Report No: KS120105A01

FCC ID: WL6-BR95IIX6230 Date of Issue :Jan 11,2012

RADIO FREQUENCY EXPOSURE

<u>LIMIT</u>

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See 15.247(b)(4) and 1.1307(b)(1) of this chapter.

EUT Specification

EUT	Bluetooth
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz WLAN: 5.745GHz ~ 5.825GHz Others: Bluetooth: 2.402GHz ~ 2.480GHz
Device category	 Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	Occupational/Controlled exposure ($S = 5mW/cm^2$) General Population/Uncontrolled exposure ($S=1mW/cm^2$)
Antenna diversity	 Single antenna Multiple antennas Tx diversity Rx diversity Tx/Rx diversity
Max. output power	1.2dBm (1.318mW)
Antenna gain (Max)	2.89dBi (Numeric gain: 1.945)
Evaluation applied	 MPE Evaluation SAR Evaluation N/A

Remark:

- The maximum output power is <u>1.2dBm (1.318mW) at 2480MHz</u> (with<u>1.945numeric</u> <u>antenna gain</u>.)
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.

Compliance Certification Services Inc.

Report No: KS120105A01 FCC ID: WL6-BR95IIX6230 Date of Issue :Jan 11,2012

TEST RESULTS

No non-compliance noted.

Given $E = \frac{\sqrt{30 \times P \times G}}{d}$ & $S = \frac{E^2}{3770}$ Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm P = Power in mW G = Numeric antenna gain S = Power density in mW / cm²

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

EUT output power = 1.318mW

Numeric Antenna gain = 1.945

 \rightarrow Power density = 0.00051 mW / cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)