APPENDIX B: BV ADT SAR MEASUREMENT SYSTEM # **APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION** **APPENDIX D: SYSTEM CERTIFICATE & CALIBRATION** D1: PHANTOM Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com ### Certificate of Conformity / First Article Inspection | Item | Oval Flat Phantom ELI 4.0 | | |--------------|---------------------------|--| | Type No | QD OVA 001 B | | | Series No | 1003 and higher | | | Manufacturer | SPEAG | | | | Zeughausstrasse 43 | | | | CH-8004 Zürich | | | | Switzerland | | #### Tests Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff. | Test | Requirement | Details | Units tested | |----------------------|---|---|---| | Dimensions | Compliant with the standard IEC 62209 – 2 [1] requirements | Dimensions of bottom for 300 MHz – 6 GHz: longitudinal = 600 mm (max. dimension) width= 400 mm (min dimension) depth= 190 mm Shape: ellipse | Prototypes,
Samples | | Material thickness | Compliant with the standard IEC 62209 – 2 [1] requirements | Bottom plate:
2.0mm +/- 0.2mm | Prototypes,
All items | | Material parameters | Dielectric parameters for required frequencies | 300 MHz – 6 GHz
Rel. permittivity = 4 +/-1,
Loss tangent ≤ 0.05 | Material
sample | | Material resistivity | The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe Technical Note for material compatibility. | DEGMBE based simulating liquids | Equivalent
phantoms,
Material
sample | | Sagging | Compliant with the requirements according to the standard. Sagging of the flat section when filled with tissue simulating liquid | < 1% typical < 0.8% if
filled with 155mm of
HSL900 and without
DUT below | Prototypes,
Sample
testing | ### **Standards** [1] IEC 62209 - 2, Draft Version 0.9, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) for ... including accessories and multiple transmitters", December 2004 Conformity Based on the sample tests above, we certify that this item is in compliance with the standard [1]. Date 07.07.2005 Schmill & Parther Engineering AG Zeughas Astrasse 43, 8004 Zurich Switzerf Phone 41 1-245-3200 Fex 4412 245 278 e Signature / Stamp info@speag.com, http://www.speag.com a D2: DOSIMETRIC E-FIELD PROBE # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Accreditation No.: SCS 108 Certificate No: EX3-3578_Jun10 # **CALIBRATION CERTIFICATE** Object **EX3DV4 - SN:3578** Calibration procedure(s) QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes Calibration date: June 22, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 1-Apr-10 (No. 217-01136) | Apr-11 | | Power sensor E4412A | MY41495277 | 1-Apr-10 (No. 217-01136) | Apr-11 | | Power sensor E4412A | MY41498087 | 1-Apr-10 (No. 217-01136) | Apr-11 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 30-Mar-10 (No. 217-01159) | Mar-11 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 30-Mar-10 (No. 217-01161) | Mar-11 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 30-Mar-10 (No. 217-01160) | Маг-11 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-09 (No. ES3-3013_Dec09) | Dec-10 | | DAE4 | SN: 660 | 20-Apr-10 (No. DAE4-660_Apr10) | Apr-11 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-09) | In house check: Oct10 | | | Name | Function | Signature | | Calibrated by: | Katja Pokovic | Technical Manager | 22 m | | | | | 166.15 | | Approved by: | Fin Bomholt | R&D Director | F. Bonfiell | | 1 | · | | | Issued: June 23, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Certificate No: EX3-3578_Jun10 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization ϕ ϕ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis ### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Page 2 of 11 # Probe EX3DV4 SN:3578 Manufactured: November 4, 2005 Last calibrated: June 26, 2009 Recalibrated: June 22, 2010 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3578_Jun10 Page 3 of 11 # DASY/EASY - Parameters of Probe: EX3DV4 SN:3578 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.55 | 0.50 | 0.56 | ± 10.1% | | DCP (mV) ^B | 92.3 | 88.3 | 86.1 | | # **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dBuV | С | VR
mV | Unc ^E
(k=2) | |-------|---------------------------|------|---|---------|-----------|------|----------|---------------------------| | 10000 | cw | 0.00 | Х | 0.00 | 0.00 | 1.00 | 300 | ± 1.5% | | | | | Υ | 0.00 | 0.00 | 1.00 | 300 | | | | | | Z | 0.00 | 0.00 | 1.00 | 300 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). ⁸ Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value. # DASY/EASY - Parameters of Probe: EX3DV4 SN:3578 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] | Validity [MHz] ^C | Permittivity | Conductivity | ConvF X | ConvF Y | ConvF Z | Alpha | Depth Unc (k=2) | |---------|-----------------------------|-------------------|----------------|---------|---------|---------|-------|-----------------| | 835 | ± 50 / ± 100 | 41.5 ± 5% | 0.90 ± 5% | 8.44 | 8.44 | 8.44 | 0.84 | 0.61 ±11.0% | | 900 | ± 50 / ± 100 | 41 .5 ± 5% | 0.97 ± 5% | 8.25 | 8.25 | 8.25 | 0.70 | 0.65 ±11.0% | | 1810 | ± 50 / ± 100 | 40.0 ± 5% | 1.40 ± 5% | 7.11 | 7.11 | 7.11 | 0.85 | 0.58 ±11.0% | | 1900 | ± 50 / ± 100 | 40.0 ± 5% | 1.40 ± 5% | 7.05 | 7.05 | 7.05 | 0.79 | 0.60 ±11.0% | | 2300 | ± 50 / ± 100 | 39.5 ± 5% | 1.67 ± 5% | 6.78 | 6.78 | 6.78 | 0.74 | 0.59 ±11.0% | | 2450 | ± 50 / ± 100 | 39.2 ± 5% | 1.80 ± 5% | 6.38 | 6.38 | 6.38 | 0.46 | 0.75 ±11.0% | | 2600 | ± 50 / ± 100 | 39.0 ± 5% | 1.96 ± 5% | 6.41 | 6.41 | 6.41 | 0.40 | 0.85 ± 11.0% | | 3500 | ± 50 / ± 100 | $37.9 \pm 5\%$ | 2.91 ± 5% | 6.31 | 6.31 | 6.31 | 0.40 | 1.02 ± 13.1% | | 5200 | ± 50 / ± 100 | 36.0 ± 5% | 4.66 ± 5% | 4.18 | 4.18 | 4.18 | 0.45 | 1.80 ± 13.1% | | 5300 | ± 50 / ± 100 | 35.9 ± 5% | $4.76 \pm 5\%$ | 4.01 | 4.01 | 4.01 | 0.45 | 1.80 ± 13.1% | | 5500 | ± 50 / ± 100 | 35.6 ± 5% | 4.96 ± 5% | 3.90 | 3.90 | 3.90 | 0.50 | 1.80 ± 13.1% | | 5600 | ± 50 / ± 100 | 35.5 ± 5% | 5.07 ± 5% | 3.83 | 3.83 | 3.83 | 0.55 | 1.80 ± 13.1% | | 5800 | ± 50 / ± 100 | 35.3 ± 5% | 5.27 ± 5% | 3.72 | 3.72 | 3.72 | 0.50 | 1.80 ± 13.1% | ^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. # DASY/EASY - Parameters of Probe: EX3DV4 SN:3578 # Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] | Validity [MHz] ^C | Permittivity | Conductivity | ConvF X | ConvF Y | ConvF Z | Alpha | Depth Unc (k=2) | |---------|-----------------------------|--------------|--------------|---------|---------|---------|-------|-----------------| | 835 | ± 50 / ± 100 | 55.2 ± 5% | 0.97 ± 5% | 8.55 | 8.55 | 8.55 | 0.89 | 0.64 ± 11.0% | | 900 | ± 50 / ± 100 | 55.0 ± 5% | 1.05 ± 5% | 8.39 | 8.39 | 8.39 | 0.85 | 0.65 ± 11.0% | | 1810 | ± 50 / ± 100 | 53.3 ± 5% | 1.52 ± 5% | 6.81 | 6.81 | 6.81 | 0.81 | 0.64 ± 11.0% | | 1900 | ± 50 / ± 100 | 53.3 ± 5% | 1.52 ± 5% | 6.70 | 6.70 | 6.70 | 0.76 | 0.63 ± 11.0% | | 2300 | ± 50 / ± 100 | 52.8 ± 5% | 1.85 ± 5% | 6.67 | 6.67 | 6.67 | 0.34 | 0.92 ± 11.0% | | 2450 | ± 50 / ± 100 | 52.7 ± 5% | 1.95 ± 5% | 6.51 | 6.51 | 6.51 | 0.62 | 0.67 ± 11.0% | | 2600 | ± 50 / ± 100 | 52.5 ± 5% | 2.16 ± 5% | 6.53 | 6.53 | 6.53 | 0.43 | 0.82 ± 11.0% | | 3500 | ± 50 / ± 100 | 51.3 ± 5% | 3.31 ± 5% | 5.59 | 5.59 | 5.59 | 0.37 | 1.26 ± 13.1% | | 5200 | ± 50 / ± 100 | 49.0 ± 5% | 5.30 ± 5% | 3.59 | 3.59 | 3.59 | 0.63 | 1.95 ± 13.1% | | 5300 | ± 50 / ± 100 | 48.5 ± 5% | 5.42 ± 5% | 3.39 | 3.39 | 3.39 | 0.63 | 1.95 ± 13.1% | | 5500 | ± 50 / ± 100 | 48.6 ± 5% | 5.65 ± 5% | 3.32 | 3.32 | 3.32 | 0.63 | 1.95 ± 13.1% | | 5600 | ± 50 / ± 100 | 48.5 ± 5% | 5.77 ± 5% | 3.09 | 3.09 | 3.09 | 0.65 | 1.95 ± 13.1% | | 5800 | ± 50 / ± 100 | 48.2 ± 5% | 6.00 ± 5% | 3.29 | 3.29 | 3.29 | 0.65 | 1.95 ± 13.1% | ^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** # **Deviation from Isotropy in HSL** Error (ϕ , ϑ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) # **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|----------------| | Connector Angle (°) | Not applicable | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | Certificate No: EX3-3578_Jun10 Page 11 of 11 D3: DAE Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com # IMPORTANT NOTICE ### **USAGE OF THE DAE 3** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE3 unit is connected to a fragile 3-pin battery connector. Customer is responsible to apply outmost caution not to bend or damage the connector when changing batteries. **Shipping of the DAE**: Before shipping the DAE to SPEAG for calibration the customer shall remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, Customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. **Repair**: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### **Important Note:** Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering # **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | Client BV-ADT (Auder |) | | Certificate No: DAE3-5/9_5ep10 | |--|-------------------------------------|---------------------------------|---| | CALIBRATION C | ERTIFICATE | | | | Object | DAE3 - SD 000 D | 03 AA - SN: 579 | | | Calibration procedure(s) | QA CAL-06.v22
Calibration proced | dure for the data acqui | isition electronics (DAE) | | Calibration date: | September 20, 20 | 110 | | | 100 CO | | | ne physical units of measurements (SI). wing pages and are part of the certificate. | | All calibrations have been conducted | ed in the closed laboratory | facility: environment temperate | ture (22 ± 3)°C and humidity < 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Keithley Multimeter Type 2001 | SN: 0810278 | 1-Oct-09 (No: 9055) | Oct-10 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Calibrator Box V1.1 | SE UMS 006 AB 1004 | 07-Jun-10 (in house check) | In house check: Jun-11 | | Calibrated by: | Name
Dominique Steffen | Function
Technician | Signature | | Approved by | Sia Boarball | | | | Approved by: | Fin Bomholt | R&D Director | i V Blewer | Issued: September 20, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### **Glossary** DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE3-579 Sep10 # **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = full range = -100...+300 mV Low Range: 1LSB = 6.1μV , 61nV , full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.327 ± 0.1% (k=2) | 404.379 ± 0.1% (k=2) | 404.160 ± 0.1% (k=2) | | Low Range | 3.98675 ± 0.7% (k=2) | 3.99301 ± 0.7% (k=2) | 3.94834 ± 0.7% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 358.0 ° ± 1 ° | |---|---------------| | | | # **Appendix** 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 200003.9 | 0.96 | 0.00 | | Channel X | + Input | 20003.19 | 3.09 | 0.02 | | Channel X | - Input | -19994.55 | 4.75 | -0.02 | | Channel Y | + Input | 199992.4 | -0.09 | -0.00 | | Channel Y | + Input | 19999.51 | 0.41 | 0.00 | | Channel Y | - Input | -19997.22 | 3.18 | -0.02 | | Channel Z | + Input | 200002.0 | 0.91 | 0.00 | | Channel Z | + Input | 20001.93 | 2.03 | 0.01 | | Channel Z | - Input | -19997.58 | 2.82 | -0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2000.0 | 0.02 | 0.00 | | Channel X | + Input | 199.82 | 0.12 | 0.06 | | Channel X | - Input | -200.46 | -0.56 | 0.28 | | Channel Y | + Input | 2000.3 | 0.47 | 0.02 | | Channel Y | + Input | 199.12 | -0.78 | -0.39 | | Channel Y | - Input | -201.36 | -1.16 | 0.58 | | Channel Z | + Input | 1999.9 | -0.07 | -0.00 | | Channel Z | + Input | 199.18 | -0.72 | -0.36 | | Channel Z | - Input | -201.47 | -1.47 | 0.73 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 7.07 | 5.75 | | | - 200 | -4.60 | -6.25 | | Channel Y | 200 | 9.48 | 9.62 | | | - 200 | -10.39 | -10.96 | | Channel Z | 200 | 8.79 | 8.42 | | | - 200 | -9.64 | -9.80 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 0.03 | 0.35 | | Channel Y | 200 | 1.14 | - | 2.31 | | Channel Z | 200 | 2.01 | 0.80 | _ | # 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16343 | 16314 | | Channel Y | 16194 | 16427 | | Channel Z | 15816 | 16265 | ### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | -0.70 | -1.94 | 0.80 | 0.49 | | Channel Y | -1.55 | -2.12 | -0.66 | 0.27 | | Channel Z | 0.57 | -0.11 | 5.61 | 0.62 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 |