

1VV0301078 Rev.10 - 2015-11-11

Making machines talk.

APPLICABILITY TABLE

PRODUCT	
LN930	
LN930-AP	

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 2 of 88

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Notice

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

Copyrights

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

Computer Software Copyrights

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.

Page 3 of 88

Usage and Disclosure Restrictions

License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit

High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

Copyright © Telit Communications S.p.A. 2011.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 4 of 88

Contents

1	Inti	oduction1	1
	1.1	Scope 1	1
	1.2	Purpose 1	1
	1.3	Audience1	1
	1.4	Contact Information, Support 1	1
	1.5	Document Organization1	2
	1.6	Text Conventions	2
	1.7	Related Documents 1	2
2	M.2	2 Overview	3
	2.1	SKUs - 2G/3G/LTE M.2 Modules 1	3
	2.2	M.2 Module – Block Diagrams	7
	2.2.	1 M.2 HN930 Module	17
	2.2.	2 M.2 LN930-AP Module	19
	2.2.	3 M.2 LN930 Module	20
	<u></u>		1
	2.3	Host Interface Signals	21
3	2.3 M.2	Post Interface Signals	<u>2</u> 1 26
3	2.3 M.2 3.1	Host Interface Signals 2 Module Interface Details 2 Interprocessor Interface (IPC) 2	21 26 26
3	2.3M.23.13.1.	Host Interface Signals 2 Module Interface Details 2 Interprocessor Interface (IPC) 2 1 USB 2.0 High-Speed – IPC Interface	26 26
3	2.3 M.2 3.1 3.1. 3.1.	Host Interface Signals 2 Module Interface Details 2 Interprocessor Interface (IPC) 2 1 USB 2.0 High-Speed – IPC Interface 2 USB Super-speed IC (Reserved)	26 26 26 28
3	2.3 M.2 3.1 3.1. 3.1. 3.2	Host Interface Signals 2 Module Interface Details 2 Interprocessor Interface (IPC) 2 1 USB 2.0 High-Speed – IPC Interface 2 2 USB Super-speed IC (Reserved) 2 (U)SIM Interface 2	26 26 28 29
3	2.3 M.2 3.1 3.1. 3.1. 3.2 3.2.	Host Interface Signals 2 Module Interface Details 2 Interprocessor Interface (IPC) 2 1 USB 2.0 High-Speed – IPC Interface 2 USB Super-speed IC (Reserved) 2 USIM Interface 2 SIM Design Recommendations	26 26 28 29 29
3	2.3 M.2 3.1 3.1. 3.1. 3.2 3.2. 3.3	Host Interface Signals 2 Module Interface Details 2 Interprocessor Interface (IPC) 2 1 USB 2.0 High-Speed – IPC Interface 2 2 USB Super-speed IC (Reserved) 2 1 SIM Interface 2 3 SIM Design Recommendations 2	26 26 28 29 29
3	2.3 M.2 3.1 3.1. 3.2 3.2 3.3 3.4	Host Interface Signals 2 Module Interface Details 2 Interprocessor Interface (IPC) 2 1 USB 2.0 High-Speed – IPC Interface 2 2 USB Super-speed IC (Reserved) 2 1 SIM Design Recommendations 2 3 System Control Interface 3	26 26 28 29 29 30 32
3	 2.3 M.2 3.1 3.1. 3.2 3.2 3.3 3.4 3.4. 	Host Interface Signals 2 Module Interface Details 2 Interprocessor Interface (IPC) 2 1 USB 2.0 High-Speed – IPC Interface 2 2 USB Super-speed IC (Reserved) 2 1 SIM Interface 2 1 SIM Design Recommendations 2 3 System Control Interface 3 1 Power On & Reset 3	26 26 28 29 29 29 30 32 33
3	2.3 M.2 3.1 3.1. 3.2 3.2 3.3 3.4 3.4 3.4. 3.4.	Host Interface Signals 2 Module Interface Details 2 Interprocessor Interface (IPC) 2 1 USB 2.0 High-Speed – IPC Interface 2 2 USB Super-speed IC (Reserved) 2 (U)SIM Interface 2 1 SIM Design Recommendations 2 GNSS Interface 3 System Control Interface 3 1 Power On & Reset 3 2 Host Radio Disable Operation 3	26 26 28 29 29 30 32 33 33
3	2.3 M.2 3.1 3.1. 3.2 3.2 3.3 3.4 3.4 3.4. 3.4. 3.4.	Host Interface Signals 2 Interprocessor Interface (IPC) 2 I USB 2.0 High-Speed – IPC Interface 2 USB Super-speed IC (Reserved) 2 (U)SIM Interface 2 I SIM Design Recommendations 2 GNSS Interface 3 1 Power On & Reset 3 2 Host Radio Disable Operation 3	26 26 28 29 29 30 32 33 33 35
3	 2.3 M.2 3.1 3.1. 3.2 3.2 3.3 3.4 3.4. 3.4. 3.4. 3.4. 3.4. 3.4. 3.4. 	Host Interface Signals 2 Module Interface Details 2 Interprocessor Interface (IPC) 2 1 USB 2.0 High-Speed – IPC Interface 2 2 USB Super-speed IC (Reserved) 2 (U)SIM Interface 2 1 SIM Design Recommendations 2 6NSS Interface 3 System Control Interface 3 1 Power On & Reset 3 2 Host Radio Disable Operation 3 3 LED Interface – Status Indicator 3 4 Wake on WWAN Signal 3	26 26 28 29 29 30 32 33 33 35 36
3	2.3 M.2 3.1 3.1. 3.2 3.2 3.3 3.4 3.4 3.4. 3.4. 3.4. 3.4	Host Interface Signals 2 Interprocessor Interface (IPC) 2 I USB 2.0 High-Speed – IPC Interface 2 2 USB Super-speed IC (Reserved) 2 (U)SIM Interface 2 1 SIM Design Recommendations 2 GNSS Interface 3 1 Power On & Reset 3 2 Host Radio Disable Operation 3 3 LED Interface – Status Indicator 3 4 Wake on WWAN Signal 3 5 Dynamic Power Reduction 3	26 26 28 29 29 30 32 33 33 35 36 37
3	2.3 M.2 3.1 3.1. 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.4 3.4 3.4 3.4. 3.4.	Host Interface Signals 2 Interprocessor Interface (IPC) 2 I USB 2.0 High-Speed – IPC Interface 2 USB Super-speed IC (Reserved) 2 (U)SIM Interface 2 I SIM Design Recommendations 2 GNSS Interface 3 System Control Interface 3 LED Interface – Status Indicator 3 LED Interface – Status Indicator 3 Tunable Antenna Control Interface 3	26 26 28 29 29 30 32 33 33 35 36 37 39

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 5 of 88

1VV0301078 Rev.10 -	2015-11-11
---------------------	------------

	3.7	Power Supply Interface	₽2
	3.8	Trace & Debug Interface	₽2
	3.9	Configuration Pins	₽3
	3.10	Audio Pins (Reserved)	3
	3.11	No Connect Pins	-5
	3.12	Antenna Interface	5
,	Dev	valanmant Taala	7
4		ecopment roots	·/
	4.1	Carrier Board	./ / 0
	4.1. / 1	1 Flash100t	40 18
	4.1.3	3 System Trace Tool	49
	4.1.4	4 RF Calibration	49
	4.1.	5 Noise Profiling Scan Tool5	50
5	Win	dows Software Components5	51
	5.1	MBIM Toolkit	54
	5.1.	1 Windows [®] 7 MBIM driver	54
	Б 1 -	R = R = R = R = R = R = R = R = R = R =	57
	5.1	M 2 module Firmware Undate	57
	5.1.	4 End User Trace Tool	54
6	Lin	ux/Chrome Software Architecture5	5
	6.1	Overview5	5
	6.2	CMUX Multiplexer	6
	6.3	USB 2.0 HS Features	57
	6.4	USB Configuration	5 7
	6.4.	1 Modem Connection5	57
	6.4.	2 Network Connection	57
	6.4.	3 Default Configuration5	57
	6.5	LPM	8
	6.5.	1 Suspend/Resume and Remote Wake-up5	58
	6.5.	2 Android Software Components5	58
	6.5.3	3 Chrome Software Components5	<u>;</u> 9
	Figu	re 16 Chrome Software Architecture د	0

1VV0301078 Rev.10 - 2015-11-11

7 Ор	erating Environment	61
8 Po	wer Delivery Requirements	62
8.1	Electrical Parameters (3.3 V Power Supply)	62
8.2	Electrical Parameters - Host Interface Signals	63
8.3	Power Consumption	64
9 Otl	ner Information	66
9.1	EMI/EMC and Platform Noise	66
9.2	Platform Noise Mitigation - Adaptive Clocking	66
9.3	Thermal Monitoring	66
9.4	Seamless Roaming / Wifi Offload	67
9.5	Conducted Transmit Power	67
9.6	Receiver Sensitivity	68
9.7	Antenna Recommendations	71
9.8	GNSS Sensitivity	72
10 3	GPP Compliance	73
11 V	VWAN Card Type 3042-S3-B	74
11.1	Mechanical Dimensions	74
11.2		
	Land Pattern	76
11.3	Land Pattern Antenna Connector Locations	76 78
11.3 12 S	Land Pattern Antenna Connector Locations Safety Recommendations	76 78 79
11.3 12 9 13 0	Land Pattern Antenna Connector Locations Safety Recommendations Conformity assessment issues	76 78 79 80
11.3 12 5 13 0 13.1	Land Pattern Antenna Connector Locations Safety Recommendations Conformity assessment issues 1999/5/EC Directive	76 78 79 80 80
11.3 12 5 13 6 13.1 13.2	Land Pattern Antenna Connector Locations Safety Recommendations Conformity assessment issues 1999/5/EC Directive CE RF Exposure Compliance	76 78 79 80 80 82
11.3 12 9 13 0 13.1 13.2 13.3	Land Pattern Antenna Connector Locations Safety Recommendations Conformity assessment issues	76 78 79 80 80 82 83
11.3 12 S 13 C 13.1 13.2 13.3 14 F	Land Pattern Antenna Connector Locations Safety Recommendations Conformity assessment issues 1999/5/EC Directive CE RF Exposure Compliance R&TTE Regulation FCC/IC Regulatory notices	76 78 79 80 80 82 83 84
11.3 12 S 13 C 13.1 13.2 13.3 14 F 14.1	Land Pattern Antenna Connector Locations Safety Recommendations Conformity assessment issues	76 78 79 80 82 83 83 84
11.3 12 S 13 C 13.1 13.2 13.3 14 F 14.1 14.2	Land Pattern Antenna Connector Locations Safety Recommendations Conformity assessment issues 1999/5/EC Directive CE RF Exposure Compliance R&TTE Regulation: FCC/IC Regulatory notices Modification statement Manual Information to the End User	76 78 79 80 80 82 83 83 84 84

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

15	D	Ocument History	86
1	4.6	End Product Labeling	85
1	4.5	Radiation Exposure Statement	85
1	4.4	FCC Class B digital device notice	84

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 8 of 88

Figure 1 M.2 HSPA+ Block Diagram	18
Figure 2 M.2 APAC LTE Module Block Diagram	19
Figure 3 M.2 LTE Module Block Diagram	20
Figure 4 Detailed Interconnection of M.2 LTE Modem RF Engine	
Figure 5 PCI Express M.2 Module Interface	
Figure 6 GNSS Connections and Interface	31
Figure 7 Typical LED Connection	
Figure 8 Antenna Control – Connections Detail	39
Figure 9 In-Device Coexistence Architecture	40
Figure 10 RF Antenna – Coaxial Connector Location	46
Figure 11 M.2 Carrier Board	48
Figure 12 Windows 7 Software Architecture	52
Figure 13 Windows 8 Software Architecture	53
Figure 14 Linux Software Architecture	55
Figure 15 Android Software Architecture	59
Figure 16 Chrome Software Architecture	60
Figure 17 WWAN Card 3042 Mechanical Dimensions	74
Figure 18 WWAN Card 3042 Slot Key Details	75
Figure 19 WWAN Card Type 3042 Top-Side Mounting Land Pattern	76
Figure 20 WWAN Card 3042 Mid-plane Land Pattern with Slot Key Removed	77
Figure 21 Antenna Connector Location	78

Page 9 of 88

Table 1 M 2 Module - General Feature	14
Table 2 M 2 Module - RF Band Support	15
Table 3 M 2 Module - Data Services	17
Table 4 M 2 Host Interface Signals	22
Table 5 USB HS Interprocessor Communications Interface	27
Table 6 USB SSIC – ICP Interface	
Table 7 (U)SIM Interface Signals	
Table 8 X-GOLD [™] Baseband to GNSS Interface Signals	32
Table 9 GNSS Module Interface Signals	32
Table 10 Power-on & Reset Signals	33
Table 11 Radio Disable Signal	34
Table 12 Host Radio Disable Interface (W DISABLE#)	35
Table 13 LED#1 Signal.	36
Table 14 LED State Indicator	36
Table 15 Wake on WWAN Signal	37
Table 16 DPR#/ SAR Support Signal	38
Table 17 Tunable Antenna Control Signals	39
Table 18 Coexistence – Hardware Synchronization Signals	41
Table 19 Power & Ground Signals	42
Table 20 M.2 Configuration Pins	43
Table 21 Audio Signals (Future development)	43
Table 22 No Connect Pins	45
Table 23 Antenna Requirements	45
Table 24 Operating Environment	61
Table 25 M.2 Module Power Delivery Requirements - Ultrabook	62
Table 26 VBAT Power Delivery Requirements – Direct Connections (Tablet)	62
Table 27 DC Specification for 3.3V Logic Signaling	63
Table 28 DC Specification for 1.8V Logic Signaling	63
Table 29 LTE Power Consumption	64
Table 30 UMTS Power Consumption	64
Table 31 GSM Power Consumption	65
Table 32 Conducted Transmit Power – 2G	67
Table 33 Conducted Transmit Power – 3G	67
Table 34 Conducted Transmit Power – LTE	68
Table 35 Rx Sensitivity - GSM	68
Table 36 Rx Sensitivity - UMTS	69
Table 37 Rx Sensitivity - LTE	69
Table 38 Antenna Recommendation	71
Table 39 Antenna Recommendation - Bandwidth of Main & Diversity Antenna	71
Table 40 GNSS Sensitivity	72
I able 40 Antenna Connector Assignment	78

Page 10 of 88

1 Introduction

This document is a technical specification for Telit's next generation form factor M.2 module family. The next generation form factor M.2 module family is a natural transition from the PCI Express Mini Card and Half Mini Card to a smaller form factor size. The M.2 Card Type 3042 offers single sided component mounting, 75 pins (8 dedicated for key), in a compact size (30 mm x 42 mm). A range of 2G/3G/4G (LTE) M.2 modules supporting multiple operating systems and unique features in the WWAN Card Type 3042 form factor are available.

1.1 Scope

The document will cover the features of the M.2 modules presently available. It will also identify the M.2 module application interface along with hardware, software, reliability, and mechanical specifications.

1.2 Purpose

The intent of this document is to provide design guidelines and information for each M.2 module.

In addition to the M.2 module family features and performance metrics, this document describes the interface signals, operating conditions, physical and mechanical requirements of the M.2 cards.

1.3 Audience

This document is intended for editors who are about to write or edit documentation for Telit.

1.4 Contact Information, Support

For general contact, technical support, to report documentation errors and to order manuals, contact Telit Technical Support Center (TTSC) at:

TS-EMEA@telit.com TS-NORTHAMERICA@telit.com TS-LATINAMERICA@telit.com TS-APAC@telit.com

Alternatively, use:

http://www.telit.com/en/products/technical-support-center/contact.php

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 11 of 88

http://www.telit.com

To register for product news and announcements or for product questions contact Telit Technical Support Center (TTSC).

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.

Telit appreciates feedback from the users of our information.

1.5 Document Organization

This document contains the following chapters (sample):

<u>"Chapter 1: "Introduction</u>" provides a scope for this document, target audience, contact and support information, and text conventions.

"Chapter 2: "Chapter two" gives an overview of the features of the product.

"Chapter 3: "Chapter three" describes in details the characteristics of the product.

"Chapter 6: "Conformity Assessment Issues" provides some fundamental hints about the conformity assessment that the final application might need.

"Chapter 7: "Safety Recommendation" provides some safety recommendations that must be follow by the customer in the design of the application that makes use of the AA99-XXX.

1.6 Text Conventions

<u>Danger – This information MUST be followed or catastrophic equipment failure or bodily</u> <u>injury may occur.</u>

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1.7 Related Documents

TBA

Page 12 of 88

2 M.2 Overview

This section will provide an overview of the standard features of a M.2 Card, information on the various SKUs of 2G/3G/4G (LTE) M.2 modules along with a respective functional block diagram of each SKU.

2.1 SKUs - 2G/3G/LTE M.2 Modules

There are five different M.2 modules available in the M.2 Card Type 3042 form factor:

- HN930 HSPA+
- LN930-AP APAC LTE
- LN930 LTE

A comparison of the features, RF band Support, and data rates for the various M.2 modules is shown in Table 1 through Table 3

Page 13 of 88

Feature	Description	Additional Information	M.2 module					
			HN930	LN930-AP	LN930			
Mechanical	M.2 Card Type 3042 Slot B	30 mm x 42 mm Pin count: 75 (67 usable, 8 slot)	x	х	х			
Operating Voltage	3.3 V +/- 5%	-	x	х	X			
Operating Temperature	-10°C to +55°C – Normal +55°C to +70°C – Extended	Extreme - This is the surrounding air temperature of the module inside the platform when the card is fully operating at worst case condition	X	X	X			
Application Interface (75 pin card)	Application Interprocessor USB 2.0 High-speed Interface Communications USB 2.0 High-speed (75 pin card) USIM w/ Card Detect SIM_CLK, SIM_RESET, SIM_IO, SIM_PWR, SIM_DETECT							
	M.2 Control	Full_Card_Power_On_Off	Х	х	х			
		Reset#	х	х	х			
		W_DISABLE#	х	х	х			
		LED #1	х	х	х			
		DPR (Body SAR)	х	х	Х			
		Wake on WWAN	х	х	Х			
		GNSS Disable	х	х	х			
	Global Positioning (GPS/ GLONASS)	I2C_SCL, I2C_SDA, I2_IRQ, CLKOUT, TX_BLANKING	x	х	X			
	Antenna Tuning	(4) GPO (RF Transceiver)	-	х	Х			
	RF Coexistence	(3) GPIO	-	Х	х			
RF Antenna	Main & Diversity/ GNSS	Separate coax connectors	X	Х	X			
Debug	JTAG	-	X	Х	X			
	ETM11	-	-	Х	х			
	MIPI PTI	-	-	Х	Х			

Table 1 M.2 Module - General Feature

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 14 of 88

RF Band	UE Transmit	UE Receive	M.2 Module								
			HN930			LN	1930- A	AP]	LN93()
			GSM	UMTS	LTE	GSM	UMTS	LTE	GSM	UMTS	LTE
001 I	1920 MHz - 1980 MHz	2110 MHz - 2170 MHz		х			x	x		x	x
002	1850 MHz - 1910 MHz	1930 MHz - 1990 MHz	x	х					x	x	x
003 III	1710 MHz - 1785 MHz	1805 MHz - 1880 MHz	x					x	x		x
004 IV	1710 MHz - 1755 MHz	2110 MHz - 2155 MHz		x						x	x
005 V	824 MHz - 849 MHz	869 MHz - 894 MHz	x	x					x	x	x
006 VI	830 MHz - 840 MHz	875 MHz - 885 MHz					x				
007 VII	2500 MHz - 2570 MHz	2620 MHz - 2690 MHz									x
008 VIII	880 MHz - 915 MHz	925 MHz - 960 MHz	x	х			x	x	x	x	x
009 IX	1749.9 MHz - 1784.9 MHz	1844.9 MHz - 1879.9 MHz						x			
010 X	1710 MHz - 1770 MHz	2110 MHz - 2170 MHz									
011 XI	1427.9 MHz - 1447.9 MHz	1475.9 MHz - 1495.9 MHz					x	x			
012 XII	699 MHz - 716 MHz	729 MHz - 746 MHz									

Table 2. M.2 Module - RF Band Support

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 15 of 88

013 XIII	777 MHz -	746 MHz -						
	787 MHz	756 MHz						х
014 XIV	788 MHz -	758 MHz -						
	798 MHz	768 MHz						
017 XVII	704 MHz -	7734 MHz -						
02////	716 MHz	746 MHz						v
								^
018 XVIII	815 MHz -830	860 MHz -875		 			 	
010 ///	MHz	MHz				v		v
						^		^
019 XIX	830 MHz -	875 MHz -						
010 / 10	845 MHz	890 MHz			v	v		v
					^	^		^
020 XX	832 MHz -	791 MHz -						
020700	862 MHz	821 MHz						v
								~
021 XXI	1447.9 MHz -	1495.9 MHz -						
	1462.9 MHz	1510.9 MHz				x		
						~		
022 XXII	3410 MHz -	3510 MHz -						
-	3490 MHz	3590 MHz						
023 XXIII	2000 MHz -	2180 MHz -						
	2020 MHz	2200 MHz						
024 XXIV	1626.5 MHz -	1525 MHz -						
-	1660.5 MHz	1559 MHz						
025 XXV	1850 MHz -	1930 MHz -						
	1915 MHz	1995 MHz						
026 XXVI	814 MHz -	859 MHz -						
	849 MHz	894 MHz				х		
027 XXVII	806 MHz -	851 MHz -						
	824 MHz	869 MHz						
028 XXVIII	703 MHz -	758 MHz -						
	748 MHz	803 MHz						

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 16 of 88

029 XXIX	1850 MHz - 1910 MHz or 1710 MHz - 1755 MHz	716 MHz - 728 MHz					
001	1920 MHz - 1980 MHz	2110 MHz - 2170 MHz					

Table 3. M.2 Module - Data Services

Data Service	M.	2 moo	dule
	0E9NH	LN930-AP	LN930
GPRS Class 33: DL 85.6 kbps, UL 85.6 kbps	x	-	Х
EDGE Class 33: DL 236.8 kbps, UL 236.8 kbps	х	-	Х
WCDMA: DL 384 kbps, UL 384 kbps	х	х	х
HSPA+: DL 21 Mbps, UL 5.7 Mbps	х	х	х
HSPA+: DL 42 Mbps, UL 5.7 Mbps	-	х	Х
LTE FDD: DL: 100 Mbps, UL 50 Mbps	-	х	X
LTE FDD: DL: 150 Mbps, UL 50 Mbps	-	х	Х

Module supports DL 150 Mbps in LN930. This is only for generic SW and VZW SW, but not for AT&T SW.

2.2 M.2 Module – Block Diagrams

2.2.1 M.2 HN930 Module

The M.2 HSPA+ module is Intel's Next Generation Form Factor design based on Intel's XMMTM6260 modem platform. The M.2 HSPA+ card is a dual-mode (UMTS/GSM) 3GPP release 7 HSPA+ modem.

The M.2 HSPA+ module includes support at the 75 pin application interface for M.2 Control, USB 2.0 HS, GNSS, and USIM. Antenna Tuning is not supported.

A block diagram of the M.2 HSPA+ module is shown in Figure 1.

Page 17 of 88

1VV0301078 Rev.10 - 2015-11-11

Figure 1 M.2 HSPA+ Block Diagram

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

2.2.2 M.2 LN930-AP Module

The M.2 APAC LTE module is another Intel design based on the XMM[™]7160 modem platform. The module has a targeted area of operation in the Asia Pacific rim and offers 3G and LTE datacard functionality, 2G Functionality is not supported.

The M.2 APC LTE module includes support at the 75 pin application interface for M.2 Control, USB 2.0 HS, GNSS, USIM and Antenna Tuning.

A block diagram of the M.2 APAC LTE module is shown in Figure 2.

Figure 2 M.2 APAC LTE Module Block Diagram

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 19 of 88

2.2.3 M.2 LN930 Module

The M.2 LTE module is based on Intel's XMM[™]7160 modem platform. The M.2 LTE module is a triple-mode (2G, 3G, and 4G) 3GPP release 9 modem providing datacard functionality.

The M.2 LTE module includes support at the 75 pin application interface for M.2 Control, USB 2.0 HS, GNSS, USIM and Antenna Tuning.

A block diagram of the M.2 LTE module is shown in Figure 3.

Figure 5 M.2 LTE Module Block Diagram

A more detailed interconnect diagram of the RF Engine utilized on the M.2 LTE Module is shown in Figure 4.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 20 of 88

Figure 4 Detailed Interconnection of M.2 LTE Modem RF Engine

2.3 Host Interface Signals

This section describes the signals available to the host processor at the 75 pin application interface. Eight signals are eliminated by the notch on the host connector, leaving 67 usable signals. A diagram of the M.2 module identifying the 75 pin interface is shown in Figure 5.

Note that the M.2 module has all components mounted on the top side. Odd pin numbers are on the top side while even pins on the bottom side.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 21 of 88

Figure 5 PCI Express M.2 Module Interface

A complete description of all interface signals available at the host interface is listed in Table 4. Some features, such as GNSS and Antenna Tuning, are not available on every M.2 module. On those modules, the signals at the application interface are not connected on the M.2 module.

Pin	Signal Name	I/O	Description	Supply
1	CONFIG_3	0	Presence Indication: WWAN M.2 Connects to GND	-
			internally	
2	3.3V	Р	M.2 Supply Pin 3.3 V	3.3 V
3	GND	Р	Ground	-
4	3.3V	Р	M.2 LTE Supply Pin 3.3 V	3.3 V
5	GND	Р	Ground	-
6	FULL_CARD_POWER_OFF#	I	Control signal to power On/Off M.2.	1.8 V
7	USB D+	IO	USB 2.0 HS DPLUS Signal	
8	W_DISABLE#	Ι	Active low signal to Disable Radio Operation	3.3 V
9	USB D-	IO	USB 2.0 HS DMINUS Signal	

Table 4 M.2 Host Interface Signals

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 22 of 88

1VV0301078 Rev.10 - 2015-11-11

10	LED#1	0	Open Drain, active low signal used for add-in card to provide status	3.3 V
11	GND	Р	Ground	-
12			SLOT KEY	
13			SLOT KEY	
14			SLOT KEY	
15			SLOT KEY	
16			SLOT KEY	
17			SLOT KEY	
18			SLOT KEY	
19			SLOT KEY	
20	AUDIOO	IO	PCM Clock (I2S_CLK)	1.8 V
		10		110 1
21	CONFIG_0	0	Configuration Status. Presently not connected on WWAN M.2 module.	-
22	AUDIO1	I	PCM In (I2S_RX)	1.8 V
23	WAKE_WWAN#	0	Wake On WWAN Use by M.2 to wake up host.	1.8 V
24	AUDIO2	0	PCM Out (I2S_TX)	1.8 V
25	DPR	I	Dynamic Power Reduction - Body SAR control signal	1.8 V
26	GNSS_DISABLE#	I	Disable GNSS function	1.8 V
27	GND	Р	Ground	-
28	AUDIO3	IO	PCM Sync (I2S_WA0)	1.8 V
29	SSIC_R×N	I	SSIC Receive N (Not Supported)	-
30	UIM-RESET	0	SIM Reset (I)	1.8 V/3.0 V
31	SSIC_RxP	I	SSIC Receive P	-
32	UIM-CLK	0	(Not Supported) SIM Clock (I)	1.8
-				V/3.0 V
33	GND	-	Ground	-
34	UIM-DATA	IO	SIM Data (I/O)	1.8 V/3.0 V
35	SSIC_TxN	0	SSIC Transmit N (Not Supported)	-
36	UIM-PWR	0	SIM power	1.8 V/3.0 V
37	SSIC_TxP	0	SSIC Transmit P (Not Supported)	-
38	N/C	-	Not connected internally on M.2	-
39	GND	Р	Ground	-
40	I2C_SCL	IO	I2C Clock – GNSS Support	1.8 V

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 23 of 88

41	N/C	-	Not connected internally on M.2	-
42	I2C_SDA	IO	I2C Data – GNSS Support	1.8 V
43	N/C	-	Not connected internally on M.2	
44	I2C_IRQ	I	GNSS Interrupt Request – GNSS Support	1.8 V
45	GND	Р	Ground	-
46	SYSCLK	0	26 MHz reference Clock output for external GNSS module	1.8 V
47	N/C	-	Not connected internally on M.2	-
48	TX_BLANKING	0	GNSS Blanking Signal used to indicate 2G Tx burst and LTE band 13 Tx burst.	1.8 V
49	N/C	-	Not connected internally on M.2	-
50	N/C	-	Not connected internally on M.2	-
51	GND	Р	Ground	-
52	N/C	-	Not connected internally on M.2	-
53	N/C	-	Not connected internally on M.2	-
54	N/C	-	Not connected internally on M.2	-
55	N/C	-	Not connected internally on M.2	-
56	N/C	-	Not connected internally on M.2	-
57	GND	Р	Ground	-
58	N/C	-	Not connected internally on M.2	-
59	ANTCTL0	0	RF Antenna Tuning Control Signal 0	1.8 V
60	COEX3	0	Wireless Coexistence between WWAN and WiFi/BT modules. IDC_LteDtxEnv	1.8 V
61	ANTCTL1	0	RF Antenna Tuning Control Signal 1	1.8 V
62	COEX2	Ι	Wireless Coexistence between WWAN and WiFi/BT modules. IDC_CwsPriority	1.8 V
63	ANTCTL2	0	RF Antenna Tuning Control Signal 2	1.8 V
64	COEX1	0	Wireless Coexistence between WWAN and WiFi/BT modules. IDC LteFrameSvnc	1.8 V
65	ANTCTL3	0	RF Antenna Tuning Control Signal 3	1.8 V
66	SIM DETECT	I	SIM Card Detection (I) (low active). • Pull-up resistor on WWAN M.2 module	1.8 V
67	RESET#	I	Single control to reset WWAN	1.8 V
68	N/C	-	Not connected internally on M.2	-

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 24 of 88

69	CONFIG_1	0	Configuration Status WWAN M.2 Connects to GND internally	-
70	3.3V	Р	WWAN Supply Pin 3.3 V	-
71	GND	Р	Ground	-
72	3.3V	Р	WWAN Supply Pin 3.3 V	-
73	GND	Р	Ground	-
74	3.3V	Р	WWAN Supply Pin 3.3 V	-
75	CONFIG_2	0	Configuration Status WWAN M.2 Connects to GND internally	-

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 25 of 88

3 M.2 Module Interface Details

This section provides details on the various interfaces available M.2 modules.

3.1 Interprocessor Interface (IPC)

There are two interfaces on the M.2 host interface that support interprocessor communications (ICP); however, for the WWAN M.2 modules covered by the Product Description only the USB 2.0 High-speed port will be supported.

The other ICP interface, USB Super-speed Inter-Chip (USB_SSIC), is not supported and the signals should not be connected at the host.

The host processor, connected via an ICP interface, has access to the functions of the WWAN card.

3.1.1 USB 2.0 High-Speed – IPC Interface

The USB 2.0 High-speed interface supports the following device classes: CDC-MBIM, CDC-ACM, and CDC-NCM.

The USB Controller is compliant to the USB 2.0 Specification and with the Link Power Management (LPM) Addendum. LPM introduces a new sleep state (L1) which significantly reduces the transitional latencies between the defined power states; hence, improving the responsiveness of the WWAN platform regarding connecting to the internet (Quick Connect).

- USB2.0 LPM L1 Support
- Support for OS assisted fast dormancy
- Selective Suspend support
 - Very low power when in Selective Suspend:
 - <4mw when connected to network (wake)
 - <1 mW no wake</p>

It supports High-speed (HS, 480 MBit/s); Full-speed (FS, 12 MBit/s) transfers. Low- speed mode is **not** supported. Because there is not a separate USB-controlled voltage bus, USB functions implemented on the M.2 module are expected to report as self-powered devices

General Features

- In device mode : High-speed (480 MBit/s) and Full-speed (12 MBit/s)
- In host mode: High-speed (480 MBit/s), Full-speed (12 MBit/s). Low-speed mode (1.5 Mbit/s) is **not** supported.
- Support for 16 bidirectional end points and channels including the end point 0.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 26 of 88

Table 5 USB HS Interprocessor Communications Interface

Signal Name	Description	Pin	Direction (WWAN)	Voltage Level
USB_D+	USB Data Plus	7	Ι, Ο	Per USB 2.0
USB_D-	USB Data Minus	9	Ι, Ο	specification

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 27 of 88

3.1.2 USB Super-speed IC (Reserved)

The USB Super-speed IC (USB SSIC) solution is not supported by the WWAN M.2 modules presented in this Product Description. It is set aside for future development. These signals should be left un-connected on the host.

Signal Name	Description	Pin	Direction (WWAN)	Operating Voltage Range
SSIC_RXN	USB SSIC Receiver Signal N	29	0	Per SSIC
SSIC_RXP	USB SSIC Receiver Signal P	31	0	specification
SSIC_TXN	USB SSIC Transmitter Signal N	35	I	
SSIC_TXP	USB SSIC Transmitter Signal P	37	Ι	

Table 6 USB SSIC – ICP Interface

3.2 (U)SIM Interface

The USIM interface is compatible with the ISO 7816-3 IC Card standard on the issues required by the GSM 11.12 and GSM 11.18 standard.

Both 1.8 V and 3 V SIM Cards are supported.

A few comments on the SIM_DETECT signal

- 1. An external pull-up resistor is connected to SIM_DETECT on the WWAN M.2 module.
- 2. When a SIM is inserted, SIM_DETECT will be high.
- 3. When a SIM is removed or not present, SIM_DETECT will be low.
- 4. The host does not need to drive this signal. It can be tri-stated.

Table 7 (U)SIM Interface Signals

Signal Name	Description	Pin	Direction (WWAN)	Voltage Level
UIM_CLK	Clock SIM Card	32	0	1.8 V/3.0 V
UIM_DATA	Input/ Output SIM Card	34	Ι, Ο	1.8 V/3.0 V
UIM_RESET	Reset signal for SIM card	30	0	1.8 V/3.0 V
USIM_PWR	1.8 V/3 V Supply for SIM Card	36	0	1.8 V/3.0 V
SIM Detect	SIM Card Detection	66	Ι	1.8 V

3.2.1 SIM Design Recommendations

The following design guidelines are recommended for the SIM card socket mounted on the host system:

- Length of the traces UIM_CLK, UIM_DATA, and UIM_RESET should not exceed 10 cm.
- UIM_DATA is a sensitive open-drain bi-directional signal. It should not be mounted beside the UIM_CLK signal for long distances. It is recommended to place the UIM_RST trace between UIM_DATA and UIM_CLK to provide isolation. If the traces are run a long distance, surround the UIM_DATA with ground to shield from system noise and UIM_CLK.
- The rise time for UIM_DATA should not exceed 1 µs per the 3GPP specification. High input capacitance may increase rise time and lead to certification failure.
 - Keep UIM traces with low capacitance between each other and to GND
 - o An ESD component with high capacitance may increase rise time.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 29 of 88

- 1VV0301078 Rev.10 2015-11-11
- The pull-up current cannot be increased to speed up rise time, because the pull-up current must not exceed 1 mA including any crosstalk.
- \circ Pull-up current is defined by the 4.7 kΩ pull-up resistor (to USIM_PWR) on the WWAN M.2 module, plus 200 µA from the baseband chip is approximately 0.8 mA.
- Place a decoupling capacitor close to the SIM card socket.

3.3 GNSS Interface

Some M.2 modules incorporate GPS and GLONASS receivers with aGPS to support Global Positioning.

For M.2 modules that feature GNSS support, see Table 1, the M.2 module incorporates the CG1960 Single-Chip GNSS Device, which is a complete receiver for simultaneous reception and processing of both GPS and GLONASS signals. It includes LNA, mixer, bandpass filter, VCO, ALC, fractional-N frequency synthesizer, digital tunable filters, PGA stage, and multibit ADCs. A UART interface is used by the

X-GOLD[™] Communications Processor on the M.2 module to control the GNSS device. The solution offers best-in-class acquisition and tracking sensitivity, TFF and accuracy.

The GNSS device supports several different power management modes which gives the lowest possible energy usage per fix. The pre-calculated location data will be sent over the USB host interface. In addition, the M.2 will produce GPS data when the system is in sleep mode via an I2C interface to allow for applications to be available in low power modes.

GNSS General Features

- Autonomous GPS / GLONASS
- Assisted GPS Using SUPL 1.0/2.0
 - MS Assisted positioning (SET / NET Initiated)
 - MS Based positioning (SET / NET Initiated)
- SUPL 2.0 Feature Sets
 - Version Negotiation
 - Periodic Triggers
 - Emergency Positioning
 - Area Event Triggers (SET Init & NET Init)
 - Application ID
 - Enhanced Cell Id
 - Multiple Location IDs
 - Session Info Query
 - Location Transfer to 3rd Party
 - Notification Verification Based on Current Location
 - Location Request to another SET

A diagram of the GNSS connections on the M.2 module is shown in Figure 6. This diagram identifies the signals between the X-GOLDTM baseband and GNSS devices along with the USB and GNSS signals available to the host at the card interface.

Page 30 of 88

Figure 6 GNSS Connections and Interface

A description of the signals between the X-GOLDTM baseband and the CG1960 interface are defined in Table 8.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 31 of 88

Table 8 X-GOLD [*]	Baseband to	GNSS Interface	Signals
-----------------------------	-------------	----------------	---------

Signal	Description
VBAT	Battery Supply
1.8V	1.8 V Supply provided from X-GOLD [™] Baseband
UART	The data and control I/F between the X-GOLD [™] baseband and the GNSS device is over a 4 wire UART interface which include CTS/RTS handshaking.
PDB	X-GOLD [™] baseband uses this signal to control Power-on/reset of the GNSS device
LPO_CLK	X-GOLD [™] baseband provides a permanently active 32 kHz clock to the GNSS device
EXT_REF_CLK	X-GOLD [™] baseband provides a 26 MHz clock to the GNSS device for frequency aiding.
EXT_DUT_CLK	X-GOLD [™] baseband provides this signal to notify the GNSS device of that GSM Tx activity (PA Blanking)
EXT_FRM_SYNC	X-GOLD [™] baseband provides a strobe signal to the GNSS device to allow fine time assistance based on 3GPP cell timing.

The GNSS signals available to the host at the WWAN module interface to support GNSS operation are shown in Table 9.

Signal Name	Description	Pin	Direction (WWAN)	Voltage Level
I2C_SCL	I2C Clock	40	I, O	1.8 V
I2C_SDA	I2C Data	42	I, O	1.8 V
I2C_IRQ	I2C IRQ - Interrupt signal	44	Ι	1.8 V
SYSCLK	Synchronization Clock		Ι	1.8 V
TX_BLANKING	TX Blanking – Active High when M.2 is	48	0	1.8 V
	transmitting.			
GNSS_DISABLE#	GNSS Disable	26	Ι	1.8 V
	• High: GNSS function is determine by AT			
	command.			
	• Low: GNSS function is disabled.			
	• GNSS_DISABLE# pin has a pull-up resistor			
	on the WWAN M.2 module			

Table 9 GNSS Module Interface Signals

3.4 System Control Interface

The system control interface is used to control the power-up and reset of the WWAN module. There are additional control signals to disable the radio, drive an LED as a status indicator, an output to wake the host processor, and an input for body SAR.

Page 32 of 88

3.4.1 Power On & Reset

The host processor has two signals that can be used to power on and reset the modem. Powering off the modem is accomplished through an AT command.

Signal Name	Description	Pin	Direction	Voltage
			(WWAN)	Level
FULL_CARD_POWER_ON_OFF	 Modem power on: For Tablet based designs only; this signal is used for power on-off control of X-GOLD[™] Baseband IC.WWAN M.2 module Logic Low: M.2 Off Logic High: WWAN M.2 Power On 	6	I	1.8 V
	This pin has an internal pull-down resistor. Ultrabook designs: Ultrabook host should deliver a 1.8V signal to turn on the module. If 1.8V is not feasible, recommend using a $47k\Omega$ series resistor connected to 3.3V.		-	
RESET#	 Reset the WWAN system. This signal is used to reset the module. This signal is part of the modem rigorous power-off procedure. The host will first assert this signal, followed by assertion of: FULL_CARD_POWER_OFF# signal (for Tablet) Switch off 3.3V regulator (for Ultrabook) Asserting RESET first is to trigger PMU internal state machine to run shutdown sequences e.g. for SIM and external memory controller (EMIC), before switching off power supplies. Asynchronous, active low signal. When active, the WWAN M.2 module will be placed in a power–on reset condition. RESET# pin has a pull-up resistor on the WWAN M.2 module 	67	Ι	1.8 V

Table 10 Power-on & Reset Signals

3.4.2 Host Radio Disable Operation

An additional control signal is used to disable the radio on the module.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 33 of 88

Signal W_DISABLE# is provided to allow users to disable, via a system-provided switch, the add-in card's radio operation in order to meet public safety regulations or when otherwise desired. Implementation of this signal is required for systems and all add—in cards that implement radio frequency capabilities.

The W_DISABLE1 signal is an active low signal that when driven low by the system shall disable radio operation. The assertion and de-assertion of the W_DISABLE# signal is asynchronous to any system clock. All transients resulting from mechanical switches need to be de-bounced by the host system and no further signal conditioning will be required. When the W_DISABLE# signal is asserted, all radios attached to the add-in card shall be disabled. When the W_DISABLE# is not asserted or in a high impedance state, the radio may transmit if not disabled by other means such as software.

The operation of the W_DISABLE# Signal is:

Enable, ON (3.3V): The radio transmitter is to be made capable of transmitting.

Disable, OFF (low): The radio transmitter(s) is to be made incapable of transmitting.

Standard TTL signaling levels shall be used making it compatible with 1.8 V and 3.3 V signaling.

W_DISABLE# pin has a pull-up resistor on the M.2 module.

Signal Name	Detailed Description	Pin	Direction (WWAN)	Voltage Level
W_DISABLE#	 Disable Radio. This active low signal allows the host to disable the M.2 radio operation in order to meet public safety regulations or when otherwise desired. Logic Low: M.2 Off Logic High: function is determined by Software (AT Command). 	8	I	Compatible with 1.8 V/3.3 V
	If this pin is left un-connected, functionality is controlled by software. Care should be taken not to activate this pin unless there is a critical failure and all other methods of regaining control and/or communication with the M.2 module have failed.			

Table 11 Radio Disable Signal

Standard TTL signaling levels shall be used.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 34 of 88

Requirement	Detailed Description
Radio disable duration	On reception of a HW or SW disable signal, the WWAN module will initiate within one second the mandatory cellular procedures (which are dependent on current state) for disconnecting from the cellular network. The time taken to complete the procedures will be dependent on external factors including but not limited to: 3G/4GPP specifications, network implementation, radio conditions, etc. Once those procedures are complete, the WWAN module will switch off the RF.
Radio enable duration	On reception of a hardware or software enable signal the WWAN module will initiate within one second the mandatory cellular procedures for connecting to the cellular network.
Radio enable during selective suspend	If radio is disabled due to W_DISABLE# assertion and WWAN module is in selective suspend, then W_DISABLE# de-assertion shall be detected by WWAN module and the module shall initiate exit from selective suspend.

Table 12 Host Radio Disable Interface (W_DISABLE#)

3.4.3 LED Interface – Status Indicator

An LED will be used to provide status indications to users via system provided indicators.

LED#1 (pin 10) is an active low output signal intended to drive system-mounted LED indicators. These signals shall be capable of sinking to ground a minimum of 9.0 mA at up to a maximum VOL of 400 mV.

Table 13 LED#1 Signal

Signal Name	Detailed Description	Pin	Direction (WWAN)	Voltage Level
LED#1	LED Status Indicator	10	O (OD)	3.3 V

Figure 7_is an example of how an LED indicator is typically connected in a platform/system using 3.3 V. The series resistor can be adjusted to obtain the desired brightness.

Figure 7 Typical LED Connection

The indication protocol for the LED is shown in Table 14.

Table 14 LED State Indicator

State	Definition	Characteristics	WWAN
OFF	The LED is emitting no	-	Not
ON	The LED is emitting light in a stable non-flashing state	-	Powered registered but not transmitting or receiving

3.4.4 Wake on WWAN Signal

An output signal is available to wake the host system, WAKE_WWAN#. This is an active low, open-drain output.

This output requires a pull-up resistor on the host system.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 36 of 88

Table 15 Wake on WWAN Signal

Signal Name	Detailed Description	Pin	Direction (WWAN)	Voltage Level
WAKE_WWAN#	Used by M.2 module to wake the	23	O (OD)	3.0 V
	host. Active Low, Open Drain output			

3.4.5 Dynamic Power Reduction

With the arrival of Tablets and Ultrabook[™] platforms where the antenna is in the base of the unit, there is a significant issue passing Specific Absorption rate (SAR) requirements for certification.

The WWAN M.2 module has the ability to configure RF TX power levels based on proximity sensor input from the host.

A WWAN M.2 power control API is available to the host to dynamically reduce RF transmit power levels of the WWAN module based on proximity sensor input from the host.

The DPR# (Dynamic Power Reduction) signal is available on the host interface to assist in meeting regulatory SAR (Specific Absorption Rate) requirements for RF exposure. The signal is provided by a host system proximity sensor to the WWAN module to provide an input trigger causing a reduction in the radio transmit output power.

In conjunction with the DPR signal, a full power control API is available to the host to adjust the RF transmit power level of the WWAN module.

DPR pin has a pull-up resistor on the WWAN M.2 module.

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 37 of 88

Signal Name	Detailed Description	Pin	Direction (WWAN)	Voltage Level
DPR#	Dynamic Power reduction.	25	Ι	1.8 V

Table 16 DPR#/ SAR Support Signal

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 38 of 88

3.5 Tunable Antenna Control Interface

In notebook platforms, since the WWAN antennas are usually located on the top of the lid, there is a long RF mini-coax cable that can be up to 60 cm long between the antenna and WWAN module, it is preferred to use switches/tunable components directly on the antenna for antenna band switching/tuning to improve efficiency.

On select WWAN M.2 modules, four (4) GPOs are available on the host interface that can be connected to an external antenna switch, to load the antenna with different impedances, configuring the different frequency responses for the main antenna. A sample block diagram depicting the antenna control signal connections to the antenna switch is shown in Figure 8.

Intel's current antenna control solution offers an open loop control solution. The WWAN M.2 modem expects the AP to provide the antenna profile detection and through a predefined API, notify the WWAN M.2 modem with the correct antenna profile. The WWAN M.2 modem then applies the proper antenna profile data accordingly.

Figure 8 Antenna Control – Connections Detail

The electrical specification for the antenna control GPIOs are shown in Table 17_

Table 17 Tunable Antenna Control Signals

Signal Name	Description	Smarti™ 4G Signal	Pin	Direction (WWAN)	Voltage Level
ANTCTL0	Antenna Control 0	GPO8	59	О	1.8V
ANTCTL1	Antenna Control 1	RFFE2_SDATA/ GPO9	61	О	1.8V
ANTCTL2	Antenna Control 2	RFFE2_SCLK/ GPO10	63	0	1.8V
ANTCTL3	Antenna Control 3	RFFE2_VIO/ GPO11	65	0	1.8V

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 39 of 88

3.6 In-Device Coexistence Interface

As more and more radios are added to PC Ultrabook[™] and tablet platforms, the sources RF interference increases significantly as multiple radios will have overlapping transmissions and receptions. This problem will increase further as overlapping bands continue to be rolled out; WIFI, BT, WWAN will all use overlapping band from 2300 MHz to 2600 MHz.

In-Device Coexistence is a feature which improves the user experience and maximizes throughput and Quality of Service of connectivity systems (WLAN, BT and GNSS) when these radios are simultaneously running with the WWAN M.2 LTE modem.

A diagram of the In-Device Coexistence architecture is shown in Figure 6.

Figure 9 In-Device Coexistence Architecture

Seamless Co-running

In-Device-Coexistence primarily aims at avoiding interference between radio systems to allow seamless co-running where LTE and WLAN/BT/GNSS ensuring their maximum throughput and performance. To do so, a Non Real Time (NRT) coexistence controller is implemented on the ARMTM CPU. The NRT coexistence controller centralizes LTE, WLAN, BT and GNSS information and performs interference avoidance mechanisms, selecting interference-safe frequency configurations whenever possible. The NRT coexistence controller is also in charge of enabling some Real Time (RT) coexistence mechanisms when

Page 40 of 88

NRT mechanisms are not sufficient to guarantee seamless co-running of LTE and connectivity systems (WLAN, BT, and GNSS).

Inter-system Synchronization

For the cases where co-running of LTE and connectivity systems cannot be achieved, a Real Time (RT) coexistence controller is implemented in the LTE Layer-1 subsystem. The RT coexistence controller is in control of the RT coexistence interface, which is exposed to the connectivity chip. The RT coexistence controller exploits real time information received from the LTE Layer-1 subsystem and from the connectivity chip to coordinate LTE and connectivity "in the air" activities. The coordination function protects LTE traffic while optimizing the throughput and availability of WLAN/BT/GNSS. When operating in this mode, the connectivity systems have reduced capability since they access the medium when LTE is inactive, or when their respective operations do not impact each other significantly.

The Non Real-Time mechanism implements a messaging based interface, formatted as AT commands that are passed to the AP host over the IPC interface (USB). A simple piece of SW residing on the AP host will tunnel the Non Real-Time messages between the BT/WLAN device and M.2 module, translate AT commands to/from the BT/WLAN driver commands, and maintain the states of the BT/ WLAN and M.2 LTE modem. The host software will also be responsible for initializing the Real-Time mechanism.

The Real-Time mechanism consists of 3 GPIO signals which allow the synchronization of multiple TX and RX events. The signals to support real Time coexistence are listed in Table 18.

If the coexistence signals are not used by the host system, they should not be connected.

Signal Name	Description	Pin	Direction (WWAN)	Voltage Level
COEX3	IDC_LteDtxEnv - Synchronous signal indicating LTE UL gap. Envelop signal with edges occurring 1ms before in-the-air gap (raising and falling edges) RT arbiter indicates to connectivity cores when there is no LTE Tx (Envelope)	60	0	1.8 V
COEX2	IDC _CwsPriority - 0 : Low priority / 1 : high priority CWS Indicates if the coming activity is high priority	62	Ι	1.8 V

Table 18 Coexistence – Hardware Synchronization Signals

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 41 of 88

COEX1	IDC_LteFrameSync - Synchronous signal indicating LTE frame start.	64	0	1.8 V
	Indicates LTE frame start to BT/WLAN device. Can be used by BT to synch up periodic activity with LTE timing			

3.7 Power Supply Interface

The M.2 modules require the host to provide the 3.3 V power source. The voltage source is expected to be available during the system's stand-by/suspend state to support wake event processing on the communications card.

The 3.3 V power and ground pins are listed in Table 19.

Section 8, Power Delivery Requirements, provides electrical requirements for the power supply and I/O signals.

Table 19 Power & Ground Signals

Power Pins	Description
2, 4, 70, 72, 74	3.3 V Supply
3, 5, 11, 27, 33, 39, 45, 51, 57, 71, 73	Ground

3.8 Trace & Debug Interface

The USB port on the M.2 module will be used to support system tracing of the Protocol stack. The USB HS and USB_SSIC ports can be used for software download, tracing, and manufacturing testing

The JTAG & MIPI PTI1 ports are accessible on the module to support system debug. A temporary cable assembly over flat flex should be assembled on bottom of the module and lead out of the final product. The cable would not be mounted on the final product.

3.9 Configuration Pins

There are 4 configuration pins on the M.2 module to assist the host identifying the presence of an Add-In card in the socket.

On the M.2 module, pins CONFIG_0..3 are configured as shown in Table 20. All configuration pins can be read and decoded by the host platform to recognize the indicated module configuration and host interface supported. On the host side, each of the CONFIG_0..3 signals needs to be fitted with a pull-up resistor.

Signal Name	Description	Pin	Direction (WWAN)	Voltage Level
CONFIG_0	This signal is not connected to the WWAN M.2 module.	21	0	-
CONFIG_1	Tied to Ground internally on the WWAN M.2 module.	69	0	0 V
CONFIG_2	Tied to Ground internally on the WWAN M.2 module.	75	0	0 V
CONFIG_3	Tied to Ground internally on the WWAN M.2 module.	1	0	0 V

Table 20 M.2 Configuration Pins

3.10 Audio Pins (Reserved)

There are 4 signals on the host interface that are reserved to support a digital audio interface. This is for future development, all existing WWAN M.2 modules do not support audio; therefore, these signals should be left unconnected at the host to avoid any contention.

Fable 21 Audio Signals	(Future development)
------------------------	----------------------

Signal Name	Description	Pin	Direction (WWAN)	Voltage Level
AUDIO0	PCM Clock (I2S_CLK)	20	IO	1.8 V
AUDIO1	PCM In (I2S_RX)	22	I	1.8 V

1VV0301078 Rev.10 - 2015-11-11

AUDIO2	PCM Out	(I2S_TX)	24	0	1.8 V
AUDIO3	PCM Sync	(I2S_WA0)	28	IO	1.8 V

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 44 of 88

3.11 No Connect Pins

The M.2 has several No Connect pins. The pins are not connected on the M.2 module.

Table 22 No Connect Pins

Pins	Description
38, 41, 43, 47, 49, 50, 52, 53, 54, 55, 56, 58, 68	No Connect Pins
12, 13, 14, 15, 16, 17, 18, 19	Slot key

3.12 Antenna Interface

The M.2 module has space for six antenna connectors; yet, as a minimum, only two will be populated to support a main Rx/Tx antenna and a secondary antenna that will be multiplexed between the Diversity receiver and GPS receiver (if applicable). Further details on the antenna connector assignment can be found in Section 11.3.

The antenna signals are not available at the host interface but have their own connectors. A diagram on the M.2 module with the location of the RF connectors appears in Figure 10.

Requirement	Detailed Description
Connection to module	The connector of WWAN antenna cable is I-PEX MHF4 or equivalent
Multi-band single antenna	Single antenna has to support all bands of WWAN module specified in the Product Features.
Rx Diversity antenna	Diversity antenna has to support all bands WWAN module specified in the Product Features in addition GPS/GLONAAS frequencies.
GPS Antenna	The GPS antenna will share the Diversity antenna connector.

Table 23 Antenna Requirements

Figure 10 RF Antenna – Coaxial Connector Location

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

Page 46 of 88

4 Development Tools

Intel Mobile Communications provides a carrier development board to facilitate system test and verification of the M.2 module. In addition, a set of comprehensive tools to enable rapid integration and customization of the M.2 software is provided.

The hardware and software tools for M.2 development are summarized below.

4.1 Carrier Board

The M.2 Carrier Board, shown in Figure 11, is Intel Mobile Communications hardware platform to facilitate the test and verification on the M.2 module. Once the M.2 module is mounted on the Carrier board, the user has access to all necessary interfaces on the module (host interface signals, debug and trace, and antenna) allowing full system test, debugging, and diagnostics. The carrier board with a mounted WWAN M.2 module is shown in Figure 11. Carrier Board.

Note: The Main and Diversity antenna locations have been swapped on the FIH7160 PR3.2 and earlier modules.

Figure 11 M.2 Carrier Board

4.1.1 FlashTool

Intel Mobile Communications provides a utility program called FlashTool for downloading a binary image into the Flash memory of the M.2 module. The USB-HS port or USIF on the platform is used for connection to a PC via a USB cable for flashing.

FlashTool is a Win32/64 application built on top of the dynamic link library, Download.DLL.

4.1.2 PhoneTool

PhoneTool is a development tool built on top of the so-called "production test dll, DWDIO.dll". PhoneTool can be used to fine tune the parameters of:

- Audio configuration and settings (if enabled on M.2 module)
- NV (Non-Volatile) memory
- RF power ramp
- Security data IMEI
- SIM
- Real Time Clock

It also includes interfaces for:

- AT Terminal for sending and receiving AT commands.
- DWDIO interface for manual access to the production test dll DWDIO.dll.
- Generic Test Interface (GTI) for RF calibration.

4.1.3 System Trace Tool

System Trace Tool (STT) allows capturing trace sub-streams from different sources on the platform in one combined stream.

Depending on the trace interface bandwidth, the combined data stream can be sent either over one of the standard communication interfaces (e.g. USB) or over a dedicated highspeed MIPI trace interface.

Captured trace data includes standard 3GPP IPC messages, print statements inserted by developers in the code, error messages, and core dump (crash) information. The actual decoding of the trace data is done by pluggable decoder libraries, DLL's and scripts, which are specific to the version of the mobile station software from which the trace is captured.

The STT application has a GUI (Graphical User Interface) which provides an easy to use graphical interface to view, search and analyze trace data. It supports advanced message filtering runs on all Microsoft Windows® platforms.

STT will become the only tool for trace analysis in the future, the legacy trace tools, Mobile Analyser and Artemis, will be continue to be supported for the 2G/3G WWAN M.2 HSPA+ module.

4.1.4 RF Calibration

XMMCalTool is a utility program that can be used for RF calibration. XMMCalTool supports the following features:

- Optimized calibration
- 3G TX closed loop power control
- Parallel calibration 2G low/high band
- Non-signaling verification
- Industry leading fast sequenced test concept
- Supports parallel RX and TX verification

Reproduction forbidden without written authorization from Telit Communications S.p.A. - All Rights Reserved.

- Proven Single-Ended BER for faster BER
- <4 sec/per channel for 3G fast verification (BER, RSSI, TX, ILPC)

Tester supported: R&S CMU200, CMW500, and Agilent 8960

4.1.5 Noise Profiling Scan Tool

M.2 modules are marketed for use on Tablet, Ultrabook, and Laptop devices. OEM vendors routinely offer multiple hardware configurations for the same base model, with different processor speed, drive type, or display type, etc. Each configuration has a different Radio Frequency emission profile with the possibility of introducing new interference sources to a modem module.

The Noise Profiling Tool will measure, record down & plot graph of the RF noise level present on each RX channel. This SW tool will switch on receiver port and sweep all applicable RX channels on each band and each technology (WiFi, Bluetooth, GPS, and GLONASS). This will allow OEM vendors to quickly know the noise jamming profile to the modem module plugged in their devices.

