

FCC Test Report

Equipment	:	Tablet PC
Brand Name	:	ECS ELITEGROUP
Model No.	:	TA80CA1, TA80CA2, TA80CA5, TA80CAx (x=0~9, A~Z or blank or "-")
FCC ID	:	WL6-TABC8CA1
Standard	:	47 CFR FCC Part 15.247
Operating Band	:	2400 MHz – 2483.5 MHz
Equipment Class	:	DTS
Applicant	:	ELITEGROUP COMPUTER SYSTEM CO., LTD No.239, Sec. 2, Ti Ding Blvd., Taipei, Taiwan
Manufacturer	:	Golden Elite Technology (SHENZHEN) Co., Ltd. No.1, Nan-Huan Rd., ShaJing, BaoAn, Shen zhen, China
WiFi/BT Module	:	Broadcom / BCM4330

The product sample received on Dec. 09, 2013 and completely tested on Dec. 17, 2013. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Assistant Manager 1 avne Hsu

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories	7
1.3	Support Equipment	7
1.4	Testing Applied Standards	7
1.5	Testing Location Information	7
1.6	Measurement Uncertainty	3
2	TEST CONFIGURATION OF EUT	•
2.1	The Worst Case Modulation Configuration	9
2.2	The Worst Case Power Setting Parameter	9
2.3	The Worst Case Measurement Configuration10)
2.4	Test Setup Diagram1	1
3	TRANSMITTER TEST RESULT	3
3.1	AC Power-line Conducted Emissions	3
3.2	6dB Bandwidth16	3
3.3	RF Output Power	3
3.4	Power Spectral Density	2
3.5	Transmitter Bandedge Emissions	1
3.6	Transmitter Unwanted Emissions	7
4	TEST EQUIPMENT AND CALIBRATION DATA)

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.1863950MHz 49.92 (Margin 14.28dB) - QP 39.34 (Margin 14.86dB) - AV	FCC 15.207	Complied		
3.2	15.247(a)	Bandwidth	6dB Bandwidth Unit [MHz]: 6.57	≥500kHz	Complied		
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]:18.80	Power [dBm]:30	Complied		
3.4	15.247(d)	Power Spectral Density	PSD [dBm/100kHz]:-7.90	PSD [dBm/3kHz]:8	Complied		
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2510.70MHz: 29.71dB Restricted Bands [dBuV/m at 3m]: 2390.00MHz 69.54 (Margin 4.46dB) - PK 49.39 (Margin 4.61dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied		
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	[dBuV/m at 3m]: 4874.000MHz 55.87 (Margin 18.13dB) - PK 51.96 (Margin 2.04dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied		

Revision History

Report No.	Version	Description	Issued Date
FR3D0603AC	Rev. 01	Initial issue of report	Dec. 26, 2013

1 General Description

1.1 Information

1.1.1 RF General Information

	RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (Ν _{TX})	RF Output Power (dBm)	Co-location	
2400-2483.5	b	2412-2462	1-11 [11]	1	18.80	N/A	
2400-2483.5	g	2412-2462	1-11 [11]	1	16.25	N/A	
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	1	16.19	N/A	

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

1.1.2 Antenna Information

	Antenna Category				
\square	Integral antenna (antenna permanently attached)				
	\boxtimes	Temporary RF connector provided			
		No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.			

	Antenna General Information				
No.	Ant. Cat.	Ant. Type	Gain _(dBi)		
1	Integral	PIFA	3.10		

1.1.3 Type of EUT

	Identify EUT				
EUT Serial Number N/A		N/A			
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype			
	Type of EUT				
\square	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle				
Operated normally mode for worst duty cycle				
Operated test mode for worst duty cycle				
Test Signal Duty Cycle (x)Power Duty Factor[dB] - (10 log 1/x)				
🖾 100% - IEEE 802.11b	0			
⊠ 100% - IEEE 802.11g	0			
⊠ 100% - IEEE 802.11n (HT20)	0			

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC	System
Type of DC Source	Internal DC supply	External DC adapter	Battery

1.2 Accessories

Brand Name Chicony Model Name W12-010N3F	Accessories Information					
AC Adeptor Dialid Name Chicony Model Name W12-010N3F						
AC Adapter Power Rating I/P: 100-240V~ 50/60Hz 0.3A ; O/P: 5V2A						

Reminder: Regarding to more detail and other information, please refer to user manual.

1.3 Support Equipment

	Support Equipment						
No.	Equipment	Brand Name	Model Name	FCC ID	Test Condition		
1	Notebook	DELL	PP25L	DoC	AC Conduction		
2	Notebook	DELL	E5530	DoC	Radiated Emission		

1.4 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 662911

1.5 Testing Location Information

	Testing Location							
\square	HWA YA	ADD	:	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.				
	TEL : 886-3-327-3456 FAX : 886-3-327-0973							
	Test Cond	ition		Test Site No.	Test Engineer	Test Environment		
	AC Conduction			CO04-HY	Zeus	24°C / 51%		
	RF Conducted			TH01-HY	TH01-HY Ian			
I	Radiated Err	nission		03CH03-HY	Leo	26.2°C / 53%		

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Ν	leasurement Uncertainty	
Test Item		Uncertainty
AC power-line conducted emissions		±2.26 dB
Emission bandwidth, 6dB bandwidth	±1.42 %	
RF output power, conducted		±0.63 dB
Power density, conducted		±0.81 dB
Unwanted emissions, conducted	9 – 150 kHz	±0.38 dB
	0.15 – 30 MHz	±0.42 dB
	30 – 1000 MHz	±0.51 dB
	1 – 18 GHz	±0.67 dB
	18 – 40 GHz	±0.83 dB
	40 – 200 GHz	N/A
All emissions, radiated	9 – 150 kHz	±2.49 dB
	0.15 – 30 MHz	±2.28 dB
	30 – 1000 MHz	±2.56 dB
	1 – 18 GHz	±3.59 dB
	18 – 40 GHz	±3.82 dB
	40 – 200 GHz	N/A
Temperature		±0.8 °C
Humidity		±3 %
DC and low frequency voltages		±3 %
Time		±1.42 %
Duty Cycle		±1.42 %

2 Test Configuration of EUT

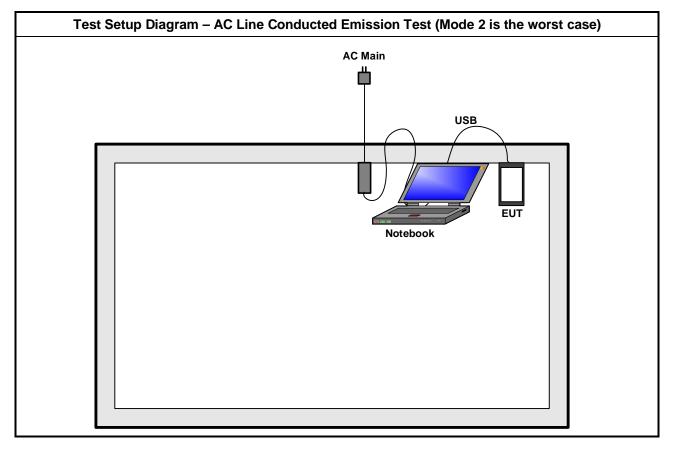
2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing						
Modulation Mode	Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS			
11b,1-11Mbps	1	1-11 Mbps	1 Mbps			
11g,6-54Mbps	1	6-54 Mbps	6 Mbps			
HT20,M0-7	1	M0-7	MCS 0			

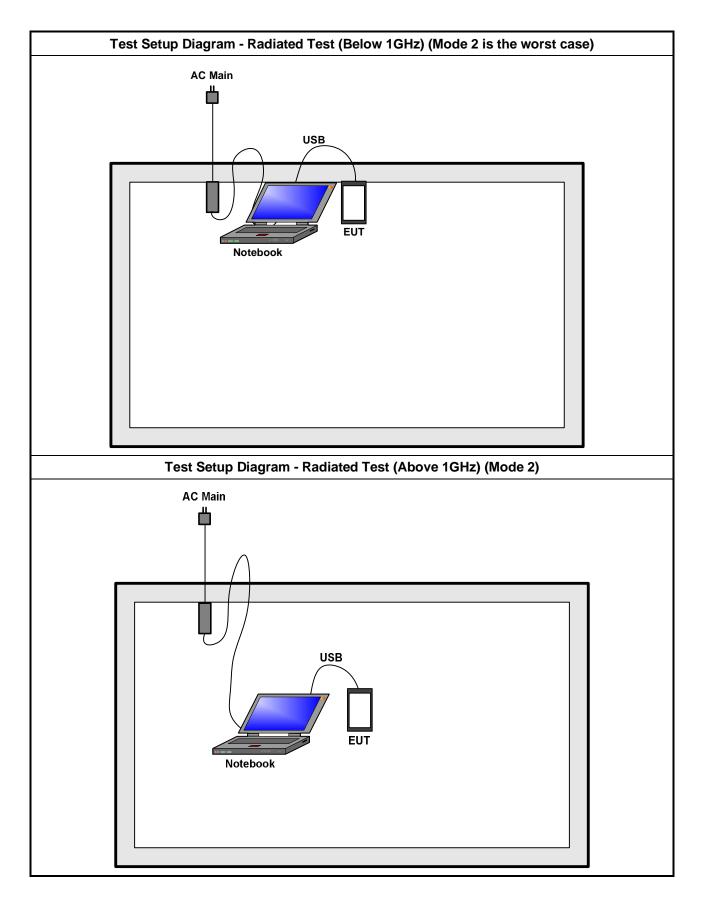
2.2 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (2400-2483.5MHz band)					
Test Software Version Dos					
			Test Frequency (MHz)		
Modulation Mode	N _{TX}	NCB: 20MHz			
		2412 2437	2437	2462	
11b,1-11Mbps	1	16	16	16	
11g,6-54Mbps	1	11	11	11	
HT20,M0-7	1	11	11	11	

The Worst Case Measurement Configuration 2.3


Th	The Worst Case Mode for Following Conformance Tests				
Tests Item	AC power-line conducted emissions				
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz				
Operating Mode	Operating Mode Description				
1	AC Power & Radio link (WLAN) (Transmission)				
2	USB Power & Radio link (WLAN) (Transmission)				
For operating mode 2 is th	e worst case and it was record in this test report.				

The Worst Case Mode for Following Conformance Tests			
Tests Item	RF Output Power, Power Spectral Density, 6 dB Bandwidth		
Test Condition Conducted measurement at transmit chains			
Modulation Mode	Modulation Mode 11b, 11g, HT20		


Th	e Wo	orst Case Mode for Fo	ollowing Conformance Te	sts			
Tests Item		Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions					
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EU regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.						
		EUT will be placed in	fixed position.				
User Position	\boxtimes		mobile position and operati ree orthogonal planes. The				
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.						
	1. AC Power & Radio link (WLAN) (Transmission)						
Operating Mode < 1GHz	2. USB Power & Radio link (WLAN) (Transmission)						
	For operating mode 2 is the worst case and it was record in this test report.						
Operating Mode > 1GHz	2. USB Power & Radio link (WLAN) (Transmission)						
Modulation Mode	11b,	11g, HT20					
		X Plane	Y Plane	Z Plane			
Orthogonal Planes of EUT							

2.4 Test Setup Diagram

Transmitter Test Result 3

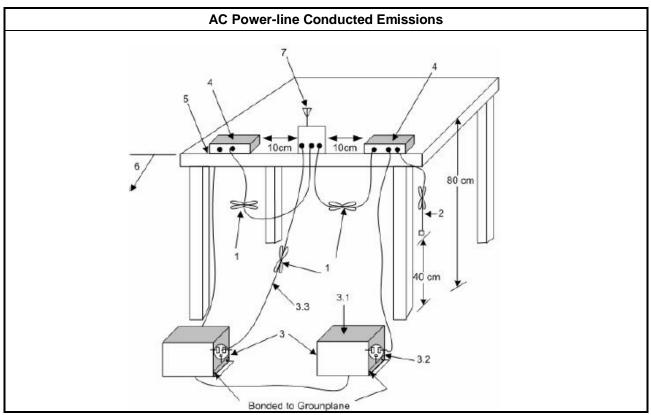
3.1 **AC Power-line Conducted Emissions**

AC Power-line Conducted Emissions Limit 3.1.1

AC Power-line Conducted Emissions Limit				
Frequency Emission (MHz)	Quasi-Peak	Average		
0.15-0.5	66 - 56 *	56 - 46 *		
0.5-5	56	46		
5-30	60	50		
5-30 Note 1: * Decreases with the logarithm of		50		

Note 1: Decreases with the logarithm of the frequency

3.1.2 Measuring Instruments

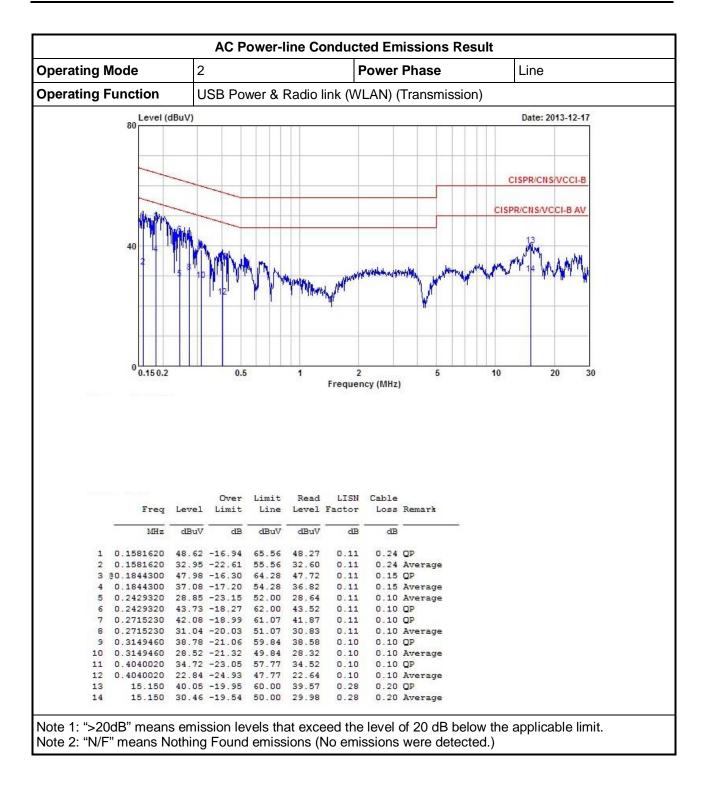

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



perating Mode	2		P	ower	Phase		Neutral
perating Function	USB Po	ower & Radio	link (WI	_AN) (1	ransmiss	ion)	
Level 80	(dBuV)		75	70		7 992 10	Date: 2013-12-17
80							
-							
							CISPR/CNS/VCCI-B
40	MAN	M. M. M. m. marmin				CISF	R/CNS/VCCI-B AV
		3 Al Al Warnen	11	W	Mar Martin	when	white with
0.150	2 0	.5 1	2 Frequen	cy (MHz)	5	10	20 3
- 0.150	2 0 2 Over Level Limit	r Limit Read	Frequen	Cable	5 Remark	10	20 3
- 0.150	Over Level Limit	r Limit Read : Line Level	Frequen	Cable		10	20 3
- 0.150 Freq MHz	Over Level Limit	r Limit Read z Line Level 3 dBuV dBuV	LISN Factor dB	Cable Loss dB	Remark	10	20 3
0.150 Freq MHz 1 00.1863950 2 00.1863950	Over [Level Limit dBuV dE 49.92 -14.28 39.34 -14.86	r Limit Read Line Level dBuV dBuV 3 64.20 49.55 5 54.20 38.97	LISN Factor dB 0.23 0.23	Cable Loss : dB 0.14 0	Remark	10	20 3
- 0.150 Freq MHz 1 00.1863950 2 00.1863950 3 0.2729650	Over Level Limit dBuV dE 49.92 -14.28 39.34 -14.86 44.70 -16.33	r Limit Read Line Level dBuV dBuV 8 64.20 49.55 5 54.20 38.97 8 61.03 44.37	LISN Factor dB 0.23 0.23 0.23	Cable Loss: dB 0.14 0.14	Remark DP Werage DP	10	20 3
Erec MHz 1 0.1863950 2 0.1863950 3 0.2729650 4 0.2729650	Over Level Limit dBuV dE 39.34 -14.28 44.70 -16.33 33.93 -17.10	r Limit Read Line Level dBuV dBuV 3 64.20 49.55 5 54.20 38.97 3 61.03 44.37 5 51.03 33.60	LISN Factor dB 0.23 0.23 0.23 0.23	Cable Loss : dB 0.14 0.14 0.10	Remark DP Average DP Average	10	20 3
- 0.150 Freq 1 @0.1863950 2 @0.1863950 3 0.2729650 4 0.2729650	Over Level Limit dBuV dE 39.34 -14.26 39.34 -14.86 44.70 -16.33 33.93 -17.10 40.95 -18.93	c Limit Read Line Level 3 dBuV dBuV 3 64.20 49.55 54.20 38.97 3 61.03 44.37 51.03 33.60 3 59.88 40.63	LISN Factor dB 0.23 0.23 0.23	Cable Loss : dB 0.14 0.14 0.10 0.10	Remark DP Average DP Average	10	20 3
- 0.150 Freq 1 <u>00.1863950</u> 2 <u>00.1863950</u> 3 0.2729650 4 0.2729650 5 0.3132810	Over Level Limit dBuV dE 49.92 -14.28 39.34 -14.86 44.70 -16.33 33.93 -17.10 40.95 -18.93 30.14 -19.74	c Limit Read Line Level dBuV dBuV 64.20 49.55 54.20 38.97 61.03 44.37 51.03 33.60 8 59.88 40.63 4 49.88 29.82	ELISN Factor dB 0.23 0.23 0.23 0.23 0.22	Cable Loss : dB 0.14 0.14 0.10 0.10	Remark DP Average DP Average Average	10	20 3
0.150 Freq MHz 1 @0.1863950 2 @0.1863950 3 0.2729650 4 0.2729650 5 0.3132810 6 0.3132810 7 0.5020260	Over Level Limit dBuV dE 49.92 -14.28 39.34 -14.86 44.70 -16.33 33.93 -17.10 40.95 -18.93 30.14 -19.74 38.46 -17.54	c Limit Read Line Level dBuV dBuV 64.20 49.55 54.20 38.97 61.03 44.37 51.03 33.60 8 59.88 40.63 4 49.88 29.82	ELISN Factor dB 0.23 0.23 0.23 0.23 0.22 0.22 0.22	Cable Loss : dB 0.14 (0.10 (0.10 (0.10 (0.10 (0.10 (0.10 (0.10 (Remark DP Average DP Average Average	10	20 3
- 0.150 Freq MHz 1 @0.1863950 2 @0.1863950 3 0.2729650 4 0.2729650 5 0.3132810 6 0.3132810 7 0.5020260 8 0.5020260	Over Level Limit dBuV dE 39.34 -14.86 44.70 -16.33 33.93 -17.10 40.95 -18.93 30.14 -19.74 38.46 -17.54 25.90 -20.10	r Limit Read Line Level dBuV dBuV 3 64.20 49.55 5 54.20 38.97 3 61.03 44.37 0 51.03 33.60 3 59.88 40.63 4 49.88 29.82 4 56.00 38.12	Elish Factor dB 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.22	Cable Loss : dB 0.14 (0.10 (0.10 (0.10 (0.10 (0.10 (0.10 (0.12 (Remark DP Average DP Average DP Average DP	10	20 3
Erec MHz 1 0.1863950 2 0.1863950 3 0.2729650 4 0.2729650 5 0.3132810 6 0.3132810 7 0.5020260 8 0.5020260 9 0.7009560	Over Level Limit dBuV dE 39.34 -14.86 44.70 -16.33 33.93 -17.10 40.95 -18.93 30.14 -19.74 38.46 -17.54 25.90 -20.10 22.73 -23.27	c Limit Read Line Level dBuV dBuV 3 64.20 49.55 5 54.20 38.97 3 61.03 44.37 0 51.03 33.60 3 59.88 40.63 4 49.88 29.82 4 56.00 38.12 0 46.00 25.56	LISN Factor dB 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.22	Cable Loss : dB 0.14 (0.10 (0.10 (0.10 (0.10 (0.10 (0.10 (0.12 (Remark DP Average DP Average DP Average Average Average	10	20 3
Erec MHz 2 0.1863950 2 0.1863950 3 0.2729650 4 0.2729650 5 0.3132810 6 0.3132810 7 0.5020260 8 0.5020260 9 0.7009560 10 0.7009560	Over Level Limit dBuV dE 39.34 -14.28 39.34 -14.28 39.34 -14.83 33.93 -17.10 40.95 -18.93 30.14 -19.74 38.46 -17.54 25.90 -20.10 22.73 -23.27 37.67 -18.33	c Limit Read Line Level dBuV dBuV 3 64.20 49.55 5 54.20 38.97 3 61.03 44.37 5 51.03 33.60 3 59.88 40.63 4 49.88 29.82 4 56.00 38.12 0 46.00 25.56 7 46.00 22.34	Frequent ELISN Factor dB 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.22	Cable Loss : dB 0.14 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark DP Average DP Average DP Average Average Average	10	20 3
Free MHz 1 @0.1863950 2 @0.1863950 3 0.2729650 4 0.2729650 5 0.3132810 6 0.3132810 7 0.5020260 8 0.5020260 9 0.7009560 10 0.7009560 11 1.590	Over Level Limit dBuV dE 39.34 -14.86 44.70 -16.33 30.34 -14.86 44.70 -16.33 30.34 -14.86 44.70 -16.33 30.14 -19.74 38.46 -17.54 25.90 -20.10 22.73 -23.27 37.67 -18.33 26.75 -19.25	c Limit Read Line Level 3 dBuV dBuV 3 64.20 49.55 5 54.20 38.97 3 61.03 44.37 5 51.03 33.60 3 59.88 40.63 4 49.88 29.82 4 56.00 33.12 0 46.00 25.56 7 46.00 22.34 3 56.00 37.28	LISN Factor dB 0.23 0.23 0.23 0.23 0.23 0.22 0.22 0.22	Cable Loss: dB 0.144 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.124 0.277	Remark DP Average DP Average DP Average DP Average DP Average DP	10	20 3
Freq MHz 1 @0.1863950 2 @0.1863950 3 0.2729650 4 0.2729650 4 0.2729650 5 0.3132810 6 0.3132810 7 0.5020260 9 0.7009560 10 0.7009560 11 1.590 12 1.590 13 26.700	Over Level Limit dBuV dE 39.34 -14.86 44.70 -16.33 33.93 -17.10 40.95 -18.93 30.14 -19.74 38.46 -17.54 25.90 -20.10 22.73 -23.27 37.67 -19.25 39.13 -16.87 37.40 -22.60	c Limit Read Line Level dBuV dBuV 3 64.20 49.55 5 54.20 38.97 3 61.03 44.37 5 51.03 33.60 3 59.88 40.63 4 49.88 29.82 4 56.00 38.12 0 46.00 25.56 7 46.00 22.34 8 56.00 37.28 5 46.00 26.24	Frequent LISN Factor dB 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.23 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.25 0.55 0.	Cable Loss : dB 0.14 (0.10 (0.10 (0.10 (0.10 (0.10 (0.10 (0.12 (0.16 (0.16 (0.27 (0.04 (Remark DP Average DP Average DP Average DP Average DP Average DP Average DP	10	20 3

3.1.5 Test Result of AC Power-line Conducted Emissions

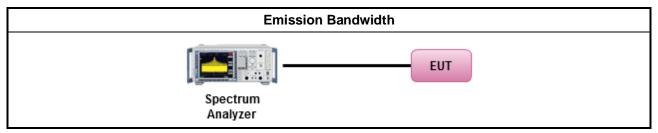
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

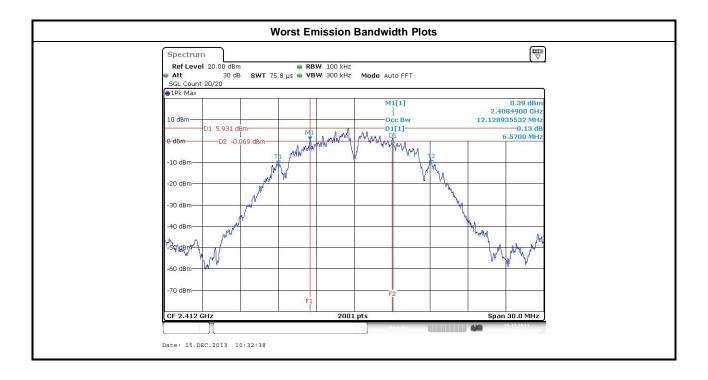
 \boxtimes 6 dB bandwidth ≥ 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method							
\square	For	the emission bandwidth shall be measured using one of the options below:						
	Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.							
		Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.						
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.						
\square	For	conducted measurement.						
	The EUT supports single transmit chain and measurements performed on this transmit chain.							
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.						
		The EUT supports multiple transmit chains using options given below:						
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.						
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.						


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

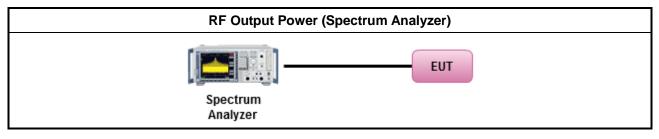
	Emission Bar	nission Bandwidth (MHz)		
TX Freq. (MHz)	99% Bandwidth	6dB Bandwidth		
1 2412	12.12	6.57		
1 2437	12.00	7.59		
1 2462	12.11	8.02		
1 2412	16.32	16.03		
1 2437	16.32	16.30		
1 2462	16.29	16.02		
1 2412	17.52	17.58		
1 2437	17.51	17.56		
1 2462	17.52	17.56		
	N/A	≥500 kHz		
	Com	plied		
1	 (MHz) 2412 2437 2462 2412 2437 2462 2412 2437 2437 	(MHz) 99% Bandwidth 2412 12.12 2437 12.00 2462 12.11 2412 16.32 2437 16.32 2462 16.29 2412 17.52 2437 17.51 2462 17.52 VA Com		

3.3 RF Output Power

3.3.1 RF Output Power Limit

	RF Output Power Limit						
Max	Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit and e.i.r.p.						
\square	2400-2483.5 MHz Band:						
	Point-to-multipoint systems (P2M): P _{Out} ≤ 30 dBm (1 W); P _{eirp} ≤ 36 dBm (4 W)						
	Point-to-point systems (P2P): If $P_{eirp} > 36 \text{ dBm}$, $G_{TX} \le P_{Out}$						
	Smart antenna system (SAS): If $P_{eirp} > 36 \text{ dBm}$, $G_{TX} \le P_{Out}$						
		Single beam: follow P2M, P2P limits					
	Overlap beam: follow P2M limit						
	Aggregate power on all beams: follow P2M limit + 8dB						
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.					

3.3.2 Measuring Instruments

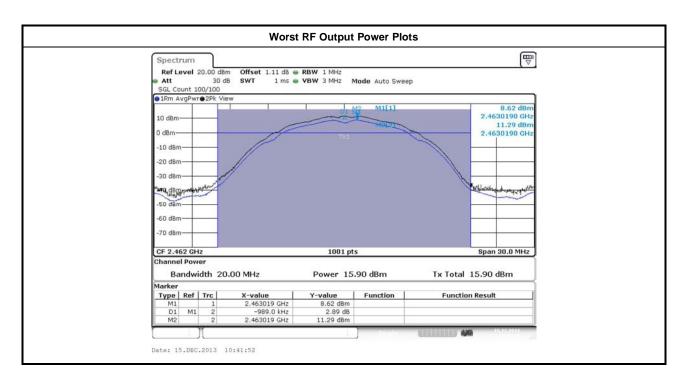

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
\boxtimes	Max	ximum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 8.1.1 Option 1 (RBW \geq EBW method).
	\square	Refer as FCC KDB 558074, clause 8.1.2 Option 2 (integrated band power method).
		Refer as FCC KDB 558074, clause 8.1.3 Option 2 (peak power meter for VBW ≥ DTS BW)
\boxtimes	Max	ximum Conducted (Average) Output Power
		Refer as FCC KDB 558074, clause 8.2.1 Option 1 (spectral trace averaging).
	\square	Refer as FCC KDB 558074, clause 8.2.2 Option 2 (slow sweep speed).
		Refer as FCC KDB 558074, clause 8.2.3 Option 3 (average power meter).
\boxtimes	For	conducted measurement.
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
		The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

3.3.4 Test Setup

		M	aximum Peak Conduc	ted Output Power Re	sult	
Condi	tion			RF Output F	Power (dBm)	
Modulation Mode	Ντχ	Freq. (MHz)	Output Power	Power Limit	EIRP Power	EIRP Limit
11b	1	2412	18.37	30	21.47	36
11b	1	2437	18.34	30	21.44	36
11b	1	2462	18.80	30	21.90	36
11g	1	2412	15.52	30	18.62	36
11g	1	2437	15.61	30	18.71	36
11g	1	2462	16.25	30	19.35	36
HT20	1	2412	15.40	30	18.50	36
HT20	1	2437	15.62	30	18.72	36
HT20	1	2462	16.19	30	19.29	36
Resu	ılt			Com	plied	


3.3.5 Test Result of Maximum Peak Conducted Output Power

3.3.6 Test Result of Maximum Conducted Output Power

			Maximum Condu	cted Output Power		
Condi	tion			RF Output F	Power (dBm)	
Modulation Mode	Ντχ	Freq. (MHz)	Output Power	Power Limit	EIRP Power	EIRP Limit
11b	1	2412	15.44	30	18.54	36
11b	1	2437	15.60	30	18.70	36
11b	1	2462	15.90	30	19.00	36
11g	1	2412	9.96	30	13.06	36
11g	1	2437	10.01	30	13.11	36
11g	1	2462	10.80	30	13.90	36
HT20	1	2412	9.43	30	12.53	36
HT20	1	2437	9.84	30	12.94	36
HT20	1	2462	10.87	30	13.97	36
Resu	ılt			Com	plied	

Power Spectral Density 3.4

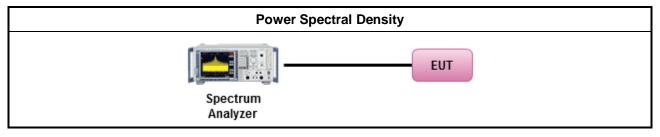
3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

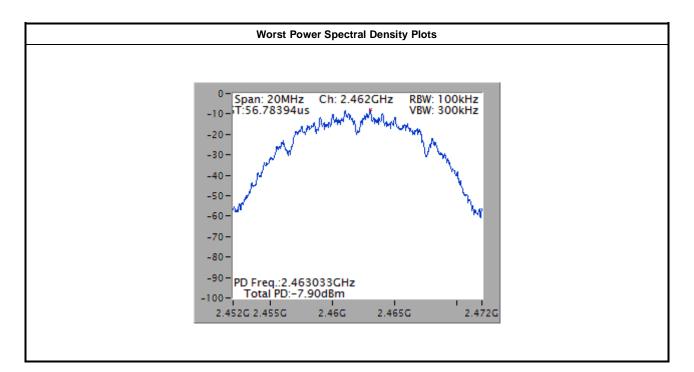
3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.4.3 Test Procedures

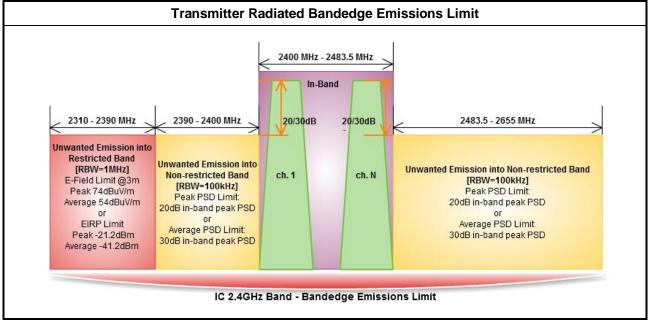
Г

			Test Method
	outp the o cond of th	out po outpu ducte ne ave	ver spectral density procedures that the same method as used to determine the conducted wer. If maximum peak conducted output power was measured to demonstrate compliance to t power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum d output power was measured to demonstrate compliance to the output power limit, then one erage PSD procedures shall be used, as applicable based on the following criteria (the peak redure is also an acceptable option).
	\boxtimes	Refe	er as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz;detector=peak)
	[dut	y cycl	e ≥ 98% or external video / power trigger]
		Refe	er as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).
		Refe	er as FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)
	duty	' cycle	e < 98% and average over on/off periods with duty factor
		Refe	er as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).
		Refe	er as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)
\boxtimes	For	condu	ucted measurement.
	\square	The	EUT supports single transmit chain and measurements performed on this transmit chain.
		The	EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
		The	EUT supports multiple transmit chains using options given below:
			Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N_{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
			Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.



3.4.4 Test Setup

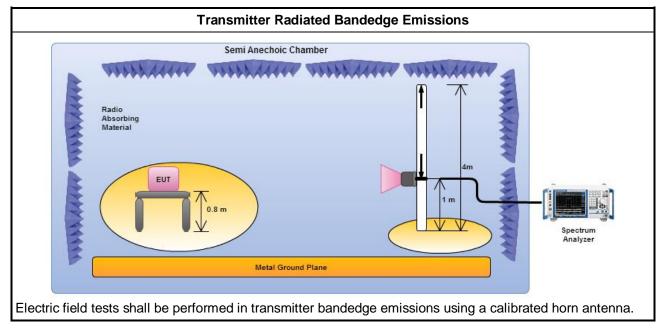
3.4.5 Test Result of Power Spectral Density


			Power Spectral Density Result	
Modulation Mode	Ντχ	Freq. (MHz)	Power Spectral Density (dBm/100kHz)	Power Limit (dBm/3kHz)
11b	1	2412	-9.14	8
11b	1	2437	-10.06	8
11b	1	2462	-7.90	8
11g	1	2412	-18.53	8
11g	1	2437	-18.45	8
11g	1	2462	-16.54	8
HT20	1	2412	-18.88	8
HT20	1	2437	-17.86	8
HT20	1	2462	-17.97	8
Resu	ılt		Com	plied

3.5 Transmitter Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

		Test Method
\boxtimes	The	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].
\boxtimes		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency not and highest frequency channel within the allowed operating band.
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
		□ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
		□ Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:
		Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.
		radiated measurement, refer as FCC KDB 558074, clause 12.2.7 and ANSI C63.10, clause 6.6. distance is 3m.

3.5.4 Test Setup

3.5.5 Transmitter Radiated Bandedge Emissions

Modulation	N _{TX}	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Pol.
11b	1	2412	105.56	2398.59	63.09	42.47	20	V
11b	1	2462	100.84	2520.30	62.32	38.52	20	V
11g	1	2412	97.74	2396.69	62.60	35.14	20	V
11g	1	2462	92.33	2584.30	62.39	29.94	20	V
HT20	1	2412	97.75	2399.94	62.73	35.02	20	V
HT20	1	2462	92.41	2510.70	62.70	29.71	20	V

Modulation Mode	N _{TX}	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
11b	1	2412	3	2388.74	60.97	74	2390.00	48.09	54	V
11b	1	2462	3	2485.80	61.03	74	2484.70	48.68	54	V
11g	1	2412	3	2390.00	68.54	74	2390.00	48.64	54	V
11g	1	2462	3	2483.80	70.45	74	2483.50	47.80	54	V
HT20	1	2412	3	2389.18	69.54	74	2390.00	49.39	54	V
HT20	1	2462	3	2483.50	71.28	74	2483.50	48.37	54	V

3.6 Transmitter Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

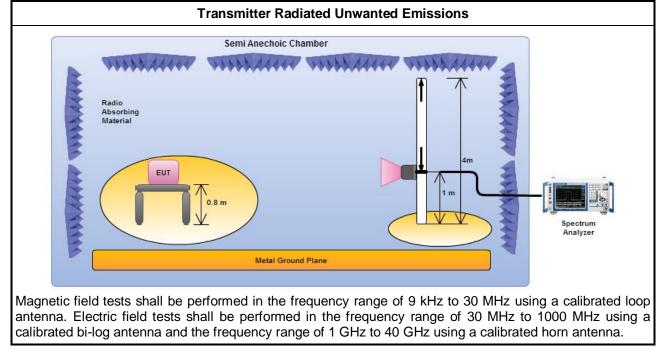
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Un-restricted Ban	d Emissions Limit
RF output power procedure	Limit (dB)
Peak output power procedure	20
Average output power procedure	30
	n the peak conducted output power measured within band shall be attenuated by at least 20 dB relative to vel.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



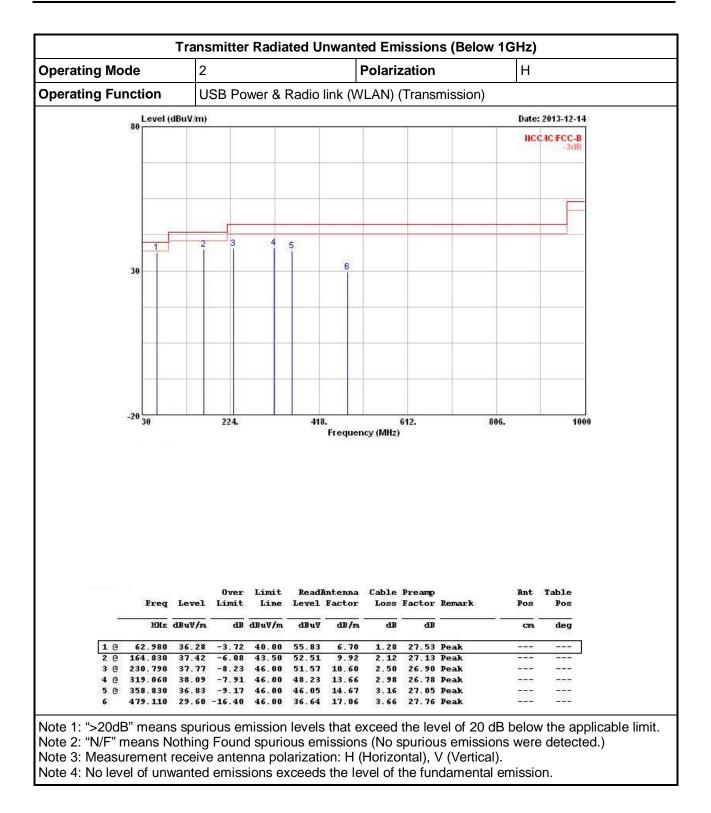
3.6.3 Test Procedures

		Test Method
	perf equi extra dista	asurements may be performed at a distance other than the limit distance provided they are not formed in the near field and the emissions to be measured can be detected by the measurement ipment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density asurements).
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
		□ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
		□ Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
		Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
	\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.
	\square	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.
\boxtimes	The	any unwanted emissions level shall not exceed the fundamental emission level.
		amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value no need to be reported.

3.6.4 Test Setup

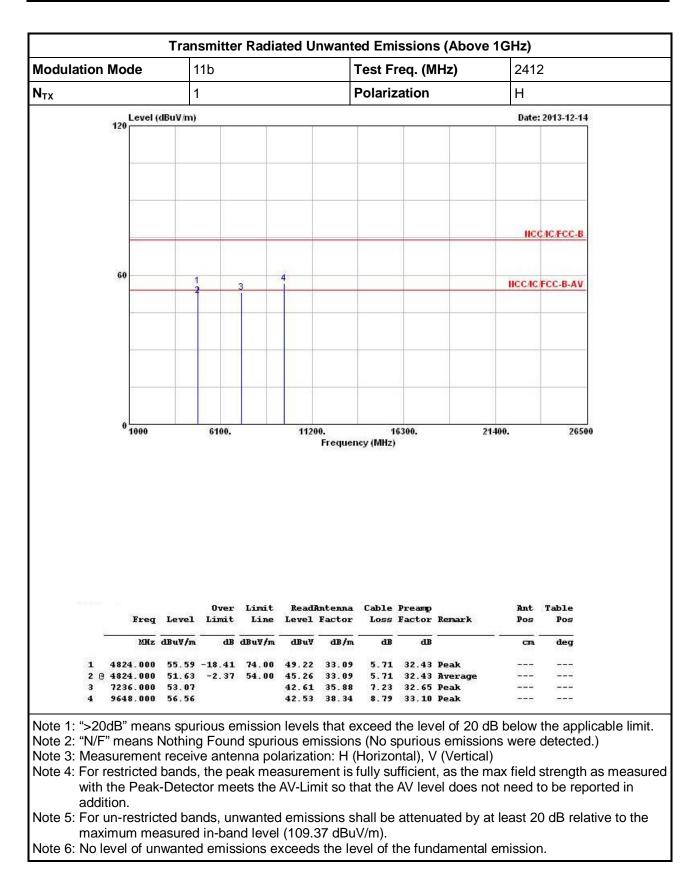
3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

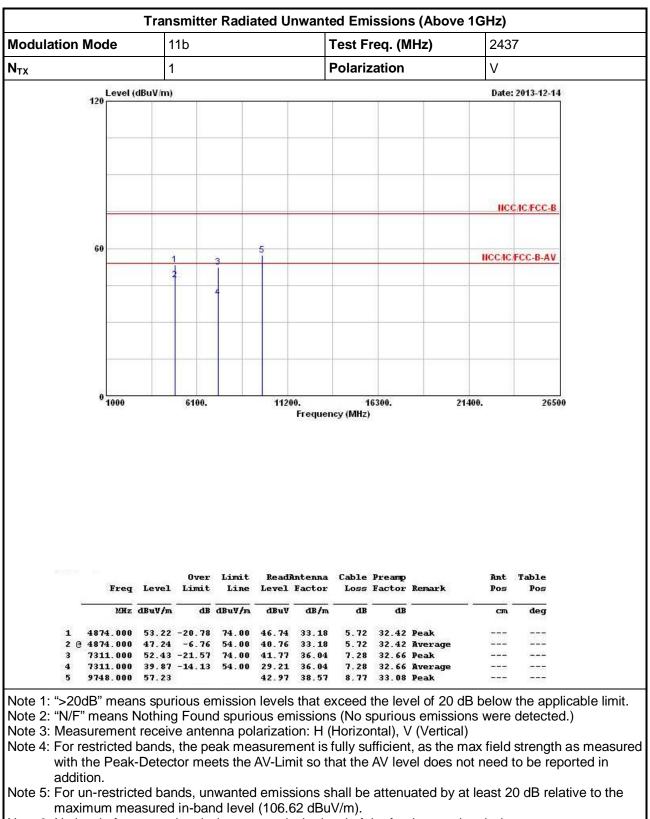
All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.



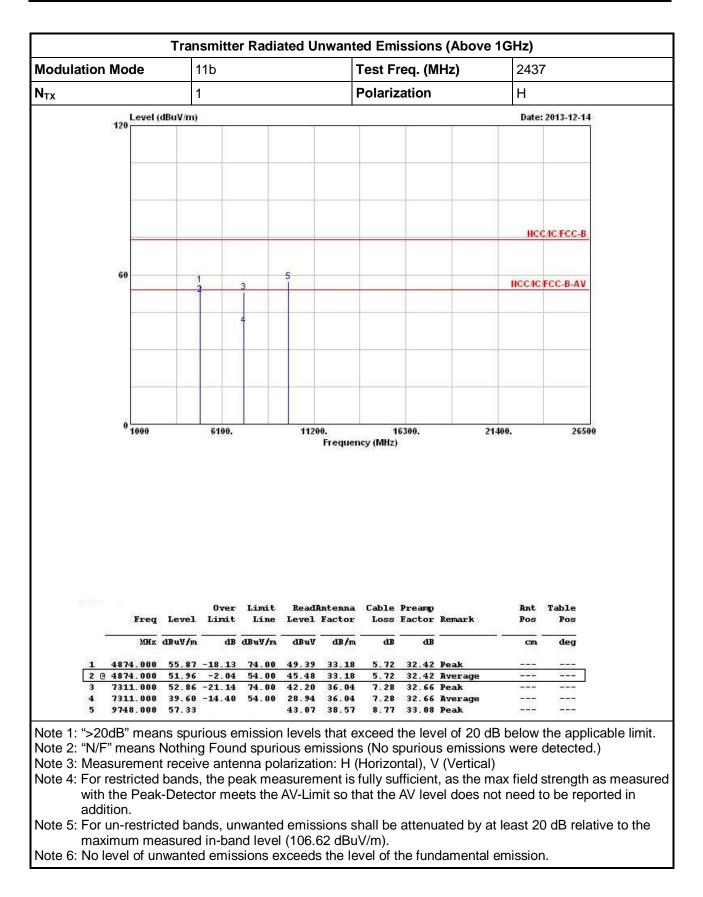
- p	ode	2				1	Polari	zation		V	,	
Operating Fu	Inction	U	SB Po	wer &	Radio	link (W	'LAN)	(Trans	mission)			
	Level	dBuV/m)								Da	nte: 2013-12	-14
	80									1		в
											-30	IB
		-									-	-
												_
	-											_
		2 3										
	20 1			4		5					6	
	30											
												_
						_						_
	-20 30		224.		418		ncy (MHz)	612.)		806.		1000
		Level	Over	Limit Line	Readi		Cable) Preamp	Remark	806. An Po	t Table	1000
	Freq	Level dBuV/m	Over Limit		Readi	Frequei	Cable) Preamp	Remark	Ал Ро	t Table	1000
	Freq MHz	dBuV/m	Over Limit dB	Line dBuV/m	Readi Level dBuV	Antenna Factor dB/m	Cable Loss dB	Preamp Factor dB		Ал Ро	ut Table s Pos m deg	1000
1 @ 2 @	Егеq МНz 62.980	dBuV/m 33.17	Over Limit 	Line	Readi Level	Antenna Factor dB/m 6.70	Cable Loss	Preamp Factor dB 27.53	Peak	Ал Ро	t Table s Pos	1000
2 @ 3 @	Егеq МНz 62.980 98.870 164.830	dBuV/m 33.17 36.87 36.36	Over Limit dB -6.83 -6.63 -7.14	Line dBuV/m 40.00 43.50 43.50	Readi Level dBuV 52.72 51.90 51.45	Antenna Factor dB/m 6.70 10.78 9.92	Cable Loss dB 1.28 1.58 2.12	Preamp Factor dB 27.53 27.39 27.13	Peak Peak Peak	Ал Ро	t Table s Pos m deg	1000
2 @	Freq MHz 62.980 98.870	dBuV/m 33.17 36.87 36.36 30.47	Over Limit dB -6.83 -6.63 -7.14 -15.53	Line dBuV/m 40.00 43.50 43.50 46.00	ReadJ Level dBuV 52.72 51.90 51.45 40.61	Frequer Antenna Factor dB/m 6.70 10.78 9.92 13.66	Cable Loss dB 1.28 1.58 2.12 2.98	Preamp Factor dB 27.53 27.39	Peak Peak Peak Peak Peak	Ал Ро	t Table s Pos m deg	1000

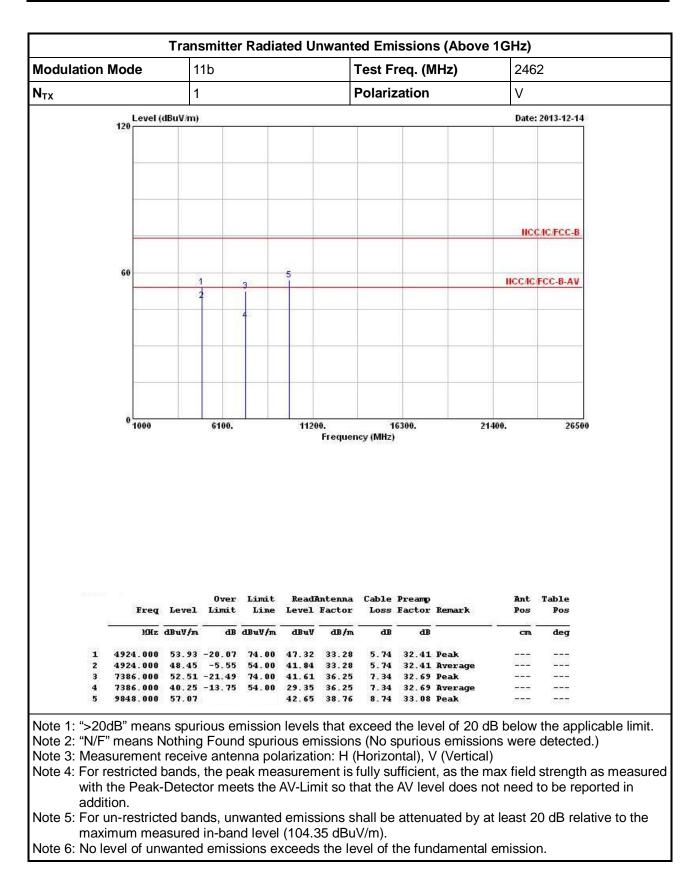
3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)



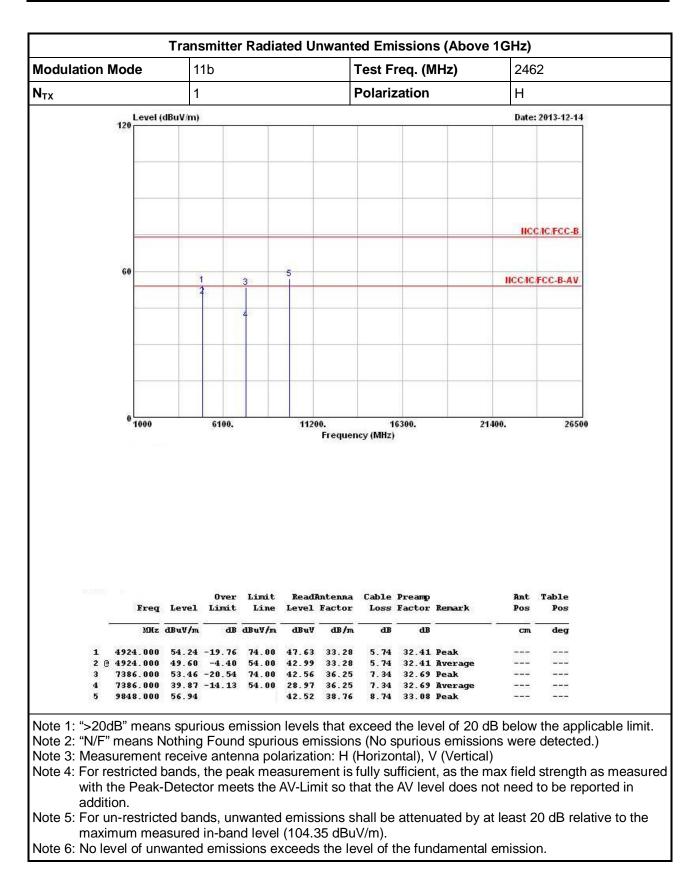

. 1				inwante		1331011	s (Abov			
	11b				Test Freq. (MHz)			241	2412	
1	l			1	Polariz	zation		V		
/el (dBuV/m)								Date	: 2013-12-14	4
								IIC	C/IC/FCC-B	
1								110		
			4							
		3		1		-		HCC/IC	FCC-B-AV	
					-					
								_		5
0					200			00.000000	3634 5835	1
	6100.		1120		1 icy (MHz)	16300.)		21400.	2650	0
eq Level	Over	Limit Line		Frequer	cy(MHz) Cable	Preamp	Remark		2650 Table Pos	0
	Over Limit		Readi	Frequer	cy(MHz) Cable	Preamp	Remark	Ant	Table	0
eq Level Mz dBuV/m	Over Limit dB	Line dBuV/m	Readi Level dBuV	Frequer Intenna Factor dB/m	Cable Loss dB	Preamp Factor dB	Remark	Ant Pos — — — — — — — — — — — — — — — — — — —	Table Pos deg	0
eq Level Mz dBuV/m	Over Limit 	Line dBuV/m 74.00	ReadJ Level dBuV 46.24 44.01	Intenna Factor dB/m 33.09	Cable Loss dB 5.71 5.71	Preamp Factor dB 32.43	Remark	Ant Pos	Table Pos	0

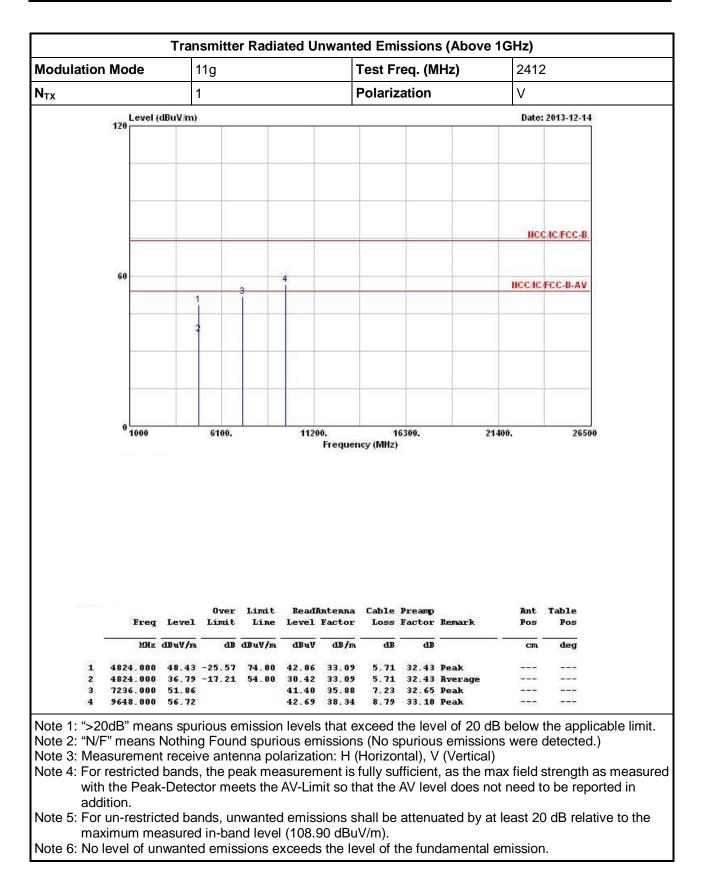
3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

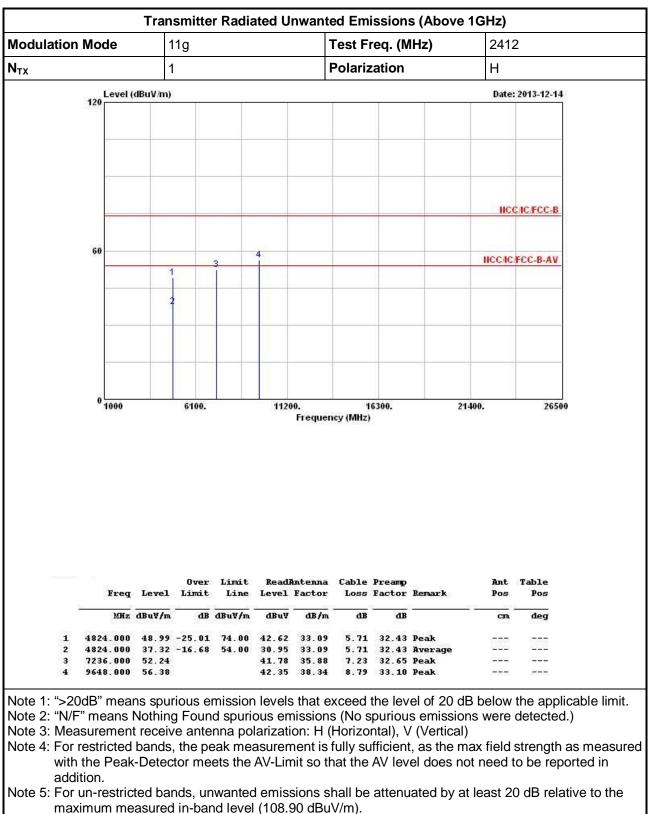


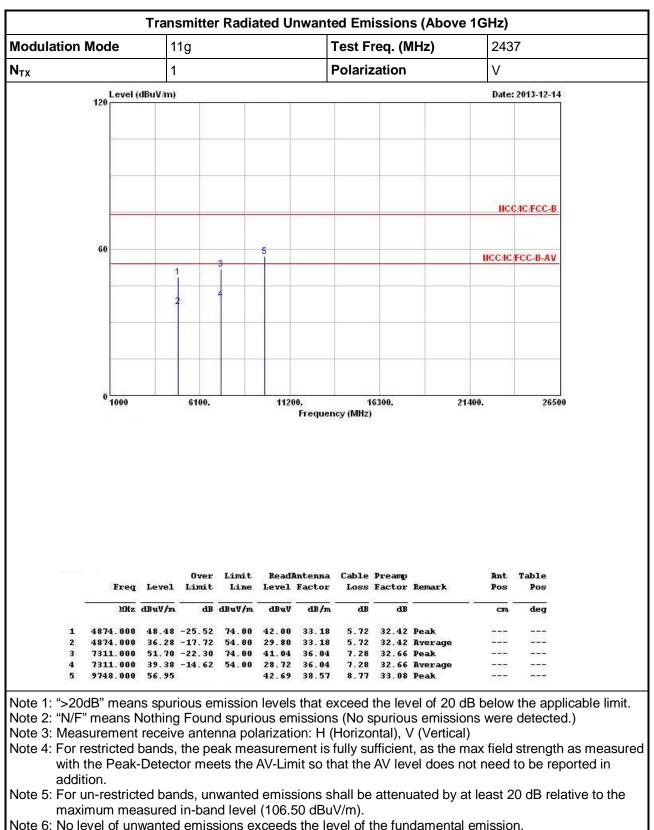


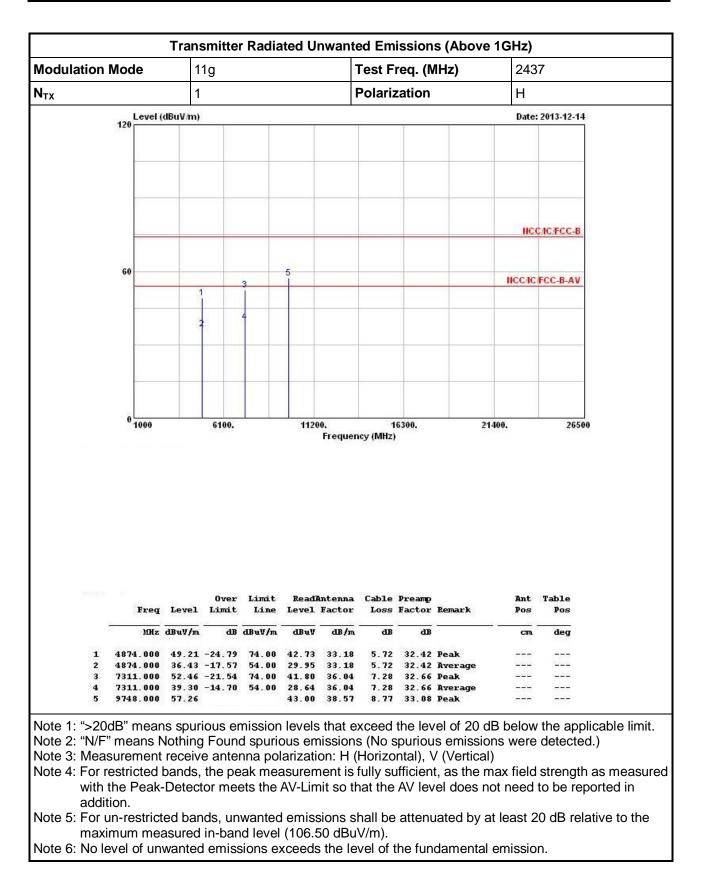
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

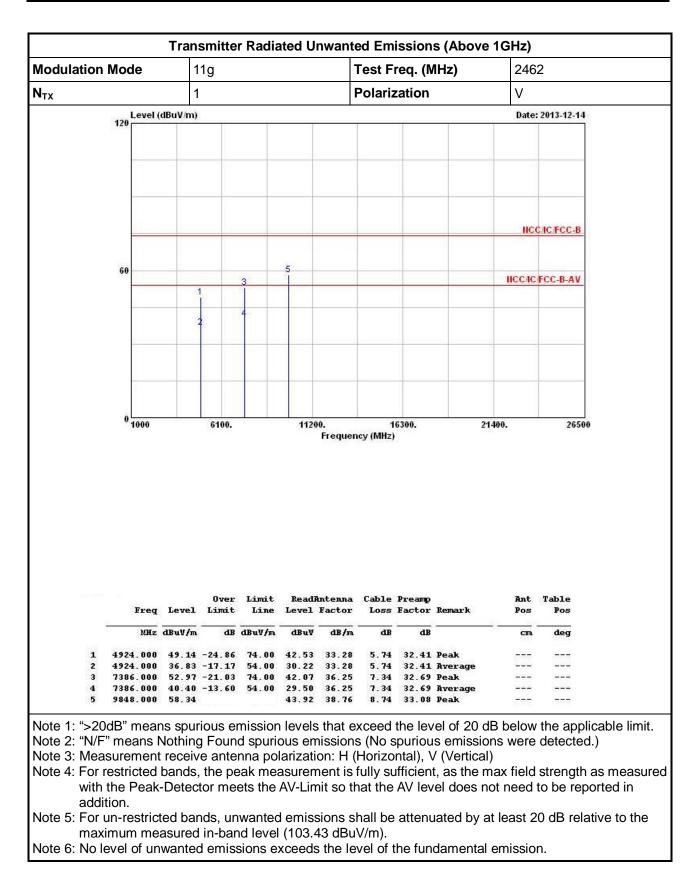


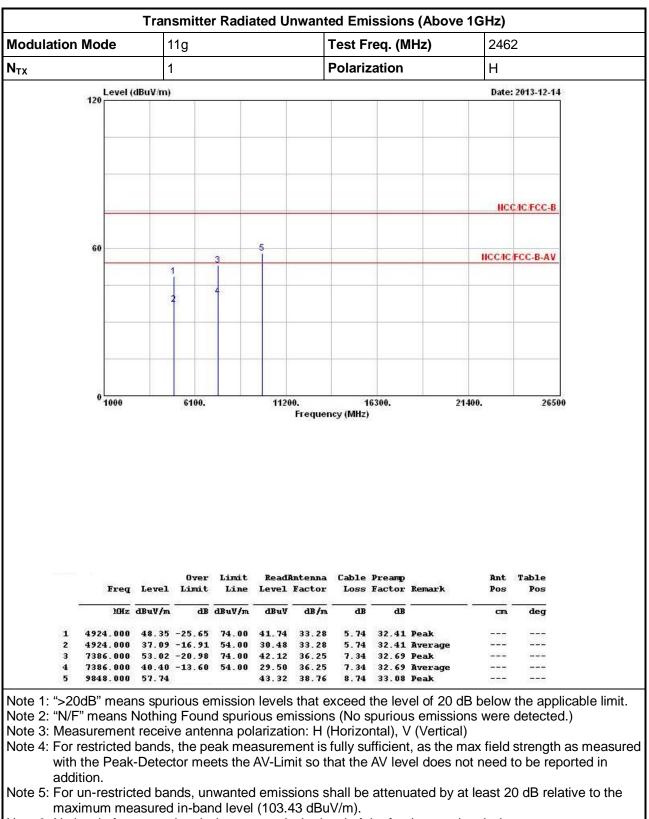


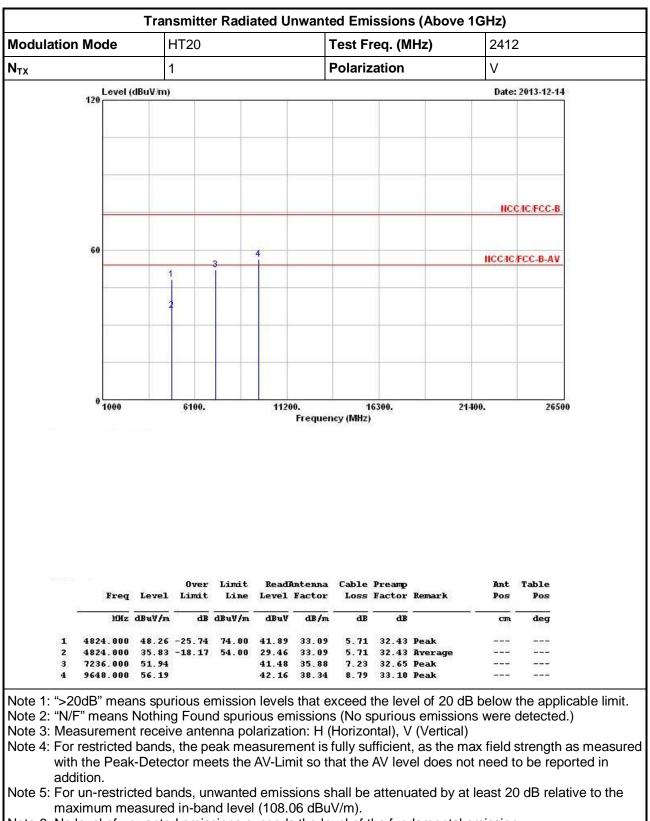


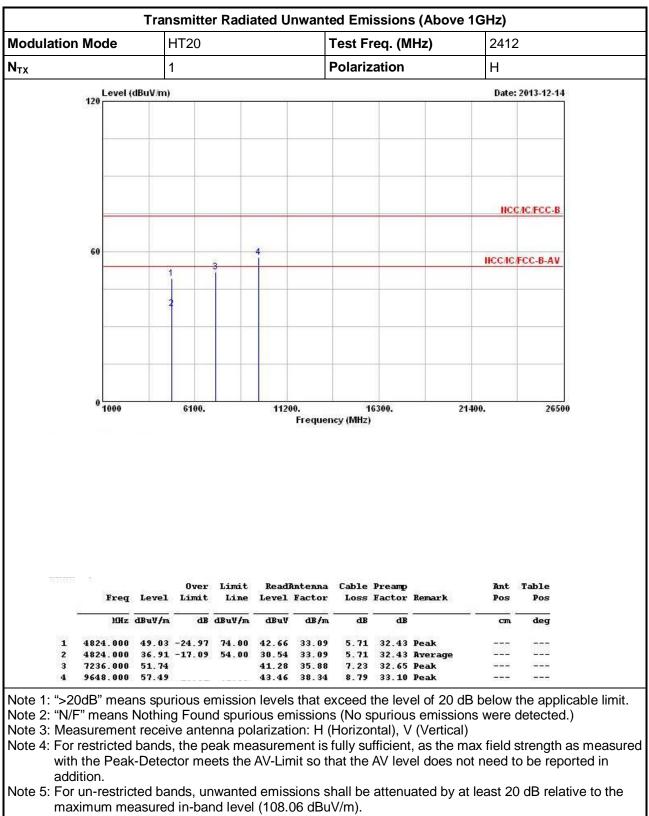


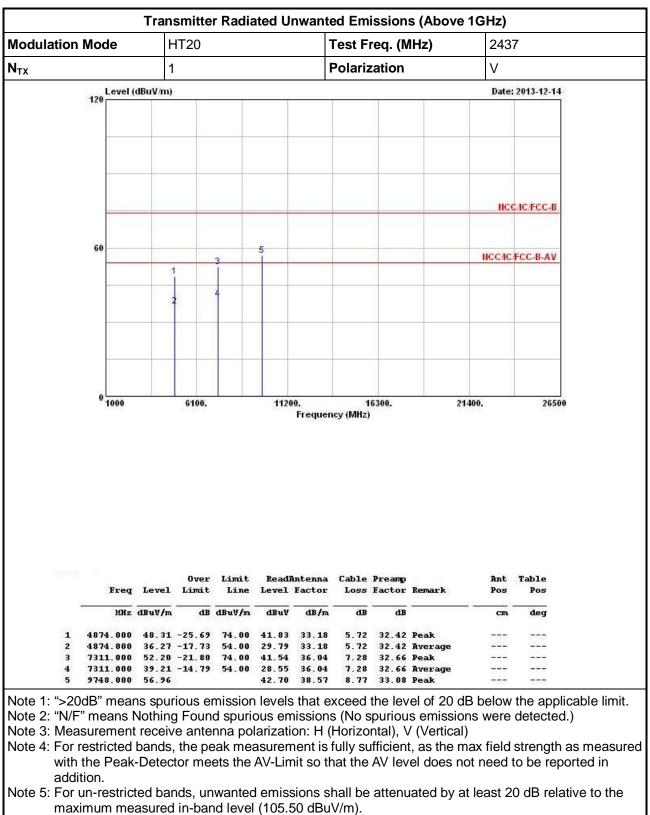


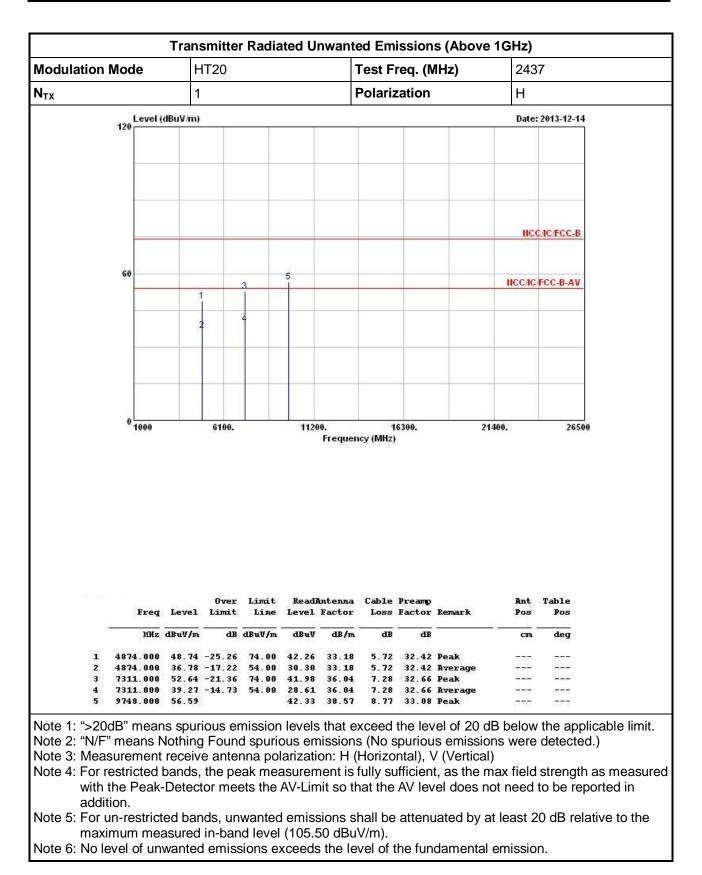


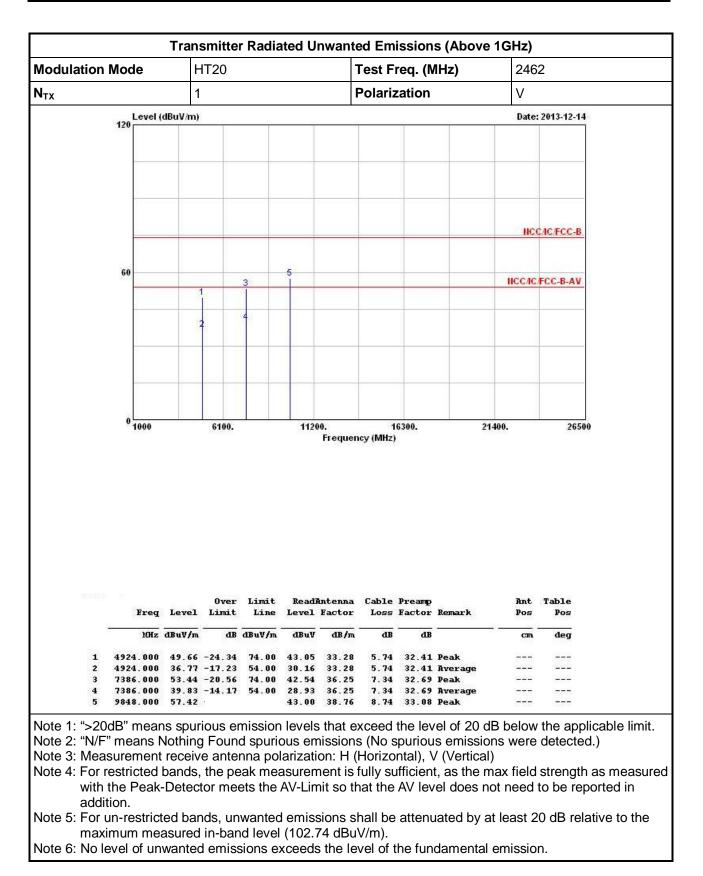


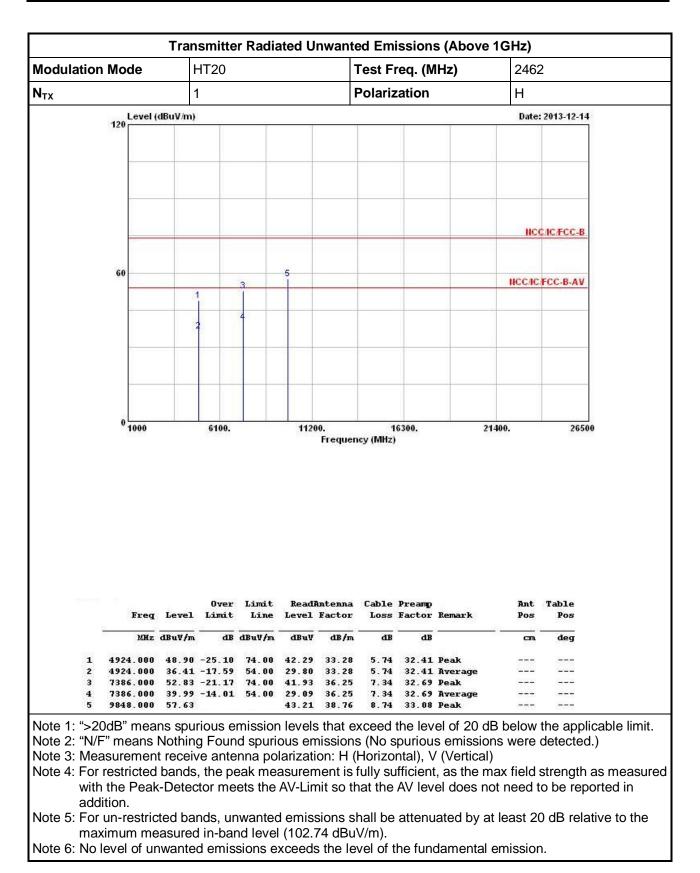












4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 26, 2013	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 21, 2013	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	7.61183201e+012	9kHz ~ 30MHz	Oct. 30, 2013	Conduction (CO04-HY)
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 26, 2013	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101013	9KHz~40GHz	Jan. 29, 2013	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 27, 2013	Conducted (TH01-HY)
RF Cable-0.5m	HUBER+SUHNER	SUCOFLEX_104	SN MY10714/4	30MHz ~ 26.5GHz	Dec. 02, 2013	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Report No. : FR3D0603AC

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Nov. 30, 2013	Radiation (03CH03-HY)
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May. 03, 2013	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	Aug. 20, 2013	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	May 31, 2013	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jan. 08, 2013	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Jan. 17, 2013	Radiation (03CH03-HY)
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Jan. 17, 2013	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 21, 2013	Radiation (03CH03-HY)
Turn Table	Chaintek Instruments	3000	MF7802058	0~ 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	MF	MF7802	MF780208205	1 ~ 4 m	N/A	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Jul. 20, 2013	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	TESEQ	HLA 6120	31244	9kHz ~ 30MHz	Dec. 02, 2012	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is two year.