FCC Test Report

Product Name	Notebook
Model No.	NU50;NUx0xx (x=0~9;A~Z;a~z;)
FCC ID.	WL6-NU509560D2W

Applicant	ELITEGROUP COMPUTER SYSTEMS CO., LTD
Address	No.239, Sec. 2, Ti Ding Blvd., Taipei, Taiwan

Date of Receipt	June 23, 2020
Issued Date	Dec. 21, 2020
Report No.	2060931R-E3032110108
Report Version	V1.0
A LOUTER AND	

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test Report

Issued Date: Dec. 21, 2020 Report No.: 2060931R-E3032110108

Product Name	lotebook		
Applicant	LITEGROUP COMPUTER SYSTEMS CO., LTD		
Address	No.239, Sec. 2, Ti Ding Blvd., Taipei, Taiwan		
Manufacturer	Golden Elite Technology (SHENZHEN) Co., Ltd.		
Model No.	NU50;NUx0xx (x=0~9;A~Z;a~z;)		
FCC ID.	WL6-NU509560D2W		
EUT Rated Voltage	AC 100-240V, 50-60Hz		
EUT Test Voltage	AC 120V / 60Hz		
Trade Name	ECS ELITEGROUP		
Applicable Standard	CC CFR Title 47 Part 15 Subpart C		
	ANSI C63.4: 2014, ANSI C63.10: 2013		
Test Result	Complied		
Documented By	Antra Chan		
	(Senior Engineering Adm. Specialist / Anita Chou)		
Tested By	Yun Che Chen		
	(Engineer / Yunche Chen)		
Approved By	Hondo		
	(Director / Vincent Lin)		

TABLE OF CONTENTS

Des	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Tested System Details	7
1.3.	Configuration of Tested System	7
1.4.	EUT Exercise Software	
1.5.	Test Facility	
1.6.	List of Test Equipment	
1.7.	Uncertainty	
2.	CONDUCTED EMISSION	
2.1.	Test Setup	
2.2.	Limits	
2.3.	Test Procedure	
2.4.	Test Result of Conducted Emission	
3.	PEAK POWER OUTPUT	
3.1.	Test Setup	
3.2.	Limit	
3.3.	Test Procedure	
3.4.	Test Result of Peak Power Output	
4.	RADIATED EMISSION	
4.1.	Test Setup	
4.2.	Limits	
4.3.	Test Procedure	
4.4.	Test Result of Radiated Emission	
5.	RF ANTENNA CONDUCTED TEST	
5.1.	Test Setup	
5.2.	Limits	
5.3.	Test Procedure	
5.4.	Test Result of RF Antenna Conducted Test	40
6.	BAND EDGE	
6.1.	Test Setup	
6.2.	Limit	
6.3.	Test Procedure	
6.4.	Test Result of Band Edge	
7.	CHANNEL NUMBER	
7.1.	Test Setup	
7.2.	Limit	
7.3.	Test Procedure	
7.4.	Test Result of Channel Number	
8.	CHANNEL SEPARATION	
8.1.	Test Setup	
8.2.	Limit	
8.3.	Test Procedure	
8.4.	Test Result of Channel Separation	
9.	DWELL TIME	64
9.1.	Test Setup	
9.2.	Limit	
9.3.	Test Procedure	
9.4.	Test Result of Dwell Time	
10.	OCCUPIED BANDWIDTH	
10.1.	Test Setup	
10.2.	Limits	
10.3.	Test Procedure	
10.4.	Test Result of Occupied Bandwidth	
11.	DUTY CYCLE	
11.1.	Test Setup	
11.2.	Test Procedure	74
11.3.	Test Result of Duty Cycle	
12.	EMI REDUCTION METHOD DURING COMPLIANCE TESTING	
Auach	hment 1: EUT Test Photographs	

Attachment 2: EUT Detailed Photographs

Revision History

Report No.	Version	Description	Issued Date
2060931R-E3032110108	V1.0	Initial issue of report.	2020-12-21

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Notebook		
Trade Name	ECS ELITEGROUP		
Model No.	NU50;NUx0xx (x=0~9;A~Z;a~z;)		
FCC ID.	WL6-NU509560D2W		
Frequency Range	2402 – 2480MHz		
Channel Number	79		
Type of Modulation	FHSS: GFSK(1Mbps) /π/4DQPSK(2Mbps) / 8DPSK(3Mbps)		
Antenna Type	PIFA Antenna		
Channel Control	Auto		
Antenna Gain	Refer to the table "Antenna List"		
Power Adapter	MFR: FSP, M/N: FSP065-A1BR3		
	Input: AC 100-240V , 50-60Hz 1.7A		
Output: DC 5V, 3A; 9V, 3A; 12V, 3A; 15V, 3A; 20V, 3.25A			
Cable Out: Shielded, 1m			
Power cord: Non-shielded, 0.8m			

Antenna List

No.	Manufacturer	Part No. (Vendor)	Antenna Type	Peak Gain
1	WGT	13-130-XD2050 (Main)	PIFA Antenna	2.00 dBi for 2.4GHz
		13-130-XD2051 (Aux)		

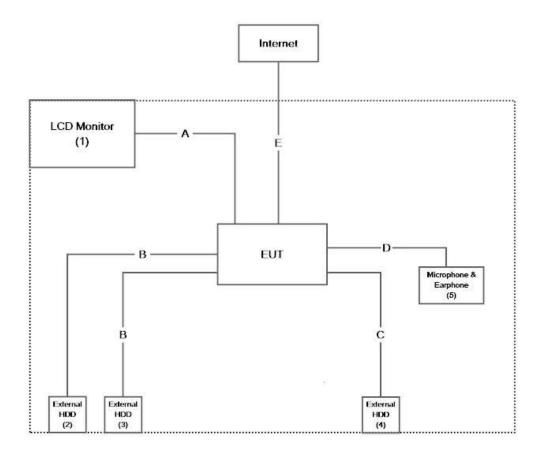
Note: The antenna of EUT is conforming to FCC 15.203.

Center Frequency of Each Channel:

contor i reque	conter requerey of Luch chamien						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 00:	2402 MHz	Channel 20:	2422 MHz	Channel 40:	2442 MHz	Channel 60:	2462 MHz
Channel 01:	2403 MHz	Channel 21:	2423 MHz	Channel 41:	2443 MHz	Channel 61:	2463 MHz
Channel 02:	2404 MHz	Channel 22:	2424 MHz	Channel 42:	2444 MHz	Channel 62:	2464 MHz
Channel 03:	2405 MHz	Channel 23:	2425 MHz	Channel 43:	2445 MHz	Channel 63:	2465 MHz
Channel 04:	2406 MHz	Channel 24:	2426 MHz	Channel 44:	2446 MHz	Channel 64:	2466 MHz
Channel 05:	2407 MHz	Channel 25:	2427 MHz	Channel 45:	2447 MHz	Channel 65:	2467 MHz
Channel 06:	2408 MHz	Channel 26:	2428 MHz	Channel 46:	2448 MHz	Channel 66:	2468 MHz
Channel 07:	2409 MHz	Channel 27:	2429 MHz	Channel 47:	2449 MHz	Channel 67:	2469 MHz
Channel 08:	2410 MHz	Channel 28:	2430 MHz	Channel 48:	2450 MHz	Channel 68:	2470 MHz
Channel 09:	2411 MHz	Channel 29:	2431 MHz	Channel 49:	2451 MHz	Channel 69:	2471 MHz
Channel 10:	2412 MHz	Channel 30:	2432 MHz	Channel 50:	2452 MHz	Channel 70:	2472 MHz
Channel 11:	2413 MHz	Channel 31:	2433 MHz	Channel 51:	2453 MHz	Channel 71:	2473 MHz
Channel 12:	2414 MHz	Channel 32:	2434 MHz	Channel 52:	2454 MHz	Channel 72:	2474 MHz
Channel 13:	2415 MHz	Channel 33:	2435 MHz	Channel 53:	2455 MHz	Channel 73:	2475 MHz
Channel 14:	2416 MHz	Channel 34:	2436 MHz	Channel 54:	2456 MHz	Channel 74:	2476 MHz
Channel 15:	2417 MHz	Channel 35:	2437 MHz	Channel 55:	2457 MHz	Channel 75:	2477 MHz
Channel 16:	2418 MHz	Channel 36:	2438 MHz	Channel 56:	2458 MHz	Channel 76:	2478 MHz
Channel 17:	2419 MHz	Channel 37:	2439 MHz	Channel 57:	2459 MHz	Channel 77:	2479 MHz
Channel 18:	2420 MHz	Channel 38:	2440 MHz	Channel 58:	2460 MHz	Channel 78:	2480 MHz
Channel 19:	2421 MHz	Channel 39:	2441 MHz	Channel 59:	2461 MHz		

- 1. The EUT is a Notebook with a built-in 2.4 GHz and 5 GHz WLAN and Bluetooth V5.0, V3.0, V2.1+EDR transceiver, this report for Bluetooth V3.0, V2.1+EDR.
- 2. These tests were conducted on a sample for the purpose of demonstrating compliance of Bluetooth transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.

Test Mode	Mode 1: Transmit - 1Mbps
	Mode 2: Transmit - 3Mbps


1.2. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Prod	luct	Manufacturer	Model No.	Serial No.	Power Cord
1	LCD Monitor	DELL	ST2320Lf	CN-0M2NN6-72872-22I-C9VS	Non-Shielded, 1.8m
2	External HDD	Transcend	TS1TSJ25H3B	F21786-0125	N/A
3	External HDD	Transcend	TS1TSJ25H3B	F21786-0005	N/A
4	External HDD	Transcend	TS1TSJ25MC	F30467-0003	N/A
5	Microphone &	DONEVED	MOE241		
5	Earphone	RONEVER	MOE241	N/A	N/A

Sign	al Cable Type	Signal cable Description
А	HDMI Cable	Non-shielded, 1.8m
В	USB Cable	Shielded, 0.5m, two PCS.
С	USB Type-C Cable	Shielded, 0.5m
D	Microphone & Earphone Cable	Non-shielded, 1.2m
E	LAN Cable	Non-shielded, 2.0m

1.3. Configuration of Tested System

1.4. EUT Exercise Software

- 1. Setup the EUT as shown in Section 1.4.
- 2. Execute software "DRTU V.11.1941.0-10270" on the EUT.
- 3. Configure the test mode, the test channel, and the data rate.
- 4. Press "OK" to start the continuous Transmit.
- 5. Verify that the EUT works properly.

1.5. Test Facility

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual
	Temperature (°C)	10~40 °C	26.5 °C
Conducted Emission	Humidity (%RH)	10~90 %	56.0 %
	Temperature (°C)	10~40 °C	26.1 °C
Radiated Emission	Humidity (%RH)	10~90 %	73.0 %
Constructions	Temperature (°C)	10~40 °C	28.0 °C
Conductive	Humidity (%RH)	10~90 %	72.9 %

USA:FCC Registration Number: TW3023Canada:IC Registration Number: 4075A

Site Description:	Accredited by TAF Accredited Number: 3023
Test Laboratory:	DEKRA Testing and Certification Co., Ltd
Address:	No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451,
	Taiwan, R.O.C.
Phone number:	886-2-8601-3788
Fax number:	886-2-8601-3789
Email address:	info.tw@dekra.com
Website:	http://www.dekra.com.tw

1.6. List of Test Equipment

For Conducted	measurements	/CB3/SR8
---------------	--------------	----------

	Equipment	Manufacturer	Model No.	Serial No.	Cali. Date	Due. Date
	Temperature Chamber	WIT GROUP	TH-1S-B	EQ-201-00146	2020/04/06	2021/04/05
Х	Spectrum Analyzer	Agilent	N9010A	MY53470892	2019/09/25	2020/09/24
Х	Peak Power Analyzer	Keysight	8990B	MY51000410	2020/07/01	2021/06/30
Х	Wideband Power Sensor	Keysight	N1923A	MY56080003	2020/07/01	2021/06/30
Х	Wideband Power Sensor	Keysight	N1923A	MY56080004	2020/07/01	2021/06/30
Х	EMI Test Receiver	R&S	ESCS 30	100369	2019/11/27	2020/11/26
Х	LISN	R&S	ENV216	101105	2020/04/27	2021/04/26
Х	LISN	R&S	ESH3-Z5	836679/014	2020/04/26	2021/04/25
Х	Coaxial Cable	DEKRA	RG 400	LC018-RG	2020/06/19	2021/06/18

Note:

1. All equipments are calibrated every one year.

2. The test instruments marked with "X" are used to measure the final test results.

3. Test Software version : DEKRA Conduction Test SystemV9.0.5.

	aulateu measuremen					
	Equipment	Manufacturer	Model No.	Serial No.	Cali. Date	Due. Date
Х	Test Receiver	R&S	ESR7	101602	2019/12/16	2020/12/15
Х	Signal Analyzer	R&S	FSV40	101869	2020/06/24	2021/06/23
Х	Loop Antenna	Teseq	HLA6121	37133	2019/10/15	2021/10/14
Х	Bilog Antenna	Schaffner Chase	CBL6112B	2916	2020/01/20	2021/01/19
Х	Coaxial Cable	DEKRA	L1907-001C	280280.F141.1000D	2020/07/09	2021/07/08
Х	Amplifier	EMCI	EMC001330	980254	2020/07/28	2021/06/10
Х	Horn Antenna	ETS-LINDGREN	3117	00228113	2020/05/28	2021/05/27
Х	Coaxial Cable	DEKRA	L1907-002C	280280.F141.1000D	2020/07/09	2021/07/08
Х	Amplifier	EMCI	EMC05820SE	980361	2019/09/23	2020/09/22
Х	Amplifier	SGH	PRAMP118	20200202	2020/03/17	2021/03/16
Х	Horn Antenna	Com-Power	AH-1840	101101	2019/10/31	2020/10/30
Х	Amplifier + Cable	EMCI	EMC184045SE	980369	2020/04/23	2021/04/22
	Bilog Antenna	Schaffner Chase	CBL6112B	2916	2020/01/20	2021/01/19
	Coaxial Cable	DEKRA	L1907-003C	00100A1B3A120M	2020/07/09	2021/07/08
	Amplifier	EMCI	EMC001330	980255	2020/03/17	2021/03/16
	Horn Antenna	ETS-LINDGREN	3117	00228111	2020/05/28	2021/05/27
	Amplifier	SGH	PRAMP0510	20200206	2020/03/17	2021/03/16
	Amplifier	SGH	PRAMP118	20200202	2020/03/17	2021/03/16
Х	Filter	MICRO-TRONICS	BRM50702	G270	2019/08/08	2020/08/07
Х	Filter	MICRO-TRONICS	BRM50716	G196	2019/08/08	2020/08/07

For Radiated measurements /Site3/CB8

Note:

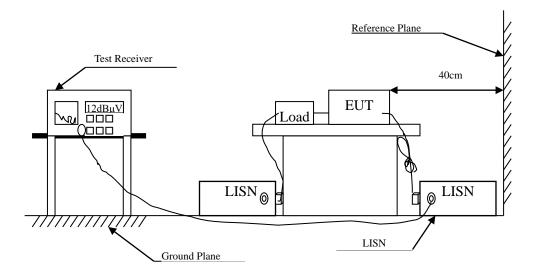
Loop Antenna is calibrated every two years, the other equipments are calibrated every one year. The test instruments marked with "X" are used to measure the final test results. 1.

2.

Test Software version : DEKRA Test SystemV1.1. 3.

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document, and is described in each test chapter of this report.


The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test item	Uncertainty		
Conducted Emission	±3.42dB		
Paals Power Output	Power Meter	Spectrum Analyzer	
Peak Power Output	±0.89dB	±2.06dB	
	9kHz~30M	1Hz: ±3.88dB	
	30MHz~10	GHz: ±4.06dB	
Radiated Emission	1GHz~180	GHz: ±3.71dB	
Radiated Emission	18GHz~400	GHz: ±3.73dB	
	40GHz~500	GHz: ±3.75dB	
	50GHz~325GHz: ±4.39dB		
RF antenna conducted test	±2.06dB		
	9kHz~30MHz: ±3.88dB		
	30MHz~1GHz: ±4.06dB		
Dand Edga	1GHz~18GHz: ±3.71dB		
Band Edge	18GHz~40GHz: ±3.73dB		
	40GHz~50GHz: ±3.75dB		
	50GHz~325GHz: ±4.39dB		
Channel Separation	±1544.74Hz		
Dwell Time	±2.3	31msec	
Occupied Bandwidth	±1544.74Hz		
Duty Cycle (2.4GHz)	±2.3	31msec	

2. Conducted Emission

2.1. Test Setup

2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit					
Frequency	Limits				
MHz	QP	AV			
0.15 - 0.50	66-56	56-46			
0.50-5.0	56	46			
5.0 - 30	60	50			

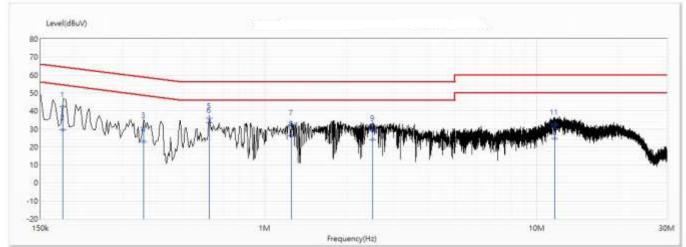
Remarks: In the above table, the tighter limit applies at the band edges.

2.3. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

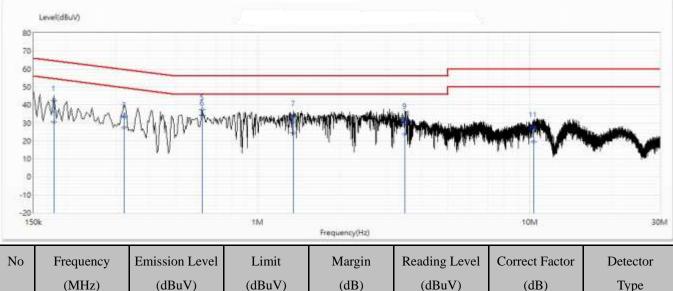

The EUT setup and the test procedure are according to ANSI C63.4, 2014 to comply with the requirements of FCC 47CFR Subpart C.

2.4. Test Result of Conducted Emission

Product	:	Notebook
Test Item	:	Conducted Emission Test
Test date	:	2020/08/15
Test Mode	:	Mode 2: Transmit - 3Mbps (2441MHz)

Line1

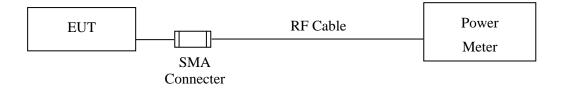
No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dB)	Туре
1	0.181	42.40	64.46	-22.06	32.59	9.80	QP
2	0.181	29.42	54.46	-25.03	19.62	9.80	AV
3	0.357	30.94	58.79	-27.84	21.15	9.80	QP
4	0.357	22.96	48.79	-25.82	13.17	9.80	AV
5	0.625	35.98	56.00	-20.02	26.18	9.80	QP
*6	0.625	33.75	46.00	-12.25	23.95	9.80	AV
7	1.25	32.06	56.00	-23.94	22.25	9.81	QP
8	1.25	26.00	46.00	-20.00	16.19	9.81	AV
9	2.492	29.02	56.00	-26.98	19.15	9.86	QP
10	2.492	23.90	46.00	-22.10	14.03	9.86	AV
11	11.592	32.69	60.00	-27.31	22.60	10.09	QP
12	11.592	24.61	50.00	-25.39	14.51	10.09	AV


Remark:

- 1. "*" means this data is the worst emission level;"!" means this data is over limit.
- 2. Emission Level=Reading Level + Correct Factor(Correct Factor=LISN Factor+Cable Loss).
- 3. Margin=Emission Level-Limit

Product	:	Notebook
Test Item	:	Conducted Emission Test
Test date	:	2020/08/15
Test Mode	:	Mode 2: Transmit - 3Mbps (2441MHz)

Neutral


No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dB)	Туре
1	0.178	42.54	64.58	-22.04	32.75	9.78	QP
2	0.178	30.63	54.58	-23.94	20.85	9.78	AV
3	0.323	33.19	59.62	-26.43	23.41	9.78	QP
4	0.323	27.49	49.62	-22.13	17.71	9.78	AV
5	0.625	37.19	56.00	-18.81	27.40	9.79	QP
*6	0.625	34.14	46.00	-11.86	24.35	9.79	AV
7	1.351	33.83	56.00	-22.17	24.03	9.80	QP
8	1.351	24.22	46.00	-21.78	14.41	9.80	AV
9	3.475	32.70	56.00	-23.30	22.82	9.88	QP
10	3.475	23.65	46.00	-22.35	13.77	9.88	AV
11	10.337	27.89	60.00	-32.11	17.79	10.09	QP
12	10.337	19.48	50.00	-30.52	9.39	10.09	AV

Remark:

- 1. "*" means this data is the worst emission level;"!" means this data is over limit.
- 2. Emission Level=Reading Level + Correct Factor(Correct Factor=LISN Factor+Cable Loss).
- 3. Margin=Emission Level-Limit

3. Peak Power Output

3.1. Test Setup

3.2. Limit

The maximum peak power shall be less 1Watt.

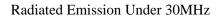
3.3. Test Procedure

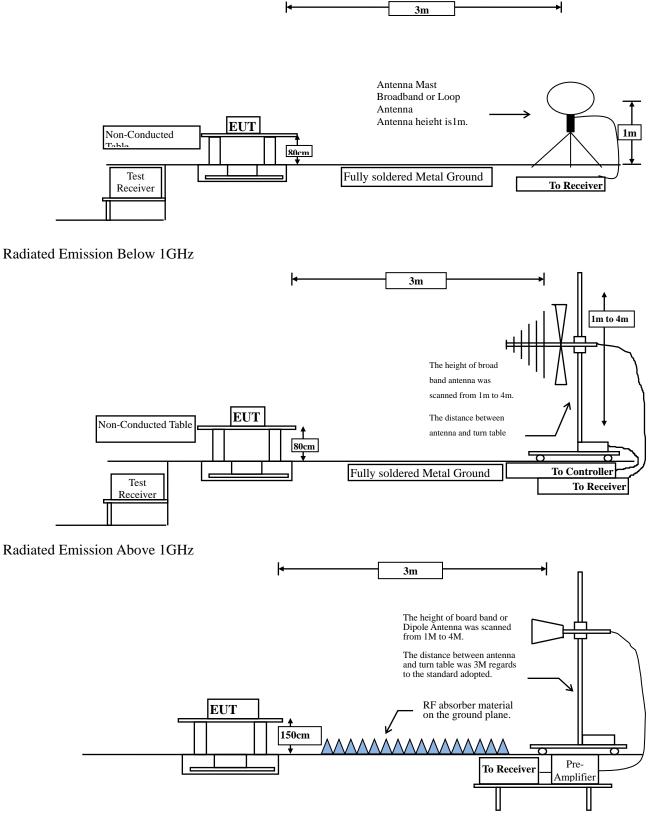
Tested according to FHSS test procedure of KDB 558074 section 9 (b for compliance to FCC 47CFR 15.247 requirements.

3.4. Test Result of Peak Power Output

Product	:	Notebook
Test Item	:	Peak Power Output
Test Mode	:	Mode 1: Transmit - 1Mbps
Test Date	:	2020/08/28

Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402	8.42	1 Watt= 30 dBm	Pass
Channel 39	2441	8.89	1 Watt= 30 dBm	Pass
Channel 78	2480	9.13	1 Watt= 30 dBm	Pass


Product	:	Notebook
Test Item	:	Peak Power Output
Test Mode	:	Mode 2: Transmit - 3Mbps
Test Date	:	2020/08/28


Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402	7.78	1 Watt= 30 dBm	Pass
Channel 39 2441		7.68	1 Watt= 30 dBm	Pass
Channel 78	2480	7.90	1 Watt= 30 dBm	Pass

4. Radiated Emission

4.1. Test Setup

4.2. Limits

> General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency MHz	Field strength	Measurement distance				
	(microvolts/meter)	(meter)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30	30	30				
30-88	100	3				
88-216	150	3				
216-960	200	3				
Above 960	500	3				

Remarks: 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

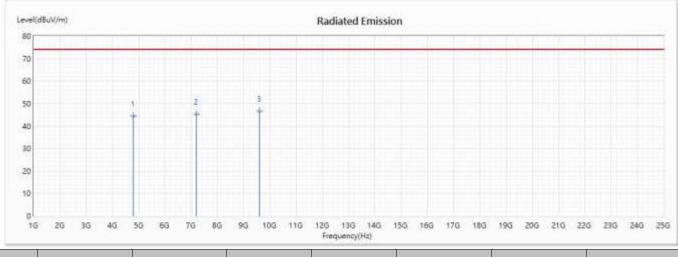
The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.


The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

4.4. Test Result of Radiated Emission

Product	:	Notebook
Test Item	:	Harmonic Radiated Emission
Test Mode	:	Mode 1: Transmit - 1Mbps(2402MHz)
Test Date	:	2020/07/28

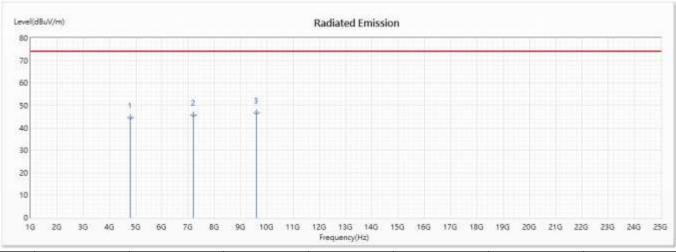
Horizontal

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	4804	44.56	74.00	-29.44	56.79	-12.23	РК
2	7206	45.36	74.00	-28.64	58.22	-12.86	РК
* 3	9608	46.56	74.00	-27.44	59.88	-13.32	РК

Note:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Test Item

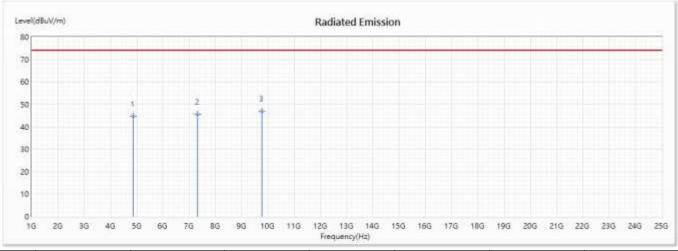
: Notebook

- tem : Harmonic Radiated Emission
- Test Mode : Mode 1: Transmit 1Mbps(2402MHz)
- Test Date : 2020/07/28

Vertical

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	4804	44.63	74.00	-29.37	56.86	-12.23	РК
2	7206	45.57	74.00	-28.43	58.43	-12.86	РК
* 3	9608	46.75	74.00	-27.25	60.07	-13.32	РК

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

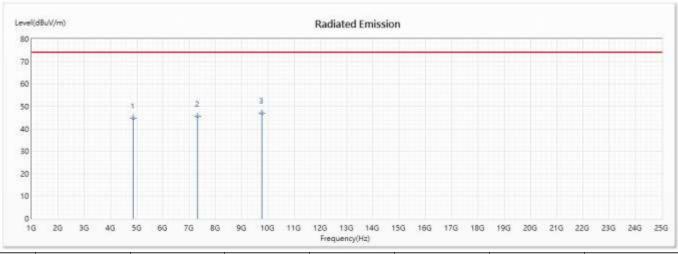


Product	:
Test Item	:
Test Mede	

NotebookHarmonic Radiated Emission

- Test Mode : Mode 1: Transmit 1Mbps(2441MHz)
- Test Date : 2020/07/28

Horizontal


No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	4882	44.66	74.00	-29.34	56.08	-11.42	РК
2	7323	45.55	74.00	-28.45	59.02	-13.47	РК
* 3	9764	46.83	74.00	-27.17	59.15	-12.32	РК

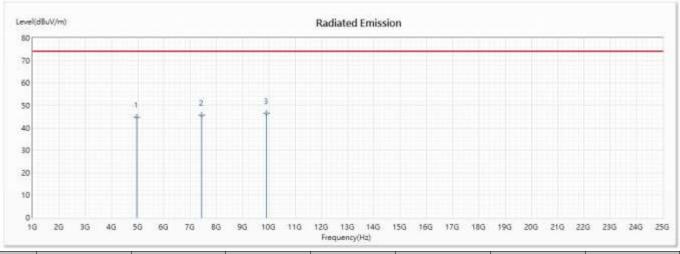
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Product Test Item
 - : Notebook
 - tem : Harmonic Radiated Emission
- Test Mode : Mode 1: Transmit 1Mbps(2441MHz)
- Test Date : 2020/07/28

Vertical

1	No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
		(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
	1	4882	44.72	74.00	-29.28	56.14	-11.42	РК
	2	7323	45.61	74.00	-28.39	59.08	-13.47	РК
\$	* 3	9764	46.89	74.00	-27.11	59.21	-12.32	РК

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

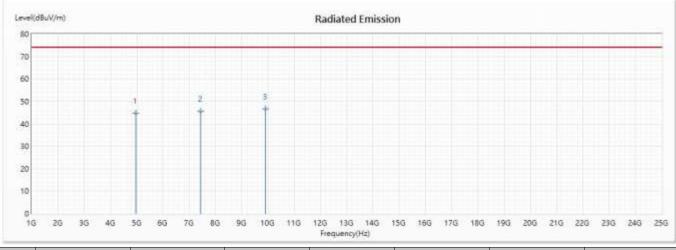

Product	:
Test Item	:

: Harmonic Radiated Emission

Notebook

- Test Mode : Mode 1: Transmit 1Mbps(2480MHz)
- Test Date : 2020/07/28

Horizontal

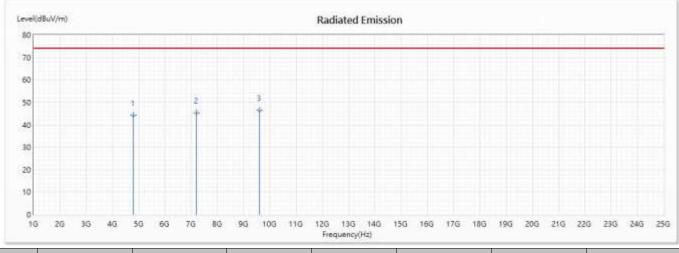

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	4960	44.83	74.00	-29.17	55.54	-10.71	РК
2	7440	45.61	74.00	-28.39	60.13	-14.52	РК
* 3	9920	46.53	74.00	-27.47	60.60	-14.07	РК

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Product Test Item
- : Notebook
 - n : Harmonic Radiated Emission
- Test Mode : Mode 1: Transmit 1Mbps(2480MHz)
- Test Date : 2020/07/28

Vertical

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	4960	44.81	74.00	-29.19	55.52	-10.71	РК
2	7440	45.58	74.00	-28.42	60.10	-14.52	РК
* 3	9920	46.58	74.00	-27.42	60.65	-14.07	РК

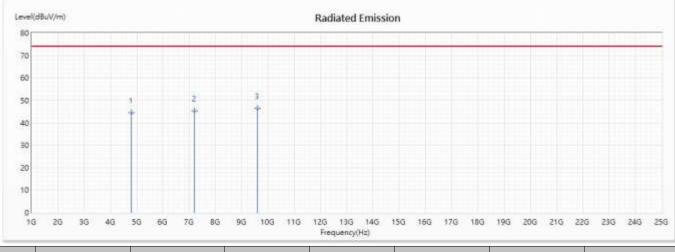

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:

- NotebookHarmonic Radiated Emission
- Test Item:Harmonic Radiated EmissionTest Mode:Mode 2: Transmit 3Mbps (2402MHz)
- Test Date
 - e : 2020/07/28

Horizontal

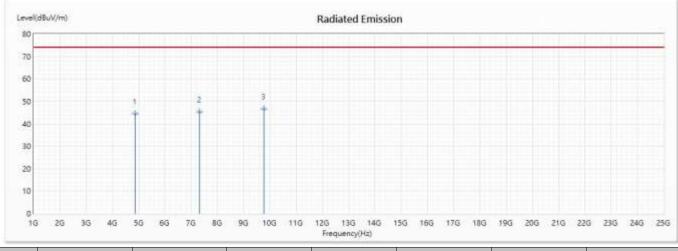
No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	4804	44.35	74.00	-29.65	56.58	-12.23	РК
2	7206	45.26	74.00	-28.74	58.12	-12.86	РК
* 3	9608	46.43	74.00	-27.57	59.75	-13.32	РК


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

Product	
Test Item	

- : Notebook
- h : Harmonic Radiated Emission
- Test Mode : Mode 2: Transmit 3Mbps (2402MHz)
- Test Date : 2020/07/28

Vertical


No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	4804	44.39	74.00	-29.61	56.62	-12.23	РК
2	7206	45.33	74.00	-28.67	58.19	-12.86	РК
* 3	9608	46.55	74.00	-27.45	59.87	-13.32	РК

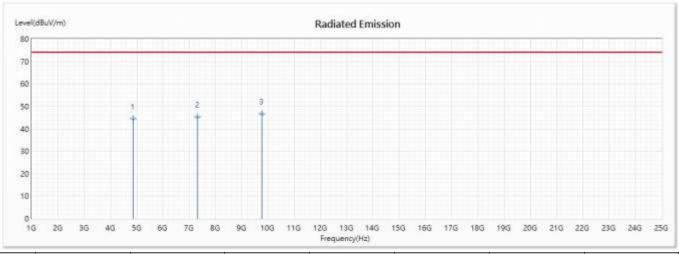
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

Product	:	Notebook
Test Item	:	Harmonic Radiated Emission
Test Mode	:	Mode 2: Transmit - 3Mbps (2441MHz)
Test Date	:	2020/07/28

Horizontal

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	4882	44.43	74.00	-29.57	55.85	-11.42	РК
2	7323	45.37	74.00	-28.63	58.84	-13.47	РК
* 3	9764	46.63	74.00	-27.37	58.95	-12.32	РК

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Test Item

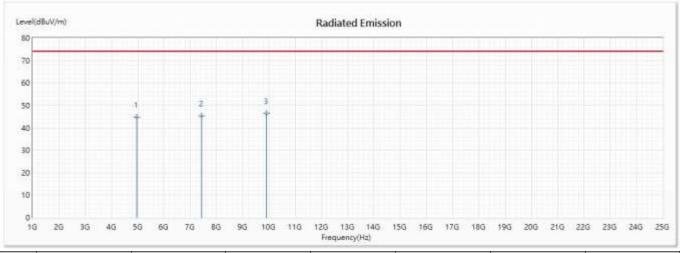
: Notebook

- tem : Harmonic Radiated Emission
- Test Mode : Mode 2: Transmit 3Mbps (2441MHz)
- Test Date : 2020/07/28

Vertical

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	4882	44.56	74.00	-29.44	55.98	-11.42	РК
2	7323	45.45	74.00	-28.55	58.92	-13.47	РК
* 3	9764	46.71	74.00	-27.29	59.03	-12.32	PK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

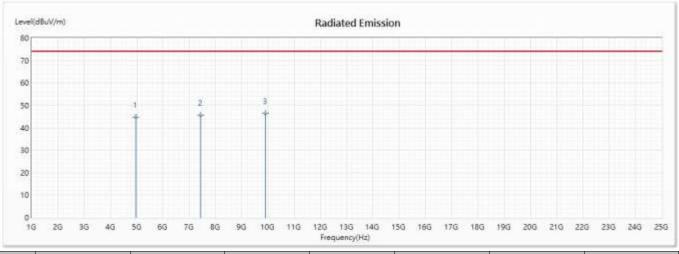


Product : Test Item :

NotebookHarmonic Radiated Emission

- Test Mode : Mode 2: Transmit 3Mbps (2480MHz)
- Test Date : 2020/07/28

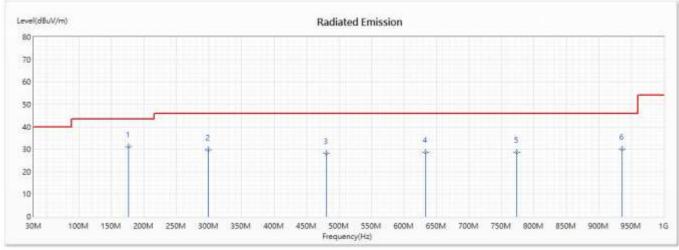
Horizontal


No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	4960	44.67	74.00	-29.33	55.38	-10.71	РК
2	7440	45.45	74.00	-28.55	59.97	-14.52	РК
* 3	9920	46.38	74.00	-27.62	60.45	-14.07	РК

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Product
 - : Notebook
- Test Item : Harmonic Radiated Emission
- Test Mode : Mode 2: Transmit 3Mbps (2480MHz)
- Test Date : 2020/07/28

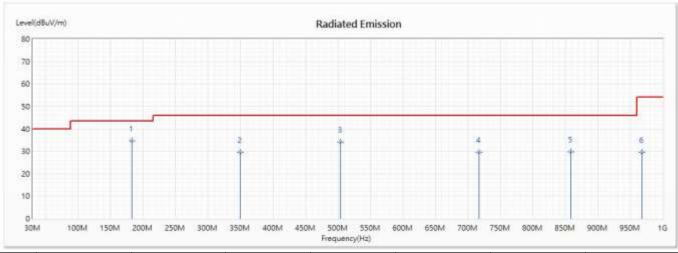
Vertical


No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	4960	44.75	74.00	-29.25	55.46	-10.71	РК
2	7440	45.66	74.00	-28.34	60.18	-14.52	РК
* 3	9920	46.45	74.00	-27.55	60.52	-14.07	РК

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Product :
- Notebook Test Item General Radiated Emission :
- Test Mode Mode 1: Transmit - 1Mbps (2441MHz) :
- Test Date : 2020/07/28

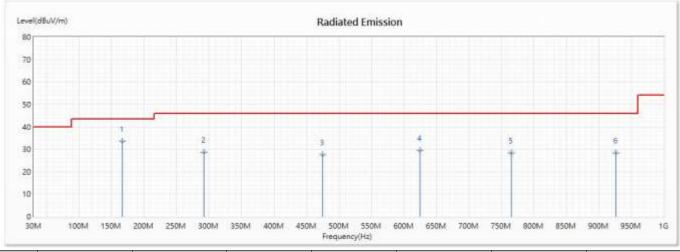
Horizontal


No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
* 1	176.47	31.03	43.50	-12.47	42.58	-11.55	QP
2	298.69	29.63	46.00	-16.37	36.78	-7.15	QP
3	481.05	28.00	46.00	-18.00	32.51	-4.51	QP
4	633.34	28.66	46.00	-17.34	30.03	-1.37	QP
5	773.99	28.56	46.00	-17.44	29.90	-1.34	QP
6	935.98	30.17	46.00	-15.83	32.14	-1.97	QP

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 4.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product :
- Notebook Test Item General Radiated Emission :
- Test Mode Mode 1: Transmit - 1Mbps (2441MHz) :
- Test Date : 2020/07/28

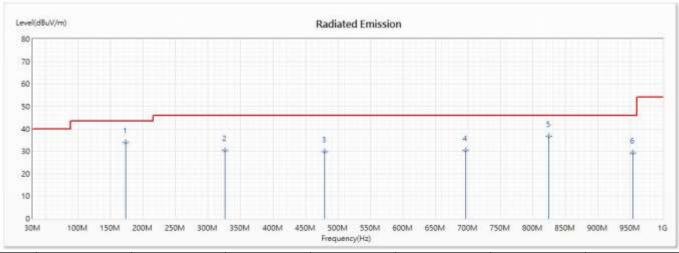
Vertical


No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
* 1	182.29	34.59	43.50	-8.91	45.80	-11.21	QP
2	349.13	29.49	46.00	-16.51	35.18	-5.69	QP
3	504.33	34.15	46.00	-11.85	37.57	-3.42	QP
4	716.76	29.49	46.00	-16.51	31.59	-2.10	QP
5	858.38	29.64	46.00	-16.36	31.06	-1.42	QP
6	967.99	29.49	54.00	-24.51	30.83	-1.34	QP

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 4.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product :
- Notebook Test Item General Radiated Emission :
- Test Mode Mode 2: Transmit - 3Mbps (2441MHz) :
- Test Date : 2020/07/28

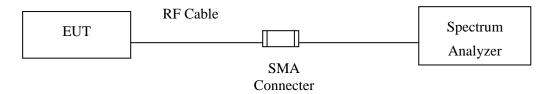
Horizontal


No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
* 1	166.77	33.55	43.50	-9.95	45.62	-12.07	QP
2	291.9	28.68	46.00	-17.32	37.54	-8.86	QP
3	475.23	27.60	46.00	-18.40	31.79	-4.19	QP
4	624.61	29.39	46.00	-16.61	30.38	-0.99	QP
5	765.26	28.43	46.00	-17.57	29.43	-1.00	QP
6	926.28	28.36	46.00	-17.64	31.27	-2.91	QP

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 4.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product :
- Notebook Test Item General Radiated Emission :
- Test Mode Mode 2: Transmit - 3Mbps (2441MHz) :
- Test Date : 2020/07/28

Vertical


No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	173.56	33.79	43.50	-9.71	45.54	-11.75	QP
2	325.85	30.35	46.00	-15.65	36.73	-6.38	QP
3	480.08	29.66	46.00	-16.34	34.23	-4.57	QP
4	696.39	30.28	46.00	-15.72	32.45	-2.17	QP
* 5	824.43	36.70	46.00	-9.30	38.68	-1.98	QP
6	953.44	29.15	46.00	-16.85	30.72	-1.57	QP

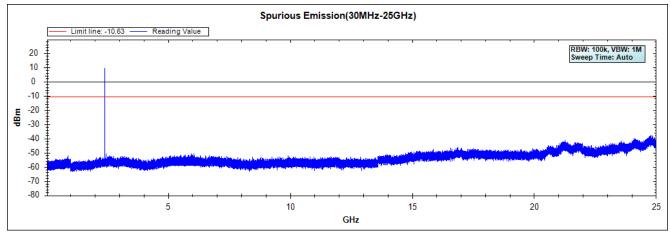
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Emission Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 4.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

5. **RF** Antenna Conducted Test

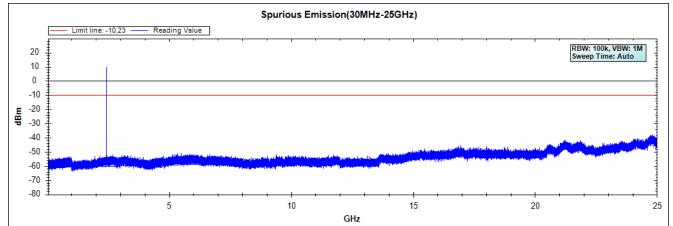
5.1. Test Setup

5.2. Limits

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


5.3. Test Procedure

Tested according to FHSS test procedure of KDB558074 section 9 b) for compliance to FCC 47CFR 15.247 requirements.


5.4. Test Result of RF Antenna Conducted Test

Product	:	Notebook
Test Item	:	RF Antenna Conducted Test
Test Mode	:	Mode 1: Transmit - 1Mbps
Test Date	:	2020/08/15

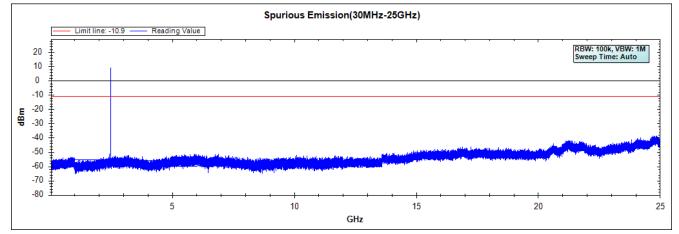
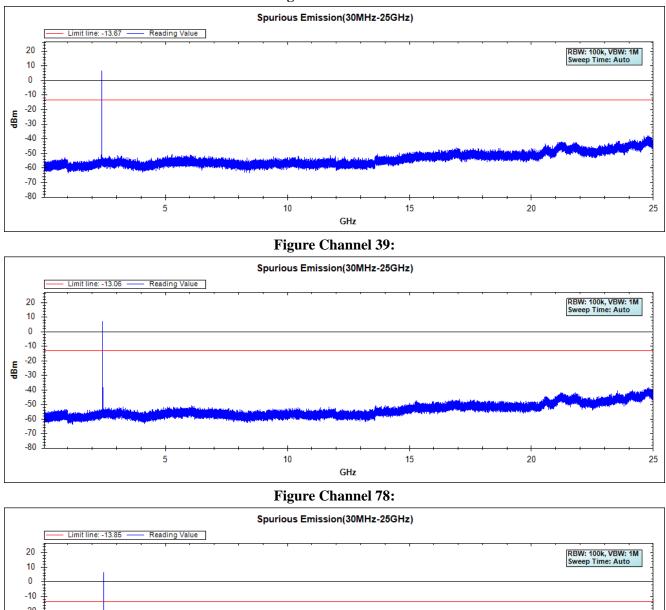

Figure Channel 00:

Figure Channel 39:

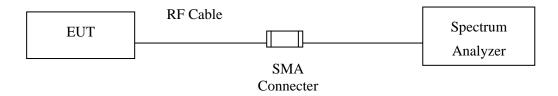

Figure Channel 78:

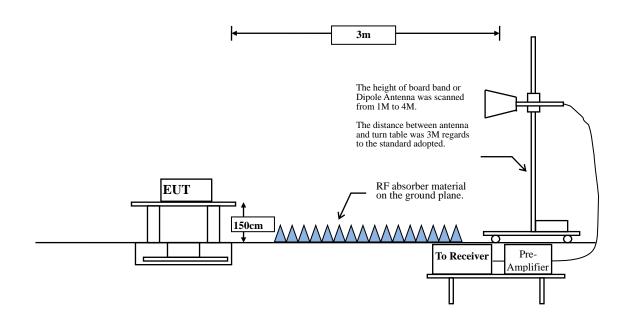
Note: The above test pattern is synthesized by multiple of the frequency range.

Product	:	Notebook
Test Item	:	RF Antenna Conducted Test
Test Mode	:	Mode 2: Transmit - 3Mbps
Test Date	:	2020/08/15

Figure Channel 00:

-20 đBm -30 -40 -50 -60 -70 -80 5 10 15 20 25 GHz


Note: The above test pattern is synthesized by multiple of the frequency range.


6. Band Edge

6.1. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.2. Limit

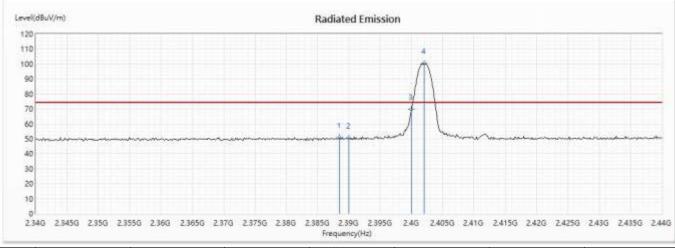
According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.3. Test Procedure

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.


The bandwidth setting below 1GHz and above 1GHz on the field strength meter is 120 kHz and 1MHz, respectively.

6.4. Test Result of Band Edge

Product	:	Notebook
Test Item	:	Band Edge
Test Mode	:	Mode 1: Transmit - 1Mbps (2402MHz)
Test Date	:	2020/07/28

Horizontal

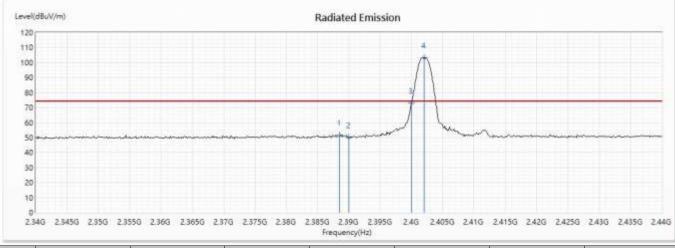
No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	2388.551	50.83	74.00	-23.17	37.99	12.84	РК
2	2390	50.20	74.00	-23.80	37.36	12.84	РК
3	2400	69.70			56.78	12.92	РК
! 4	2402.029	100.18			87.25	12.93	РК

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Emission Level = Reading Level + Correct Factor.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.

Channel No.	Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Measurement (dBµV/m)	Margin (dB)	Limit (dBuV/m)
00 (Average)	2388.551	50.83	-30.542	20.288	-33.712	54.000
00 (Average)	2390	50.2	-30.542	19.658	-34.342	54.000
00 (Average)	2400	69.7	-30.542	39.158		
00 (Average)	2402.029	100.18	-30.542	69.638		

- 1. Average Measurement=Peak Measurement + Duty Cycle Factor
- 2. The Duty Cycle is refer to section 11.


- Product : Test Item :
 - : Band Edge

Test Mode

: Mode 1: Transmit - 1Mbps (2402MHz)

Test Date : 2020/07/28

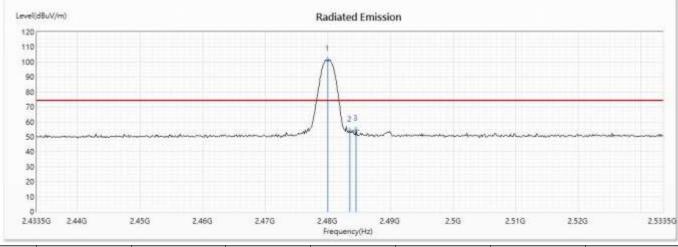
Vertical

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	2388.551	51.74	74.00	-22.26	38.90	12.84	РК
2	2390	50.11	74.00	-23.89	37.27	12.84	РК
3	2400	73.02			60.10	12.92	РК
! 4	2402.029	103.17			90.24	12.93	РК

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Emission Level = Reading Level + Correct Factor.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.

Channel No.	Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Measurement (dBµV/m)	Margin (dB)	Limit (dBuV/m)
00 (Average)	2388.551	51.74	-30.542	21.198	-32.802	54.000
00 (Average)	2390	50.11	-30.542	19.568	-34.432	54.000
00 (Average)	2400	73.02	-30.542	42.478		
00 (Average)	2402.029	103.17	-30.542	72.628		


- 1. Average Measurement=Peak Measurement + Duty Cycle Factor
- 2. The Duty Cycle is refer to section 11.

- Product : Test Item :
 - : Band Edge
- Test Mode
 - : Mode 1: Transmit 1Mbps (2480MHz)

Test Date : 2020/07/28

Horizontal

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
! 1	2480.022	101.23			87.82	13.41	РК
2	2483.5	53.47	74.00	-20.53	40.02	13.45	РК
3	2484.514	54.41	74.00	-19.59	40.95	13.46	РК

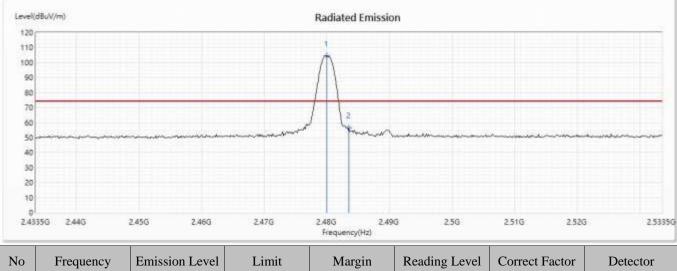
Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Emission Level = Reading Level + Correct Factor.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.

Channel No.	Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Measurement (dBµV/m)	Margin (dB)	Limit (dBuV/m)
78 (Average)	2480.022	101.23	-30.542	70.688		
78 (Average)	2483.5	53.47	-30.542	22.928	-31.072	54.000
78 (Average)	2484.514	54.41	-30.542	23.868	-30.132	54.000

- 1. Average Measurement=Peak Measurement + Duty Cycle Factor
- 2. The Duty Cycle is refer to section 11.

- Product : Test Item :
 - : Band Edge


Test Mode

Mode 1: Transmit - 1Mbps (2480MHz)

Test Date : 2020/07/28

:

Vertical

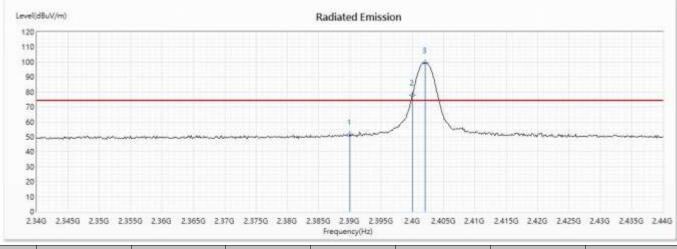
No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
! 1	2480.022	104.32			90.91	13.41	РК
2	2483.5	56.56	74.00	-17.44	43.11	13.45	РК

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Emission Level = Reading Level + Correct Factor.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.

Channel N	No. Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Measurement (dBµV/m)	Margin (dB)	Limit (dBuV/m)
78 (Averag	ge) 2480.022	104.32	-30.542	73.778		
78 (Averag	ge) 2483.5	56.56	-30.542	26.018	-27.982	54.000

- 1. Average Measurement=Peak Measurement + Duty Cycle Factor
- 2. The Duty Cycle is refer to section 11.


- Product : Test Item
 - Band Edge :

Test Mode

Mode 2: Transmit - 3Mbps (2402MHz)

: Test Date 2020/07/28 :

Horizontal

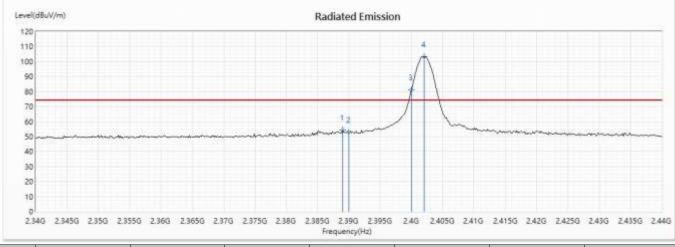
No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	2390	51.46	74.00	-22.54	38.62	12.84	РК
! 2	2400	77.88			64.96	12.92	РК
! 3	2402.029	99.33			86.40	12.93	РК

Note:

- All readings above 1GHz are performed with peak and/or average measurements as necessary. 1.
- Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. 2.
- 3. Emission Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of 4. average detection.

Channel No.	Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Measurement (dBµV/m)	Margin (dB)	Limit (dBuV/m)
00 (Average)	2390	51.46	-30.888	20.572	-33.428	54.000
00 (Average)	2400	77.88	-30.888	46.992		
00 (Average)	2402.029	99.33	-30.888	68.442		

- Average Measurement=Peak Measurement + Duty Cycle Factor 1.
- 2. The Duty Cycle is refer to section 11.


- Product : Test Item :
 - : Band Edge
- Test Mode :
- Test Date

Mode 2: Transmit - 3Mbps (2402MHz)

Notebook

Date : 2020/07/28

Vertical

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
1	2388.986	54.29	74.00	-19.71	41.45	12.84	РК
2	2390	52.80	74.00	-21.20	39.96	12.84	РК
! 3	2400	81.11			68.19	12.92	РК
! 4	2402.029	103.14			90.21	12.93	РК

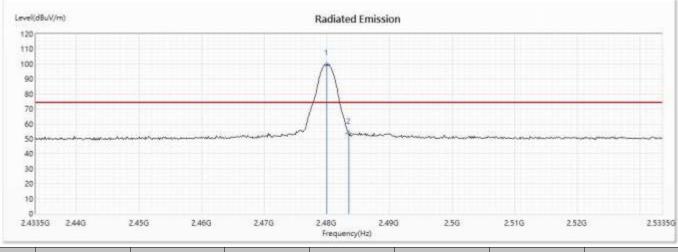
Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Emission Level = Reading Level + Correct Factor.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.

Channel No.	Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Measurement (dBµV/m)	Margin (dB)	Limit (dBuV/m)
00 (Average)	2388.986	54.29	-30.888	23.402	-30.598	54.000
00 (Average)	2390	52.80	-30.888	21.912	-32.088	54.000
00 (Average)	2400	81.11	-30.888	50.222		
00 (Average)	2402.029	103.14	-30.888	72.252		

- 1. Average Measurement=Peak Measurement + Duty Cycle Factor
- 2. The Duty Cycle is refer to section 11.

:



- Product Test Item
 - : Band Edge
- Test Mode
- : Mode 2: Transmit 3Mbps (2480MHz)

Notebook

Test Date : 2020/07/28

Horizontal

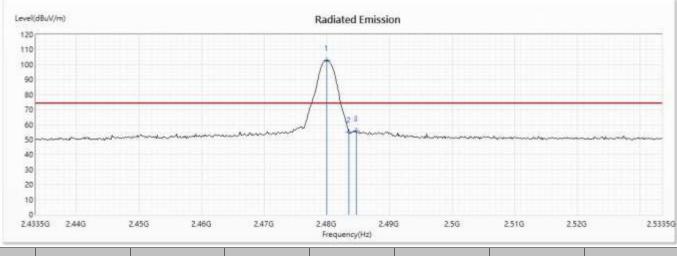
No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
! 1	2480.022	99.52			86.11	13.41	РК
2	2483.5	53.80	74.00	-20.20	40.35	13.45	РК

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Emission Level = Reading Level + Correct Factor.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.

Channel No.	Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Measurement (dBµV/m)	Margin (dB)	Limit (dBuV/m)
78 (Average)	2480.022	99.52	-30.888	68.632		
78 (Average)	2483.5	53.80	-30.888	22.912	-31.088	54.000

- 1. Average Measurement=Peak Measurement + Duty Cycle Factor
- 2. The Duty Cycle is refer to section 11.


- Product : Test Item :
 - : Band Edge
- Test Mode :

Mode 2: Transmit - 3Mbps (2480MHz)
 2020/07/28

Notebook

Test Date :

Vertical

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	Туре
! 1	2480.022	102.63			89.22	13.41	РК
2	2483.5	54.98	74.00	-19.02	41.53	13.45	РК
3	2484.659	55.66	74.00	-18.34	42.20	13.46	РК

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Emission Level = Reading Level + Correct Factor.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.

Channel No.	Frequency (MHz)	Measurement Factor		Measurement (dBµV/m)	Margin (dB)	Limit (dBuV/m)
78 (Average)	2480.022	102.63	-30.888	71.742		
78 (Average)	2483.5	54.98	-30.888	24.092	-29.908	54.000
78 (Average)	2484.659	55.66	-30.888	24.772	-29.228	54.000

- 1. Average Measurement=Peak Measurement + Duty Cycle Factor
- 2. The Duty Cycle is refer to section 11.

Product	:	Notebook
Test Item	:	Band Edge
Test Mode	:	Mode 1: Transmit - 1Mbps(Hopping off)

Measurement Level	Result
Δ (dB)	
> 20	PASS

Figure Channel 00:

BE Reisight Spectrum 2			0	and the second second	Serie Co
Center Freq 2	2.397000000 GHz	Trig: Free Run	Avg Type: Log-Pwr	03:05:09:AH Aug 15, 2020 TRACE 1 2 3 4 5 6 TVPE M dwwwww	Frequency
10 dB/div Ref	(FGain:Low Offset 0.5 dB 20.50 dBm		Mkr3 2.3	399 983 40 GHz -35.21 dBm	Auto Tune
10.5 0.500				11.35.000	Center Fre 2.397000000 GH
-19.5 29.5 39.5			¢ ³		Start Fre 2.39000000 GH
49.5	unhaniser transmission	m wane dow	www.wall		Stop Fre 2.404000000 GH
Start 2.390000 #Res BW 100		BW 300 kHz		Stop 2.404000 GHz 567 ms (40001 pts)	CF Ste 1.400000 MH
TAX REACT HER LOAD		0.55 (D-)	STREET, STREET	FORCEDOWARE -	Auto Ma
1 N I f 2 N 1 f 3 N 1 f 4 5	2,402 156 20 GHz 2,400 000 00 GHz 2,399 983 40 GHz	9.65 dBm -36.65 dBm -35.21 dBm			Freq Offse
6 7 8 9 10					
via.			STATU	6	

Figure Channel 78:

B Restaged Spectrum Analyzer		A CONTRACTOR OF THE OWNER	1/	December 11 of the local sector	- Harley and
Center Freq 2.489	9000000 GHz PNC Feat	Trig: Free Run	Avg Type: Log-Pwr	03-15-20 AM Aup 15, 2020 TRACE 1 2 3 4 5 6 TVPE M MANAGEM	Frequency
Ref Offset 10 dB/div Ref 20.5	IFGain:Low	AAtten: 30 dB	Mkr3 2.4	474 85 GHz -47.50 dBm	Auto Tune
					Center Free 2.489000000 GH
950		2		-11,26 dfm	Start Free 2.478000000 GH
915	and Andrewshie	and annual a	and the second	a de transmissiones anticipas	Stop Fre 2.50000000 GH
Start 2.47800 GHz Res BW 100 kHz		V 300 kHz	Sweep (#Swp) 2.66		CF Ste 2.200000 MH Auto Ma
1 N 1 f 2 N 1 f 3 N 1 f 4 5 8	2.480 002 55 GHz 2.483 500 00 GHz 2.487 474 85 GHz	9.74 dBm -54.00 dBm -47.50 dBm	NCTON FUNCTION WOTH		Freq Offse
6 7 8 9 10 11					
via la		18 M.	STATUS	2014	

Product	:	Notebook
Test Item	:	Band Edge
Test Mode	:	Mode 1: Transmit - 1Mbps(Hopping on)

Measurement Level	Result
Δ (dB)	
> 20	PASS

Figure Channel 00 Hopping:

Trig: Free Run #Atten: 30 dB Trig: Free Run BAtten: 30 dB Trig: Free Run BAtten: 30 dB Mkr3 2.399 972 90 GHz -39.73 dBm -39.73 dBm	Auto Tun Center Fre 2000000 GH Start Fre
Mkr3 2.399 972 90 GHz -39.73 dBm	Center Fre 77000000 GH Start Fre
	Start Fre
3	
	가슴을 관광을 것
2.4	Stop Fre
Auto	CF Ste 1.400000 MF Ma
O.55 dBm dBm d2.20 dBm	Freq Offso 0 ⊨

Figure Channel 78 Hopping:

B Reislight Spectrum Analys		Constant States	10 5-00-000	Charles de la companya de la companya de	ALC: NOT THE REAL
Center Freq 2.4	89000000 GHz PNC: Feat	Trig: Free Run	Avg Type: Log-Pwr	03-17-25 AM Aug 15, 2020 TRACE 1 2 3 4 5 6 TVPE M WWWWW DET P N/N N N	Frequency
10 dB/div Ref 20	IFGain:Low set 0.5 dB 0.50 dBm	AAtten: 30 dB	Mkr3 2.4	47.64 dBm	Auto Tune
10.5 1.500					Center Free 2.489000000 GH
ms 295 395		•3			Start Free 2.479000000 GH
45.5 29.5	When and a share	hun	ardina Aanarahan maaning		Stop Fre 2.50000000 GH
Start 2.47800 GH Res BW 100 kHz	z #VB	W 300 kHz	Sweep (#Swp) 2.0	Stop 2.50000 GHz 567 ms (40001 pts)	CF Ste 2 200000 MH- Auto Ma
1 N I F 2 N I F 3 N I F 5 6	2,478 157 85 GHz 2,483 500 00 GHz 2,486 511 80 GHz	10.20 dBm -55.20 dBm -47.64 dBm	UNCTION FUNCTION WIGHT		Freq Offse 0 H
7 8 9 10					
180			97ATU	6	

Product	:	Notebook
Test Item	:	Band Edge
Test Mode	:	Mode 2: Transmit - 3Mbps(Hopping off)

Measurement Level	Result
Δ (dB)	
> 20	PASS

Figure Channel 00:

B Reisign Spectrum And		8	17 5-7/1654 (1997		A CONTRACTOR
Center Freq 2.3	197000000 GHz PNC Feat C	Trig: Free Run	Avg Type: Log-Pwr	05-12-33 PM Sep 02, 2020 TRACE 1 2 3 4 5 6 TVPE M WWWWW	Frequency
	fset0.5 dB 0,50 dBm	#Atten: 30 dB	Mkr3 2.3	399 973 95 GHz -41.08 dBm	Auto Tun
500				2	Center Fre 2.397000000 GH
990 195 195			3		Start Fre 2.39000000 GH
45.5 59.5 69.5	and the second	and the second			Stop Fre 2.404000000 GH
tart 2.390000 G Res BW 100 kH		W 300 kHz		Stop 2.404000 GHz 567 ms (40001 pts)	CF Ste 1.400000 Mi Auto Mi
1 N 1 f 2 N 1 f 4 5	2.402 150 60 GHz 2.400 000 00 GHz 2.399 973 96 GHz	6.84 dBm -41.32 dBm -41.08 dBm			Freq Offso 0 F
7 8 9 10 11					
80			97A718	6	

Figure Channel 78:

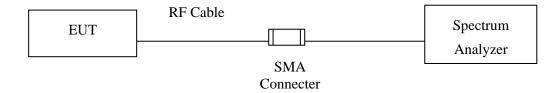
B Reisight Spectrum Ann	Alon - Sirept SA		1/2 A-2020-54 (1990)		
Center Freq 2.4	489000000 GHz	Stiest aver	Avg Type: Log-Pwr	05:20:03 PM Seg 02, 2020 TRACE 1 2 3 4 5 4 TVPE M MANNEN DET P NNNNN	Frequency
Ref O	IFGain:Lo Ifset 0.5 dB 20.50 dBm		Mkr3 2.4	489 590 70 GHz -42.77 dBm	Auto Tune
	20.30 (1011)				Center Free 2.489000000 GH
9 50		_		13.32 004	
196 295	Ly .	▲ ³			Start Free 2.478000000 GH
45.5	WI 2	and the second second	ارياني مسيحات ومحمد تعديه	and a second second second	Stop Fre 2.50000000 GH
tart 2.47800 G Res BW 100 kł		VBW 300 kHz	1.1.11	Stop 2.50000 GHz 567 ms (40001 pts)	CF Ste 2.200000 Mi- Auto Ma
1 N 1 f	2.480 158 20 GHz	6.68 dBm	ENCION FUNCTIONWOOTH	EDACTION WARE	
2 N 1 1 3 N 1 1 4 5 6 7	2.483 500 00 GHz 2.489 590 70 GHz				Freq Offse 0 H
8					
10					
84			STATLE	6	

Product	:	Notebook
Test Item	:	Band Edge
Test Mode	:	Mode 2: Transmit - 3Mbps(Hopping on)

Measurement Level	Result
Δ (dB)	
> 20	PASS

Figure Channel 00 Hopping:

B Reisight Spectrum An		1/2-11-11-11-11-11-11-11-11-11-11-11-11-11	//		- and a second
enter Freq 2.	397000000 GHz	Trig: Free Run	Avg Type: Log-Pwr	05:14:09 PM Sep 07, 2020 TRACE 1 2 3 4 5 6 TVPE M MMMM DET P N/N N N N	Frequency
	IFGain:Low Miset 0.5 dB 20.50 dBm	AAtten: 30 dB	Mkr3 2.3	399 468 55 GHz -42.76 dBm	Auto Tun
10.5 500 9.91				Jan Contraction	Center Fre 2.397000000 GH
19.5 29.5 29.5			A 3 ANIA	-1434 dbi	Start Fre 2.39000000 GH
49.5 29.5 Minute Ver eiter	-Witzersteinen werden aus wit	rde/trationauditulations	whend		Stop Fre 2.404000000 GH
art 2.390000 Res BW 100 k		W 300 kHz		top 2.404000 GHz 567 ms (40001 pts)	CF Ste 1.400000 MP Auto Ma
	2,403 142 85 GHz	5.75 dBm	STREET, STREET	FUNCTION WARE	Auto Ma
2 N 1 1 3 N 1 1 4 5	2.400 000 00 GHz 2.399 468 55 GHz	49.36 dBm -42.76 dBm		E	Freq Offs
6 7 8 9 10					
a			97A718		


Figure Channel 78 Hopping:

B Reisland Spert	ters Analytes - Sorge		Ween Lost Print			and the second
Center Fre	q 2.489000		Trig: Free Run	Avg Type: Log-P		Frequency
10 dB/div	Ref Offset 0.5 d	IFGain:Low	Aften: 30 dB	Mkr3	2.484 564 25 GH: -44.24 dBn	Auto Tune
10.5	M					Center Fre 2.499000000 GH
9 50	M.	3			0133 80	Start Free 2.479000000 GH
45.5 59.5 69.5	- 4	WANDER	Harristen File	munant	tayon printing will be	Stop Fre 2.50000000 GH
Start 2.478 Res BW 1		#VB	W 300 kHz	Sweep (#Swp)	Stop 2.50000 GH 2.667 ms (40001 pts	
1 N 1		478 822 25 GHz	6.67 dBm	ENGINE HURSDAW	HIGH HOUSE HIGH	Course ma
2 N 1 3 N 1 4	f 2.	483 500 00 GHz 484 554 25 GHz	-51.36 dBm -44.24 dBm			Freq Offse 0 H
5 6 7 8 9 10						
11	-				2014	
/86				97	ATUS	

7. Channel Number

7.1. Test Setup

7.2. Limit

Frequency hopping systems operating in the 2400-2483.5 MHz bands shall use at least 75 hopping frequencies.

7.3. Test Procedure

Tested according to FHSS test procedure of KDB558074 section 9 (b for compliance to FCC 47CFR 15.247 requirements.

7.4. Test Result of Channel Number

Product	:	Notebook
Test Item	:	Channel Number
Test Mode	:	Mode 1: Transmit - 1Mbps
Test Date	:	2020/08/15

Frequency Range	Measurement	Required Limit	Result	
(MHz)	(Hopping Channel)	(Hopping Channel)		
2402 ~ 2480	79	>75	Pass	

2402-2421MHz

2422-2441MHz

Heren Server Liden Seet 12	Salar Salar	B trop brow Mar test 8
enter Freq 2.411000000 GHz Avg True Free Run 700 Free Run	Fisquency	Center Freq 2.431500000 GHz Tree Free Rue Aug Type Lag Bur her (1) 1110 Frequency
Ref Office 0.5 all Mkr2 2.421 000 GH diam Ref 20.54 dBm 8.71 dBr	Auto Tune	Information 4 Antine 20 dB Information 4 Antine 20 dB Information 4 Antion 20 dB Information 4 Antion 2 Antion
. Innvivivvvv	Center Freq 2.411000000 GHz	
	StartFreq 2.400500000 GHz	105 StartFr 2.42900000 0
	Stop Freq 2.421500000 GHz	417 Bitop P/ 101 2.44150000 0 101 2.44150000 0
ant 2.40050 GH2 Ees BW 160 kH2 EVBW 180 kH2 Bweep (FBwp) 2.533 ms (1801 pc Care Laise	CF Step 2.100000 MHz Auto Man	Start 2.42150 GHz Start 2.42150 GHz Sters SW 100 kHz Strong 2.44150 GHz Sters SW 100 kHz Sters SW
1 M 1 f 2.002 006 0Hz 8.20 sBm N 7 2.421 006 GHz 8.71 sBm	FreqOffset	3 M f 2.422 00 GHz 5.35 dBm
		and allowed

2442-2461MHz

2462-2480MHz

Fitting Tames hidger Tame 18	- 10 M	B terge break later that U
enter Freq 2.451500000 GHz Freq Freq Run Aug Type Log Par Sector 2 (1) 100 (1) (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100	Fisquency	Center Freq 2.471500000 GHz Aug Type Lag Par Sector States (1111)
Ref officient and Mkr2 2.461 00 GHz bases Ref 20.59 dBm 9.78 dBm	Auto Tune	Ref Offset0.6 4H Anton 20 4B Mkr2 2.480 GHz Auto Tu Ref Offset0.6 4H Auto Tu 10 disus Ref 70.50 dBm 9.25 dBm
ลึกกลกกกกกกกกกกกก	Center Freq 2.451500000 GHz	
22	Start Freq 2.441900000 GHz	02 Startfr 36 244:90000 G
	Blop Freq 2.461500000 GHz	4++ 00 00 00 00 00 00 00 00 00 00 00 00 0
Itaut 2.44150 GHz Btop 2.46150 GHz Res BW 100 KHz EVBW 100 KHz Bweep (F5Wp) 2.467 ms (1801 pcs) Status 2.647 ms (1801 pcs)	CF Step 2.000000 MHz Auto Man	Start 2.46150 GHz Step 2.46150 GHz Step 2.46150 GHz Step 2.467 No (1801 pts) 2.00000 M Auto Step 2.467 No (1801 pts) 4.40 M
1 M f 2442000H2 319 fBm N f 2441000Hz 3173 fBm	Freq Offset 0 Hz	1 N I F 245000040 912800 N I F 24500004t 912800 FregOffs 0
at an at a state of the state o		and and a state of the state of

Product	:	Notebook
Test Item	:	Channel Number
Test Mode	:	Mode 2: Transmit - 3Mbps
Test Date	:	2020/08/15

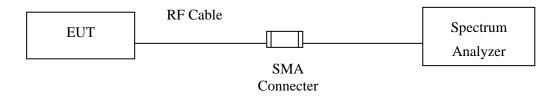
Frequency Range (MHz)	Frequency Range Measurement (MHz) (Hopping Channel)		Result	
2402 ~ 2480	79	>75	Pass	

2402-2421MHz

2422-2441MHz

Theory Connectation to	Logel M				and the later	EP 14+	nym laterau	hides the	ad M								and box in
Center Freq 2.4110		Trip Free Run	Ang Type Log Put	100-21 -24 Mill San Cir. 2007 194-22 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Fisquency	Cent	ter Freq	2.4315	00000 GH			ALC: NO	AugType	e Lag-Par			Frequency
Ref Office10.	IFGen Low	* Man 10 di	Mkr	2 2.421 000 GHz 1.57 dBm	Auto Tune	i	B	er Officei O	5 (8)	93 Faal in Sentine	BADAN 30	4		Mkr	2 2.441	00 GHz	Auto Tun
10 dBian Ref 20.50	din .		American	and a start of the	Center Freq 2.41100000 GHz		Al and	ef 20.50	dim .	-	min	an.	nin	-	Man	es dem	Center Fre 2.421500000 GH
103					Start Freq 2.40050000 GHz	105											Start Fre 2.421900000 GH
67.5					Btop Freq 2.421900000 GHz	475 = 0 60 S											510p Fre 2.441500000 GH
Res BW 100 kHz	FVB.	W 100 KH2	Sweep (FSwp)	6top 2.42150 GHz 2.533 ms (1001 pts)	CF Step 2.100000 MHz Auto Man	PRes	2.42150 BW 100) kHz		FVBV	V 100 KH2	_	a second second second	(PSwp) 2	.467 ms	4150 GHz (1001 pis)	CF Ste 2.000000 W
	2.402.006 GHz 2.421.006 GHz	0.34 dBm 1.57 dBm			Freq Offset 0 Hz	1			2.422.0 2.441.0	0 GH2 0 GH2	4.88.4B 5.53.4D						Freq Offse 0 H
						7											
100 C			ator	-		-								10.00			-

2442-2461MHz


2462-2480MHz

Through Spenners Saldcorer Tarrel Sal	Sails av	B treptonetides that U	1110
Center Freq 2.451500000 GHz True Free Rue Not True True Free Rue	Y Loughtered.	Center Freq 2.471500000 GHz	Frequency
Ref Offset0 and Mike's 20 dB	Auto Tune	Ref Officer 0.5 dB Mkr2 2,480 00 GHz	Auto Tune
	Center Freq 2.451500000 GHz		Center Freq 471900000 GHz
944 105 201	Start Freq 2.44 1900000 GHz		Start Freq 46150000 GHz
413 1012 1012	Btop Freq 2.451500000 GHz		Blop Freq #Evisionee Grip
Start 2.44150 GHz Stop 2.46150 GH Res 8W 100 kHz FVBW 100 kHz Sweep (FBwp) 2.467 ms (1001 pc Communication of the store of	CF Step 2.000000 MHz Auto Man	Start 2.46150 GHz Stop 2.48150 GHz Ress BW 100 kHz EVBW 100 kHz Swrep (FExp) 2.467 ms (1001 pcs)	CF Step 2.069000 MH 2 Mar
1 N 1 F 244200 GH2 691 684 N 1 F 246100 GHz 132 dBm 1 1 2 46100 GHz 132 dBm	FreqOffset	1 N f 2.462.00.0Hz 1.88.4Bm	Freq Offset 0 Hz
and a second		and allow	

8. Channel Separation

8.1. Test Setup

8.2. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

8.3. Test Procedure

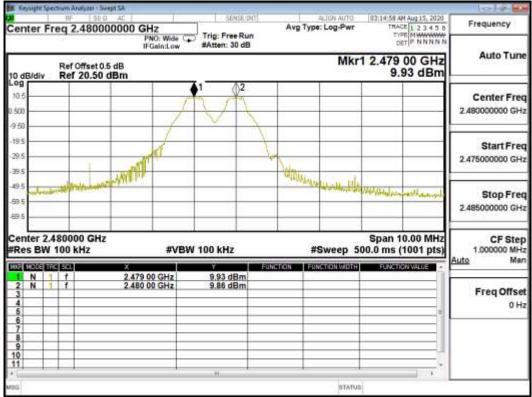
Tested according to FHSS test procedure of KDB558074 section 9 (b for compliance to FCC 47CFR 15.247 requirements.

8.4. Test Result of Channel Separation

Product	:	Notebook
Test Item	:	Channel Separation
Test Mode	:	Mode 1: Transmit - 1Mbps
Test Date	:	2020/08/15

	Fraguanay	Measurement	Limit	Limit of (2/3)*20dB		
Channel No.	Frequency (MHz)	Level (kHz)	(kHz)	Bandwidth (kHz)	Result	
00	2402	1000	>25 kHz	646.0	Pass	
39	2441	1000	>25 kHz	646.0	Pass	
78	2480	1000	>25 kHz	646.0	Pass	

NOTE: The 20dB Bandwidth is refer to section 10.


Keysight Spectrum Analyzer - Swept SA	WARANTESIN	V. Second		012
enter Freq 2.402000000 GHz	Trig: Free Run	Avg Type: Log-Pwr	03:04:50 AM Aug 15, 2020 TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P N N N N N	Frequency
IFGain:Low Ref Offset 0.5 dB 0 dB/div Ref 20.50 dBm	#Atten: 30 dB	Mkr	2 2.403 00 GHz 8.93 dBm	Auto Tun
500	Å	2		Center Fre 2.402000000 GF
95 95 85				Start Fre 2.397000000 GH
95 95 95 95		9N/www.	Address Martin Teach	Stop Fre 2.407000000 GH
enter 2.402000 GHz Res BW 100 kHz #VBW	100 kHz	#Sweep 5	Span 10.00 MHz 00.0 ms (1001 pts)	CF Ste 1.000000 MH Auto Mi
1 N 1 f 2,402,00 GHz 2 N 1 f 2,403,00 GHz 3 4 5 6 6	8,86 dBm 8.93 dBm			Freq Offs
7 8 9 0				

Channel 00 (2402MHz)

🛤 Keysight Sp	extrum Analyzer + 34		W/200411	100	100000-000			0.9
Center F	req 2.4410	00000 GHz PNO: Wide	SENSE	Avg1	ype: Log-Pwr	TRA	M Aug 15, 2020 CE 1 2 3 4 5 8 PE MWWWWW ET P NNNNN	Frequency
10 dB/div	Ref Offset 0 Ref 20.50	IFGain:Low	#Atten: 30 d	В	Mkr	2 2.442	00 GHz 14 dBm	Auto Tune
10.5				2				Center Freq 2.441000000 GHz
-19.5			up w		L.			Start Freq 2.436000000 GHz
-49.5 -59.5 -69.5	using last fraits	and the second sec			***Weblay	al approximation	and National	Stop Freq 2.446000000 GHz
Center 2. #Res BW			BW 100 kHz	SILVER I	#Sweep 5	00.0 ms (CF Step 1.000000 MHz Auto Man
1 N 2 N 3 4		2,441 00 GHz 2,442 00 GHz	9,51 dBm 10.14 dBm	1				Freq Offset 0 Hz
6 6 7 8 9 10 11 +			н					
MSG					STATU	5		

Channel 39 (2441MHz)

Channel 78 (2480MHz)

Product	:	Notebook
Test Item	:	Channel Separation
Test Mode	:	Mode 2: Transmit - 3Mbps
Test Date	:	2020/08/15

	Fraguanay	Measurement	Limit	Limit of (2/3)*20dB	Result	
Channel No.	Frequency (MHz)	Level	(kHz)	Bandwidth (kHz)		
	(WIIIZ)	(kHz)	(KIIZ)	Dandwiddii (KHZ)		
00	2402	1000	>25 kHz	990.0	Pass	
39	2441	1000	>25 kHz	988.0	Pass	
78	2480	1000	>25 kHz	990.0	Pass	

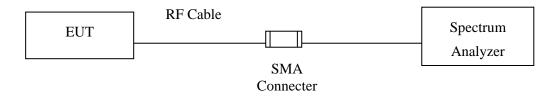
NOTE: The 20dB Bandwidth is refer to section 10.

			°° (-	Junior						
019 0			32.	WARNING	ter	lyter i Swepit S	rum Analy	Spects	nysight.	II II
Frequency	05:12:13 PM Sep 02, 2020	Type: Log-Pwr		- SENSE/D		50 0 /	RF	1		2
	TRACE 1 2 3 4 5 8 TYPE MWWWW	g Type: Log-Pwr		Trig: Free Run	Center Freq 2.402000000 GHz PNC: Wide		Cer			
	DET P NNNNN			#Atten: 30 dB	IFGain:Low					
Auto Tune	2 2.403 00 GHz 6.78 dBm	Mkr2				ffset 0.5 di 20.50 dB			B/div	
121000002000			2	1			10			Log
Center Free			- Marine	P						10.5
2.402000000 GH		5	1	1			-			0.500
		1	_	1			-		1	9.60
Start Free		In			100	-	-			19.5
2.397000000 GH		1	-		10	-	-		-	29.5
	hart	14	-		wind	-	-		-	39.5
Oton From	handleway					- An	mint	271	1.000	49.5
Stop Free 2.407000000 GH		_					-		F	-58.5
2407000000 GH							-		-	-89.5
1.12.22.2.2.2.2	0					011-		0.40		
CF Step 1.000000 MH:	Span 10.00 MHz 00.0 ms (1001 pts)	#Sweep 50		100 kHz	#VBW		02000 00 kH			
Auto Mar		EUNOTON/WIGH	FUNCTIO	Y				-	Made	-
	POWER UNIT WELDE		Pamento	3.42 dBm	2,402 00 GHz		t	1	N	1
Freq Offse				6.78 dBm	2.403 00 GHz		1	1	N	2
0 H										4
9.65									-	6
									-	7
									-	8
		+							-	10
				.)H	1					+
		STATUS								196

Channel 00 (2402MHz)

M Keysight Se	ectrum Analyzer 1 Sv		W/20041155			-	en anderen an	0 9 44
Center F	req 2.4410		Trig: Free Run	Avg Typ	ALIGN AUTO He: Log-Pwr	TYPE	123450	Frequency
	1 2012/08/07/08	PNO: Wide C IFGein:Low	#Atten: 30 dB		Mkr	0ET	PNNNNN	Auto Tune
10 dB/div	Ref Offset 0. Ref 20.50				MINI		B dBm	200000000000000000000000000000000000000
10.5			1	2				Center Freq
-9.60			1	1				2.441000000 GHz
-19.5		1 miles			m			Start Freq
-29.5		man			1	1940 mg		2.436000000 GHz
-49.5	the part the						Not any No	Stop Freq
-59.5								2.446000000 GHz
Center 2 #Res BW	441000 GHz		W 100 kHz		Cwaap 5	Span 10. 00.0 ms (10		CF Step 1.000000 MHz
NOR MODEL		#V54	V TOO KH2	EUNCTION EU				Auto Man
1 N 2 N 3	1 1	2.441 00 GHz 2.442 00 GHz	6.90 dBm 3.68 dBm					
4								Freq Offset 0 Hz
6							-1	
6 6 7 8 9								
10							-	
N9G					STATUS	1		
Joxel II					I DECORES	1		

Channel 39 (2441MHz)


Channel 78 (2480MHz)

9. Dwell Time

9.1. Test Setup

9.2. Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

9.3. Test Procedure

Tested according to FHSS test procedure of KDB558074 section 9 (b for compliance to FCC 47CFR 15.247 requirements.

CF Ste

0.1

9.4. **Test Result of Dwell Time**

Product	:	Notebook
Test Item	:	Dwell Time
Test Mode	:	Mode 1: Transmit - 1Mbps (Channel 00,39,78)
Test Date	:	2020/08/28

Frequency (MHz)	Time slot length (ms)	Hopping of Number	Sweep time (ms)	Dwell Time (ms)	Limit (ms)	Result
2402	2.890	95	31600	274.550	400	Pass
2441	2.880	98	31600	282.240	400	Pass
2480	2.880	113	31600	325.440	400	Pass

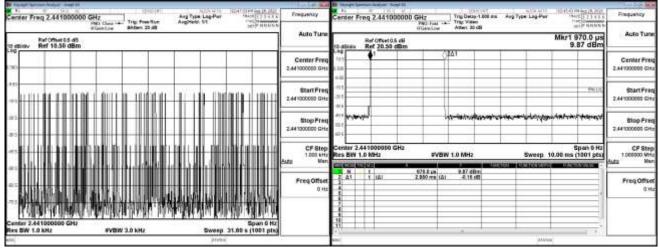
Dwell time = Time slot length(ms)*Hopping of Number

CH 00 Hopping of Number

111 11 11 11 11 er Freq 2.402000000 GHz enter Freq 2.402000000 GHz Aug Type Log-Pur Aughtein ST Recail St. Aug Type Log-P Trig Der Trig: Vie Trig: Free Run From File. ΔMkr2 2.890 ms 0.66 dB Auto Tu Ref 10.50 dBr Edit Register Names Center Fre 2 452000000 0 Register 194 StartFre Register 2 Stop Fre Register 2 Span 6 Sweep 10.00 ms (1901 p TYBW 1.0 MHz 1.0.0 671.0 µm 2.890 mm (Å) 8.71 dBo 0.56 dB M 41 1 147 Register FreqOffs

More 1 of 1

Sweep 31.60 s (1001 pts


CH39 Hopping of Number

V 1.0 KH2

FVBW 3.0 KHz

CH 39 Time slot length

CH 00 Time slot length

CH 78 Hopping of Number

CH 78 Hopping of Number		CH 78 Time slot length
Provide Sector S	Frequency	Control Freq 2.480000000 GHz Trg Detay 100 ms And Type Log Pur Sector Freq 2.480000000 GHz Trg Detay 100 ms And Type Log Pur Sector Freq 2.480000000 GHz Trg Detay 100 ms And Type Log Pur
Diel Class inter Trig Free Run AugNeid: 51	s confisient	PRO Fast Trip Video
Ref 075et65 d8 Ref 10.50 d8m	Auto Tune	Highwallow Water 20 cm
30	Center Freq 2.480000000 GHz	145 201 Center Fire 2.48000000 GH
	Start Freq 2.485000000 GHz	103 mc100 StartFre 2/45000000 GP
	Stop Freq 2.48000000 GHz	411 816 816 41 41 41 41 41 41 41 41 41 41 41 41 41
	CF Step 1.005 kHz Buto Man	Res BW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (1001 pts)
	FreqOffset 0 Hz	1 N L 928 as 3947 68m 0.1 L 161 2.359 ms (2) -8.15 60 0 0
senter 2/48000000 GHz Byan 0 KU B W L0 AHz W BW L0 AHz W BW L0 AHz		
W. Jitera	-	and allowed

Note:

The dwell times of the packet type of DH1, DH3, and DH5 are tested. Only the worst case is shown on the report.

Product	:	Notebook
Test Item	:	Dwell Time
Test Mode	:	Mode 2: Transmit - 3Mbps (Channel 00,39,78)
Test Date	:	2020/08/28

Frequency (MHz)	Time slot length (ms)	Hopping of Number	Sweep time (ms)	Dwell Time (ms)	Limit (ms)	Result
2402	2.890	104	31600	300.560	400	Pass
2441	2.890	96	31600	277.440	400	Pass
2480	2.890	90	31600	260.100	400	Pass

Dwell time = Time slot length(ms)*Hopping of Number

CH 00 Hopping of Number

CH 00 Time slot length

B Renat Sector Mater intel M	Locker met	B tropp (arms later live to
Center Freq 2.402000000 GHz Aughen to Aughent to Aughen to Aughent to Aughen to Aughen to Aughen to Aughen	Frequency	Center Freq 2.402000000 GHz Trip Desp-1.50 as Ang Type Lag Par Tel (1111) Frequency
in Gention AADers 22 dB	Auto Tune	Index Low Waters 20 db
reformates as to estav Ref 10.50 dBm	PLOT 14	Ref Officeto S will Mich 1970.0 µs Auto Tune 10 dBies Ref 20.50 dBm 5.50 dBm
190	Center Freq 2.40200000 GHz	Center Freq ZA200000 GHz
412	Start Freq 2.45200000 GHz	2/12/2000000 GHz
	510p Freq 2.40200000 GHz	An Brown Bro
es 	CF Step 1.000 kHz Auto Man	COLOR ADDRESS OF THE OWNER OWNER OF THE OWNER OWNE
	FreqOffset 0 Hz	III 015.6 as 5.60 dBm 2 0.1 1 0.52 dB Freq Offset 1 1 1 0.52 dB 0.52 dB 0.52 dB
Centur 2.40200000 GHz Res BW 1.0 kHz EVBW 3.0 kHz Every 31.60 v 1001 ptx		
alve attract	e	anu atteau

CH39 Hopping of Number

CH 39 Time slot length

Naraph Taintian Mulaur I Inapi M	Lociet man	B topp brown high the set the set to a set by a
Inder Freq 2.441000000 GHz Aug Train Log Pur Call Control of Contr	Frequency	Center Freq 2.441000000 GHz Trip Data tak ang Type Lag Par
PRO Class tab. Trig Free Ram Aughters ST 100 Class tab. WGate Low BATters 23:48	Auto Tune	In General Answer 30 da and an and a second se
michael Ref 10.50 dBm		Ref Offset0.5 ell ΔMkr2 2.890 ms Auto Tur 10 diluse Ref 20.50 dBm 0.89 dB
	Center Freq 2.441000000 GHz	2.41 22.1 Center Fin 2.44 1000000 GL
	Start Freq 2.44 1000000 GHz	100 103 101 101 101 101 101 101 101 101
	510p Freq 2.44100000 GHz	810 hyperice 51 december 201 d
։ Դեղեվելու մեն հմենչ Մել լմելու մնալ է էր, լույուն վարում է։ Մ	CF Step 1.000 kHz Auto Man	Res BW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (1001 pts)
Rear and the second	Freq Offset 0 Hz	1 N 1 0058 m 539 69m 2 A1 1 (A1 2.890 m (A) 0.89 45 Freq Office 0
ndur 2.441060000 GHz SPan 0 Hz SPan		
atsets.		anc attva

Center Pr 4933000000 0

> StartFr 00000 G

Stop Fre

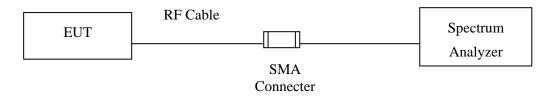
000000 12

CF St

FreqOffse

CH 78 Time slot length Center Freq 2.480000000 GHz nter Freq 2.480000000 GHz Aug Type Log-Put Aug/Hole: 51 Aug Type Log-Pu Trig Detay-1 Trig: Free Run BADer: 20 dB Auto Tun Mkr1 970.0 ps 8.10 dBm Ref 10.50 dBm Ref 20.50 dBr Center Fre 2.480000000 GH Start Fre 2.49000000 GH -Stop Fre 2.4 CF Step 1.000 kHz nter 2.480000000 GHz s BW 1.0 MHz Span 6 Hz Sweep 10.00 ms (1801 pts TVBW 1.0 MHz 878.8 µm 2.890 mm (Å) 8.10.8Bm 0.41 dB <u>м</u> д1 1 141 FreqOffse 0.14 Span 0 Hz Sweep: 31.60 s (1001 pts) FVBW 3.0 kHz 1.0 810

CH 78 Hopping of Number


Note:

The dwell times of the packet type of DH1, DH3, and DH5 are tested. Only the worst case is shown on the report.

10. Occupied Bandwidth

10.1. Test Setup

10.2. Limits

N/A

10.3. Test Procedure

Tested according to FHSS test procedure of KDB558074 section 9 (b for compliance to FCC 47CFR 15.247 requirements.

10.4. Test Result of Occupied Bandwidth

Product	:	Notebook
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 1: Transmit - 1Mbps
Test Date	:	2020/08/15

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	969		NA
39	2441	969		NA
78	2480	969		NA

0.9.	len course and autor of page.	I as ton word	5ENSE/DIT	4C	Analyzer Swi	(pertra	rsight S	No.
Frequency	03:09:40 AM Aug 15, 2020 TRACE 1: 2:3:4:5:6 TYPE M WWWWWW DET P: N N N N N	rg Type: Log-Pwr	Trig: Free Run	0000 GHz PNO: Wide Ca		Fre	ter	en
Auto Tun	2.401 523 GHz -13.32 dBm	Mkr2	#Atten: 30 dB	IFGain:Low	ef Offset 0.9		B/div	
Center Fre 2.402000000 GH		3	mm	¢2~~				.0g 10.5 500 9.50
Start Fre 2.400500000 GH	-1278-084	X			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_		19.5 29.5 39.5
Stop Fre 2.403500000 GH	and the second second				-	your a		19.5 59.5 19.5
CF Ste 300.000 kH Auto Ma	Span 3.000 MHz 200 ms (1001 pts)	/eep (#Swp) 3.	100 kHz	#VBW		N 30	ter 2 s BV	Re
Freq Offse 0 ⊦			7.24 dBm -13.32 dBm -12.82 dBm	2.402 012 GHz 2.401 623 GHz 2.402 492 GHz		1	NNN	1 3 4 5 6
			н.					7 8 9 10
		STATUS						96

Figure Channel 00:

🗱 Keysight Spectrum Analyzes		W/2004416-5	3. N.	1.000	an energy and a second	0 9 4
Center Freq 2.44	1000000 GHz PNO: Wide	Trig: Free Run	Avg Typ	e: Log-Pwr	03:13:13 AM Aug 15, 2020 TRACE 1 2 3 4 5 6 TYPE M WWWWW	DEPENDENT STORE STORE
Ref Offse 10 dB/div Ref 20.	IFGain:Low	#Atten: 30 dB		Mkr2	2.440 526 GHz -12.22 dBm	Auto Tune
10 dB/div Ref 20.1	au abm	- march	2 03			Center Freq 2.441000000 GHz
-19.5	and the second			-	~	Start Freq 2.439500000 GHz
-49.5					W WAR	Stop Freq 2.442500000 GHz
Center 2.441000 G #Res BW 30 kHz		3W 100 kHz		(#Swp) 3.	Span 3.000 MHz 200 ms (1001 pts)	
1 N 1 f 2 N 1 f 3 N 1 f 4	2,441 012 GHz 2,440 526 GHz 2,441 495 GHz	7.99 dBm -12.22 dBm -12.35 dBm				Freq Offset 0 Hz
8 9 10 11		.)1		STATUS		

Figure Channel 39:

Figure Channel 78:

🗱 Keysight Spie	extrum Analyzer			W/25/04115-	10 V.		A CONTRACTOR OF A		0 9 4
Center F		000000 GH	z E Wide Ca	SENSED	Avg 1 Trig: Free Run		G3:23:10 AM Aug 15, 2020 g Type: Log-Pwr TRACE 1: 2:3:4:5:0 TYPE M		Frequency
	Ref Offset	1FG	in:Low	#Atten: 30 dB 0ETP NNNN Mkr2 2.479 523 GHz -12.70 dBm					Auto Tune
10 dB/div 10.5	Ref 20.5	0 dBm		me	-	_ ³		12 22 404	Center Freq 2.48000000 GHz
-19.5 -29.5 -39.5	_	and the	_			S V	~		Start Freq 2.478500000 GHz
-49.5	<u> </u>						New.	waye	Stop Freq 2.481500000 GHz
Center 2. #Res BW	480000 GH 30 kHz	łz	#VBW	/ 100 kHz	Swe	ep (#Swp) 3	Span 3.00 200 ms (100	1 pts)	CF Step 300.000 kHz
1 N 1 2 N 1 3 N 1 4 6 6	1 1 1 1	2,480 012 2,479 523 2,480 492	GHz	7,68 dBm -12.70 dBm -12.66 dBm	FUNCTION	FUNCTION/VIDTH	FUNCTION W	LUE ·	Auto Man Freq Offset 0 Hz
7 8 9 10 11									
MSG						STATUS	-		

Product	:	Notebook
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 2: Transmit - 3Mbps
Test Date	:	2020/09/02

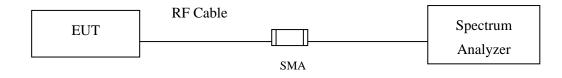
Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	1485		NA
39	2441	1482		NA
78	2480	1485		NA

Figure Channel 00:

B B B B B B B B B B B B B B B B B B B	Trig: Free Run #Atten: 30 dB		pe: Log-Pwr	TRACE 1 2 TYPE MW OET P N	3450 NNNN	Frequency
íB	#Atten: 30 dB		Mkeg			
			WIKF2	2.401 265 C	GHz	Auto Tun
						Center Fre 2.402000000 GH
J ²			283		ne	Start Fre 2.400500000 GF
						Stop Fre 2.403500000 GF
	100 kHz			200 ms (1001	pts)	CF Ste 300.000 ki uto M
2.402 150 GHz 2.401 266 GHz 2.402 750 GHz	4.62 dBm -16.95 dBm -15.70 dBm					Freq Offs 0 H
	2.402 150 GHz 2.401 266 GHz	#VBW 100 kHz 2.402 150 GHz 2.401 286 GHz -15 95 GHz -15 95 GHz	#VBW 100 kHz Sweep 2.402 150 GHz 4.62 dBm 2.402 750 GHz -15.95 dBm 2.402 750 GHz -15.70 dBm	#VBW 100 kHz Sweep (#Swp) 3.3 X 2 150 GHz 4.62 dBm 2.401 266 GHz -15.96 dBm 2.402 750 GHz -15.70 dBm	Image: state Image: state<	2 3 1530.000 #VBW 100 kHz Span 3.000 MHz #VBW 100 kHz Sweep (#Swp) 3.200 ms (1001 pts) 2.401 266 GHz -15.96 dBm 2.402 750 GHz -15.70 dBm

Keysight Spe	strum Analyster - Sv		10	W/200411	-			1000000	un en	0 9 4
Center Fi	eq 2.4410	00000 GH2	z S: Wide 🔾	Trig: Free R		Avg T	ALIGN AUTO ype: Log-Pwr	TRU	PM Sep 02, 2020 ACE 1 2 3 4 5 6 YPD M WWWWW	Frequency
		IFG	ain:Low	#Atten: 30 d			Mkr2	21-11-11-11-1	265 GHz	Auto Tune
10 dB/div	Ref Offset 0. Ref 20.50								.49 dBm	
10.5					01	-9 	-			Center Freq
0.500			~~~	~~~~	1	- has	- 13		-	2.441000000 GHz
-9.60	-	∮ ² ↔	-			-	100	-	15.25 dBm	an teacher ann an a
-19.5		×					in the	the states	mon	Start Freq 2.439600000 GHz
-39.5	~						_	V	-	2.43900000 GH2
-49.5	_						-		-	Stop Freq
-59.5										2.442500000 GHz
	41000 GHz			con arrestre tre					3.000 MHz	CF Step
#Res BW		·	#VBW	100 kHz			p (#Swp) 3			300.000 kHz Auto Man
1 N 1	1	2,441 153		4.75 dBm		TION	FUNCTION WIDTH	FUNCT	NON WALCE	
2 N 1 3 N 1	1	2.440 265 2.441 747		-15.49 dBm -15.26 dBm		_				Freq Offset
4 5 6									-	0 Hz
6 7 8 9						-				
9			_			-				
11				. 11					*	
MBG				.91			STATU	5	,	

Figure Channel 39:


Figure Channel 78:

🗱 Keysight Sp	extrum Analyzer 1			W/2004115			10000000	10.000	ueza esteren es	0 9 4
Center F	req 2.480	000000 GH	Z 0: Wide 🔾	5ENSE	un i	Avg Type: Log-Pwr		THA	M Sep 02, 2020	Frequency
	Ref Offset	1F0 0.5 dB	iain:Low	#Atten: 30 dB				2.479	Auto Tune	
10 dB/div 10.5	Ref 20.50		~		Ŷ.	~~~~~	~ ^3	-15	.85 dBm	Center Freq 2.48000000 GHz
-9.50 -19.5 -29.5) ² a					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	-15.54 dBm	Start Freq 2.478500000 GHz
-49.5 -59.5 -69.5										Stop Freq 2.481500000 GHz
Center 2. #Res BW	480000 GH 30 kHz	Iz	#VBV	V 100 kHz		Swee	p (#Swp) 3		3.000 MHz (1001 pts)	CF Step 300.000 kHz
1 N 2 N 3 N 4 5		2,480 150 2,479 260 2,480 750	GHz	4.46 dBm -15.85 dBm -15.90 dBm		TION	ERSTON/INTER	FUNCT	ENVALUE -	Auto Man Freq Offset 0 Hz
0 7 8 9 10 11				н						
MSG							STATUS	4		

11. Duty Cycle

11.1. Test Setup

11.2. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to ANSI C63.10 2013 for compliance to FCC 47CFR 15.247 requirements.

11.3. Test Result of Duty Cycle

Product	:	Notebook
Test Item	:	Duty Cycle
Test Mode	:	Mode 1: Transmit - 1Mbps

Spectrum	, Y	Spectrum 2	Spectra	im 3 🛛 🗶	Spectru	um 4 🛛 🕅	5	₩ V
Ref Level Att SGL TDF	103.00	1277 C	1.00 dB 🖝 RBW 100 ms 🖶 VBW	1 MHz 1 MHz				
1Pk Cirw	C	200 200	1.5		- CORE-		5 mm	
100 dBµV	M1 D2				_M1[1] _D2[1]	13.84	91.98 dBµV 13.841 ms -0.13 dB 2.971 ms	
80 dBµV	-			-		-		
70 dBµV			-	_				_
60.dBµV								_
SO dBut	vigen	manymenter	John Hur Miller	en mingh	muniching	whendarde	and the strange printer and	المسالد
40 dBµV-	-	-		_	-	-		
30 dBµV				_	_			_
20 dBµV				_	-	_		_
10 dBµV				_		_		_
CF 2.402 C	Hz	1	2	691 pts		11	10.0	ms/
Marker Type Rei	Tre	X-value	Y-va	lue I E	unction		unction Result	
M1 D2 M	1	13.841 2,971	ms 91.9	8 dBµV 0.13 dB	unction	UNLOUI RESUL		
SE M	1	2/3/1		110.00	1 3	teady		

Date: 28.JUL.2020 00:07:58

Time on of 100ms= 2.971ms Duty Cycle=2.971ms / 100ms= 0.02971 Duty Cycle correction factor= 20 LOG 0.02971= -30.542 dB

Duty Cycle correction factor	-30.542	dB
------------------------------	---------	----

Product	:	Notebook
Test Item	:	Duty Cycle
Test Mode	:	Mode 2: Transmit - 3Mbps

Spectrum	Sp	ectrum 2	×	Spectrum 3	× Spect	rum 4	(1)		
RefLevel 1 Att SGL TDF		uV Offse dB <mark>⊜ SWT</mark>	at 6.00 dB 100 ms	 RBW 1 MHz VBW 1 MHz 					
1Pk Cirw				10. S.S.				2	
100 dBµV 90 dBµV	M1 02			D2[1] M1[1]				2.76 dE 2.855 ms 89.72 dBpV 21.428 ms	
80 dBµ/V					-				
70 dBµV		_				_			
60 dBs/V						_	-	-	
50 dBuV	bahapah	e white	human ha	United and the second	diana and an	mitaplicat	-otward	ions have been a sub-	
30 dBµV						_		_	
20 dBµV						_	-		
10 dBµV									
CF 2.402 GH	2			691 pts	8	1		10.0 ms/	
Marker		10 C 11		6X 33 3		112			
Type Ref	Trc	X-value	e	Y-value	Function Function Re		Result		
M1 D2 M1	1		428 ms 855 ms	89.72 dBµV 2.76 dB					
	1.001					Ready	STREET,		

Date: 28.JUL.2020 02:51:25

Time on of 100ms=2.855ms

Duty Cycle=2.855ms / 100ms= 0.02855

Duty Cycle correction factor= 20 LOG 0.02855= -30.888 dB

Duty Cycle correction factor	-30.888	dB
------------------------------	---------	----

12. EMI Reduction Method During Compliance Testing

No modification was made during testing.