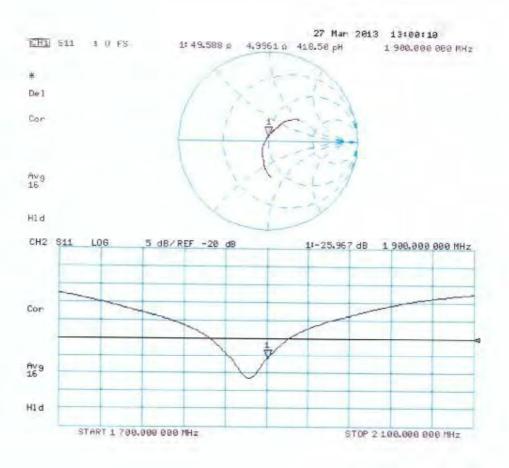
DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.871 V/m; Power Drift = 0.01 dB

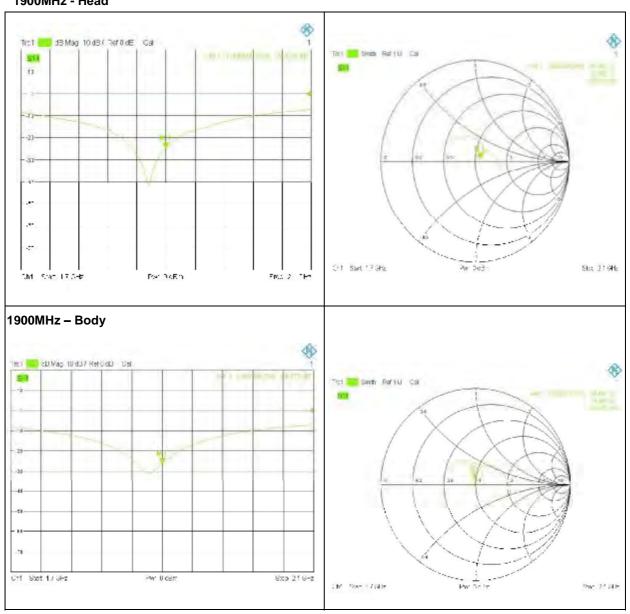
Peak SAR (extrapolated) = 18.0 W/kg


SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.49 W/kg

Maximum value of SAR (measured) = 13.2 W/kg

0 dB = 13.2 W/kg = 11.21 dBW/kg

Impedance Measurement Plot for Body TSL



Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r03, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Dipole Verification Data> - D1900V2, serial no. 5d170(Date of Measurement 03.26.2014) 1900MHz - Head

TEL: 886-3-327-3456 FAX: 886-3-328-4978

<Justification of the extended calibration>

					D1900V2 –	serial no	o. 5d170					
TSL			Head						Body			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
03.27.2013	-24.733		53.791		4.682		-25.967		49.588		4.996	
03.26.2014	-24.628	0.425	55.002	1.211	3.868	-0.814	-26.017	-0.193	49.067	-0.521	5.486	0.490

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration.

Therefore the verification result should support extended calibration.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst: Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton CN (Auden)

Accreditation No.: SCS 108

Certificate No: DAE4-1358_Apr14

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BJ - SN: 1358

Calibration procedure(s)

QA CAL-06.v26

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

April 30, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate:

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (MSTE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	01-Oct-13 (No:13976)	Oct-14
Secondary Standards	ID #	Check Date (in house)	Scheduled Gheck
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-14 (in house check)	In house check: Jan-15
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-14 (In house check)	In house check: Jan-15

Calibrated by:

Name

Function

Signature

cancrated by.

R.Mayoraz

Technician

To Muguen

Approved by:

Fin Bomholt

Deputy Technical Manager

Issued: April 30, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1358_Apr14

Page 1 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =

 $6.1 \mu V$,

1LSB = Low Range:

full range = -100...+300 mV full range = -1.....+3mV

61nV , DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	403,476 ± 0.02% (k=2)	403.505 ± 0.02% (k=2)	403.509 ± 0.02% (k=2)
Low Range	3.96075 ± 1.50% (k=2)	3.98590 ± 1.50% (k=2)	3.99195 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	136,0 ° ± 1 °
---	---------------

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200038.03	1.76	0.00
Channel X + Input	20005.43	1,37	0.01
Channel X - Input	-20004.06	1.92	-0,01
Channel Y + Input	200034,40	-1.98	-0,00
Channel Y + Input	20002.81	-0.99	-0.00
Channel Y - Input	-20005.22	0.94	-0:00
Channel Z + Input	200037.68	1.44	0.00
Channel Z + Input	20002.59	-1.11	-0.01
Channel Z - Input	-20007.07	-0.94	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.15	-0.26	-0,01
Channel X + Input	201.04	0.44	0.22
Channel X - Input	-198.78	0.53	-0.27
Channel Y + Input	2000.38	0.18	0.01
Channel Y + Input	200.06	-0.29	-0.15
Channel Y - Input	-200.10	-0.50	0.25
Channel Z + Input	2000.16	-0.17	-0.01
Channel Z + Input	198.55	-1.98	-0.99
Channel Z - Input	-201.27	-1.72	0.86
	4		

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	23.14	21.30
	- 200	-20,01	-21.49
Channel Y	200	-27.07	-27.39
	- 200	27.21	26.98
Channel Z	200	-11.40	-11.75
	- 200	9.24	9.23

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		3.10	-3,59
Channel Y	200	9.08	4	3.89
Channel Z	200	9.17	6.05	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15575	16462
Channel Y	16051	15758
Channel Z	16070	16201

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-1.05	-2.31	-0.30	0,37
Channel Y	-0.30	-1.37	0.51	0.40
Channel Z	-1.60	-2.40	-0.66	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

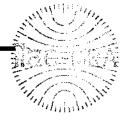
7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for Information)


Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

In Collaboration with

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com

Http://www.emcite.com

Client

Auden

Certificate No: Z14-97042

Object

ES3DV3 - SN:3227

Calibration Procedure(s)

TMC-OS-E-02-195

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

April 30, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101547	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101548	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Reference10dBAttenuator	BT0520	12-Dec-12(TMC,No.JZ12-867)	Dec-14
Reference20dBAttenuator	BT0267	12-Dec-12(TMC,No.JZ12-866)	Dec-14
Reference Probe EX3DV4	SN 3846	03-Sep-13(SPEAG,No.EX3-3846_Sep13)	Sep-14
DAE4	SN 1331	23-Jan-13 (SPEAG, DAE4-1331_Jan14)	Jan -15
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A 620105260		01-Jul-13 (TMC, No.JW13-045)	Jun-14
Network Analyzer E5071C	5071C MY46110673 15-Feb-14 (TMC, No.JZ14-781) Feb-15		Feb-15

Name

Function

Signature

Calibrated by:

Yu Zongying

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

Issued: May 4, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97042

Page 1 of 11

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China

Tel: -86-10-62304633-2079 E-mail: Info@emeite.com Fax: +86-10-62304633-2504 Http://www.emcitc.com

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

DCP diode compression point
CF crest factor (1/duty cycle) of the

CF crest factor (1/duty_cycle) of the RF signal A.B.C.D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN: 3227

Calibrated: April 30, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Fax: +86-10-62304635 Fax: +86-10-62304635 Fax: +86-10-62304635 Fax: +86-10-62304635 Fax: +86-10-6230463 Fax: +86-10-6230463 Fax: +86-10-6230463 Fax: +86-10-6230463 Fax: +86-10-6230463 Fax: +86-10-6230463 Fax: +86-10-62304 Fax: +8

DASY – Parameters of Probe: ES3DV3 - SN: 3227

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²) ^A	1.25	1.24	1.00	±10.8%
DCP(mV) ^B	104.8	105.3	103.1	

Modulation Calibration Parameters

UID	Communication		Α	В	С	D	VR	Unc ^E
	System Name	ļ	dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	278.9	±2.3%
		Υ	0.0	0.0	1.0		277.0	
		Z	0.0	0.0	1.0		244.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).
^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY – Parameters of Probe: ES3DV3 - SN: 3227

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.38	6.38	6.38	0.46	1.36	±12%
850	41.5	0.92	6.33	6.33	6.33	0.38	1,52	±12%
1450	40.5	1.20	5.92	5.92	5.92	0.28	1.75	±12%
1750	40.1	1.37	5.63	5.63	5.63	0.41	1.81	±12%
1900	40.0	1.40	5.37	5.37	5.37	0.41	1.82	±12%
2450	39.2	1.80	4.79	4.79	4.79	0.63	1.44	±12%
2600	39.0	1.96	4.61	4.61	4.61	0.71	1.34	±12%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies

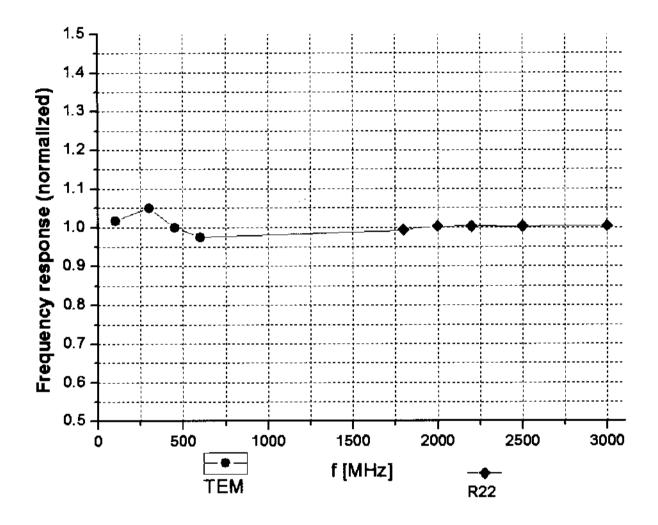
between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY - Parameters of Probe: ES3DV3 - SN: 3227

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.53	6.53	6.53	0.38	1.66	±12%
850	55.2	0.99	6.32	6.32	6.32	0.47	1.52	±12%
1450	54.0	1.30	5.43	5.43	5.43	0.43	1.60	±12%
1750	53.4	1.49	5.35	5.35	5.35	0.52	1.59	±12%
1900	53.3	1.52	4.94	4.94	4.94	0.40	2.05	±12%
2450	52.7	1.95	4.50	4.50	4.50	0.67	1.42	±12%
2600	52.5	2.16	4.26	4.26	4.26	0.74	1.35	±12%

^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

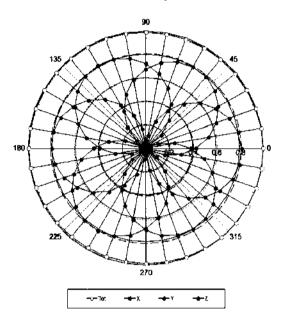

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

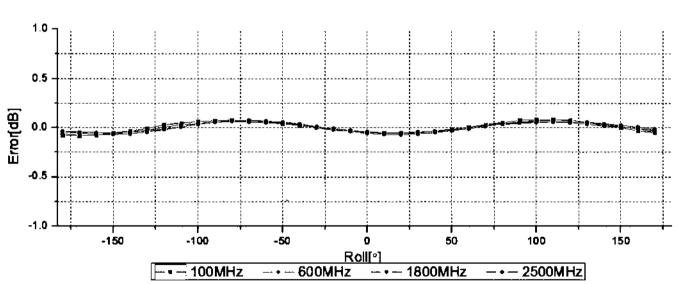
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies

between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field

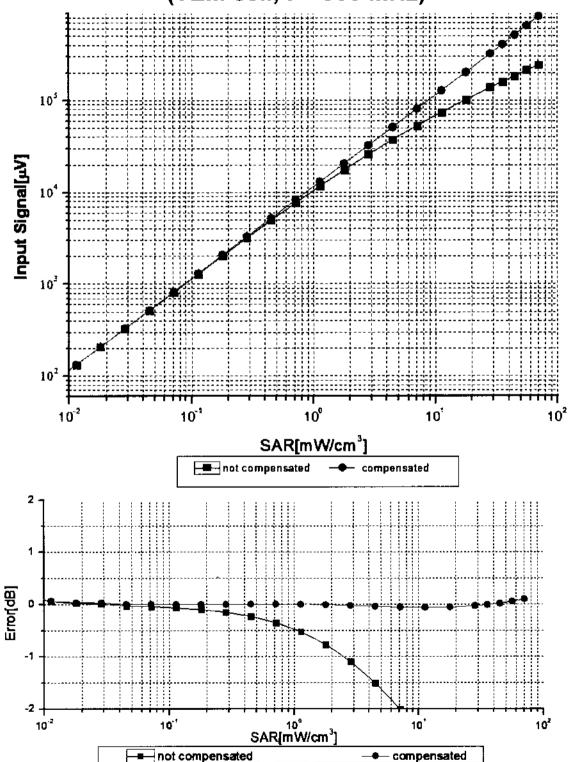
(TEM-Cell: ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ±7.5% (k=2)


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

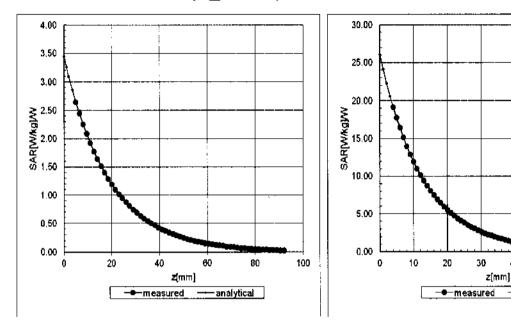


Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)

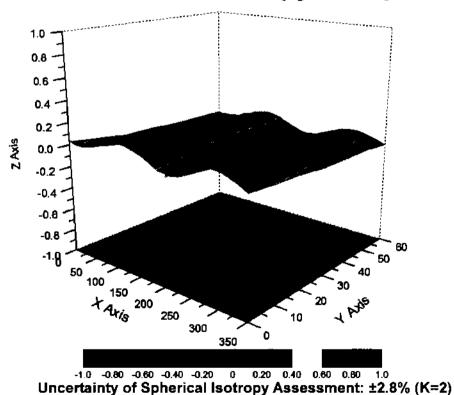
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Conversion Factor Assessment


f=850 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)


40

--- analytical

70

Deviation from Isotropy in Liquid

Certificate No: Z14-97042 Page 10 of 11

DASY - Parameters of Probe: ES3DV3 - SN: 3227

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm