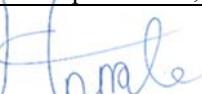


RADIO TEST REPORT


Test Report No. : 14010071H-A-R2

Applicant : FALTEC CO.,LTD.
Type of EUT : Remote Transmitter
Model Number of EUT : PZ170-23721
FCC ID : WKE-723721
Test regulation : FCC Part 15 Subpart C: 2021
Test Result : Complied (Refer to SECTION 3)

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
2. The results in this report apply only to the sample tested.
3. This sample tested is in compliance with the limits of the above regulation.
4. The test results in this test report are traceable to the national or international standards.
5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
6. This test report covers Radio technical requirements.
It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
9. The information provided from the customer for this report is identified in Section 1.
10. This report is a revised version of 14010071H-A-R1. 14010071H-A-R1 is replaced with this report.

Date of test: June 23 to September 15, 2021

Representative test engineer:

Hiroki Numata
Engineer

Approved by:

Tsubasa Takayama
Leader

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.
 There is no testing item of "Non-accreditation".

UL Japan, Inc.
Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
Telephone : +81 596 24 8999
Facsimile : +81 596 24 8124

Report Cover Page - 13-EM-F0429 Issue # 19.0

REVISION HISTORY

Original Test Report No.: 14010071H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	14010071H-A	November 11, 2021	-	-
1	14010071H-A-R1	February 17, 2022	P.6	Correction of "FCC Part 15.31 (e)" in Clause 3.2 to the following sentences; The EUT provides stable voltage constantly to the wireless transmitter regardless of input voltage. A new battery and DC power supply was used for the test. That does not affect the test result, therefore the EUT complies with the requirement.
1	14010071H-A-R1	February 17, 2022	P.10	Addition of the following sentences under the block diagram in Clause 4.2; Ferrite core was used to curb the influence of the DC power supply. It was confirmed that there was no effect on the radio characteristics.
1	14010071H-A-R1	February 17, 2022	P.12	Correction of the Test Distance formula for 1 GHz - 10 GHz in the Test Setup diagram. From "* Test Distance: (3 + SVSWR Volume /2) - r = 3.9 m" To "* Test Distance: (3 + SVSWR Volume /2) - r = 4.0 m"
1	14010071H-A-R1	February 17, 2022	P.20	- Addition of 922.8 MHz, 902.0 MHz, 928.0 MHz in plot data for Horizontal. - Correction of "0" for the lower limit of the vertical axis.
2	14010071H-A-R2	February 28, 2022	P.6	Correction of "FCC Part 15.31 (e)" in Clause 3.2 to the following sentence; From "A new battery and DC power supply was used for the test." To "DC power supply was used for the test."

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	MCS	Modulation and Coding Scheme
AC	Alternating Current	MRA	Mutual Recognition Arrangement
AFH	Adaptive Frequency Hopping	N/A	Not Applicable
AM	Amplitude Modulation	NIST	National Institute of Standards and Technology
Amp, AMP	Amplifier	NS	No signal detect.
ANSI	American National Standards Institute	NSA	Normalized Site Attenuation
Ant, ANT	Antenna	NVLAP	National Voluntary Laboratory Accreditation Program
AP	Access Point	OBW	Occupied Band Width
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
BT	Bluetooth	PK	Peak
BT LE	Bluetooth Low Energy	PN	Pseudo random Noise
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadri-Phase Shift Keying
CW	Continuous Wave	RBW	Resolution Band Width
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RSS	Radio Standards Specifications
DSSS	Direct Sequence Spread Spectrum	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR	Test Receiver
EN	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
EU	European Union	Vert.	Vertical
EUT	Equipment Under Test	WLAN	Wireless LAN
Fac.	Factor		
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq.	Frequency		
FSK	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	International Organization for Standardization		
JAB	Japan Accreditation Board		
LAN	Local Area Network		
LIMS	Laboratory Information Management System		

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Faxsimile : +81 596 24 8124

CONTENTS	PAGE
SECTION 1: Customer information.....	5
SECTION 2: Equipment under test (EUT).....	5
SECTION 3: Test specification, procedures & results.....	6
SECTION 4: Operation of EUT during testing.....	9
SECTION 5: Radiated Spurious Emission	11
SECTION 6: Antenna Terminal Conducted Tests.....	13
APPENDIX 1: Test data	14
99 % Occupied Bandwidth and 6 dB Bandwidth.....	14
Maximum Peak Output Power	15
Average Output Power.....	16
Radiated Spurious Emission	18
Conducted Spurious Emission	21
Power Density.....	22
APPENDIX 2: Test instruments	23
APPENDIX 3: Photographs of test setup	24
Radiated Spurious Emission	24
Worst Case Position (Horizontal: Z-axis/ Vertical:Y-axis)	25
Antenna Terminal Conducted Tests.....	26

SECTION 1: Customer information

Company Name : FALTEC CO.,LTD.
Address : Solid Square West Tower 19th Floor 580 Horikawa-cho, Saiwai-ku, Kawasaki-city Kanagawa, 212- 0013 Japan
Telephone Number : +81-44-520-0019
Contact Person : Hiroshi Kurumagawa

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages

- SECTION 1: Customer information

- SECTION 2: Equipment under test (EUT) other than the Receipt Date

- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Remote Transmitter
Model Number : PZ170-23721
Serial Number : Refer to SECTION 4.2
Receipt Date : June 23 and August 25, 2021 (for Radiated emission)
Condition : September 1, 2021 (for Antenna Terminal Conducted)
Production prototype
Modification : (Not for Sale: This sample is equivalent to mass-produced items.)
No Modification by the test lab.

2.2 Product Description

Model: PZ170-23721 (referred to as the EUT in this report) is a Remote Transmitter.

General Specification

Rating : DC 6.0 V

Radio Specification

Radio Type : Transceiver
Frequency of Operation : 922.8 MHz
Modulation : spread spectrum
Antenna type : $\lambda/4$ helical antenna
Antenna Gain : 0 dBi
Clock frequency (Maximum) : 32 MHz

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C
 FCC Part 15 final revised on May 3, 2021 and effective July 2, 2021

Title : FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
 Section 15.207 Conducted limits
 Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
 and 5725-5850 MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods ISED: RSS-Gen 8.8	FCC: Section 15.207 ISED: RSS-Gen 8.8	N/A	N/A	*1)
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02 ISED: -	FCC: Section 15.247(a)(2) ISED: RSS-247 5.2(a)		Complied a)	Conducted
Maximum Peak Output Power	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02 ISED: RSS-Gen 6.12	FCC: Section 15.247(b)(3) ISED: RSS-247 5.4(d)	See data.	Complied b)	Conducted
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02 ISED: -	FCC: Section 15.247(e) ISED: RSS-247 5.2(b)		Complied c)	Conducted
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02 ISED: RSS-Gen 6.13	FCC: Section 15.247(d) ISED: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	1.2 dB 3691.2 MHz, AV, Horizontal	Complied# d), e)	Conducted (below 30 MHz)/ Radiated (above 30 MHz) *2)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

*2) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)

b) Refer to APPENDIX 1 (data of Maximum Peak Output Power)

c) Refer to APPENDIX 1 (data of Power Density)

d) Refer to APPENDIX 1 (data of Conducted Spurious Emission)

e) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

The EUT provides stable voltage constantly to the wireless transmitter regardless of input voltage.

DC power supply was used for the test.

That does not affect the test result, therefore the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

The antenna is not removable from the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Faxsimile : +81 596 24 8124

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: -	N/A	- (a)	Conducted
(a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor $k=2$.
 Ise EMC Lab.

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.4 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.6 dB

Radiated emission

Measurement distance	Frequency range	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	3.3 dB
10 m		3.2 dB
3 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	5.0 dB
	200 MHz to 1000 MHz (Horizontal)	5.2 dB
	(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	4.8 dB
	200 MHz to 1000 MHz (Horizontal)	5.0 dB
	(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz	4.9 dB
	6 GHz to 18 GHz	5.2 dB
1 m	10 GHz to 26.5 GHz	5.5 dB
	26.5 GHz to 40 GHz	5.5 dB
10 m	1 GHz to 18 GHz	5.2 dB

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

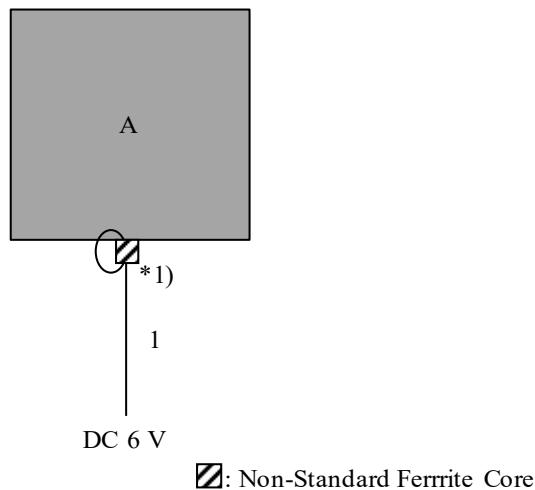
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

SECTION 4: Operation of EUT during testing


4.1 Operating Mode(s)

Mode	Remarks*
Transmitting mode (Tx)	- *Power of the EUT was set by the software as follows; Power settings: 8.3mW Software: USA_MZD_LoRa_R20181002.mot (Date: 2018.10.02, Storage location: EUT memory)

*This setting of software is the worst case.
Any conditions under the normal use do not exceed the condition of setting.
In addition, end users cannot change the settings of the output power of the product.

Test Item	Mode	Tested frequency
6dB Bandwidth, 99% Occupied Bandwidth, Maximum Peak Output Power, Power Density, Spurious Emission (Conducted / Radiated)	Transmitting mode (Tx)	922.8 MHz

4.2 Configuration and peripherals

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.
Ferrite core was used to curb the influence of the DC power supply.
It was confirmed that there was no effect on the radio characteristics.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Remote Transmitter	PZ170-23721	4	FALTEC CO.,LTD.	EUT

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	2.0	Unshielded	Unshielded	-

<Notes for Ferrite cores>

*1) 1 Ferrite Core, Model No. E04SR150718 (Manufacturer: SEIWA), directly connected to A, 2 turns

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below:

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

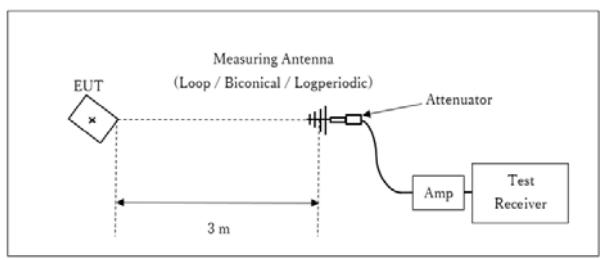
20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analyzer		Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz VBW: 3 MHz	<u>11.12.2.5.1</u> RBW: 1 MHz VBW: 3 MHz Detector: Power Averaging (RMS) Trace: 100 traces <u>11.12.2.5.2</u> The duty cycle was less than 98% for detected noise, a duty factor was added to the 11.12.2.5.1 results.	RBW: 100 kHz VBW: 300 kHz

*1) Average Power Measurement was performed based on ANSI C63.10-2013.

UL Japan, Inc.

Ise EMC Lab.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

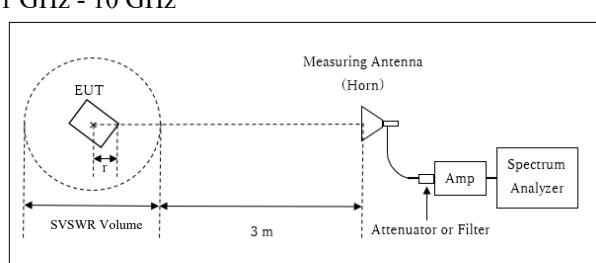

Facsimile : +81 596 24 8124

Figure 2: Test Setup

Below 1 GHz

1 GHz - 10 GHz

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 10 GHz
Test data : APPENDIX
Test result : Pass

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
 Telephone : +81 596 24 8999
 Facsimile : +81 596 24 8124

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious Emission *4) *5)	9kHz to 150kHz 150kHz to 30MHz	200 Hz 9.1 kHz	620 Hz 27 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

*1) Peak hold was applied as Worst-case measurement.
 *2) Reference data
 *3) Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".
 *4) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.
 Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.
 (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)
 *5) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to $45.5 - 51.5 = -6.0$ dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

The test results and limit are rounded off to two decimals place, so some differences might be observed.
 The equipment and cables were not used for factor 0 dB of the data sheets.

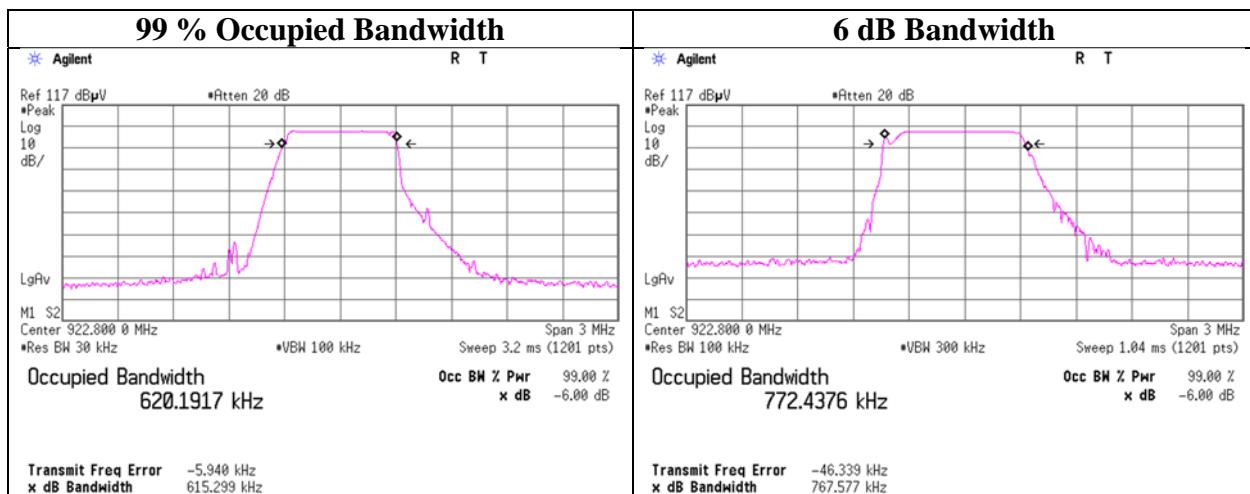
Test data : APPENDIX
Test result : Pass

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999


Facsimile : +81 596 24 8124

APPENDIX 1: Test data

99 % Occupied Bandwidth and 6 dB Bandwidth

Report No. 14010071H
 Test place Ise EMC Lab. No.5 Measurement Room
 Date September 15, 2021
 Temperature / Humidity 23 deg. C / 52 % RH
 Engineer Ken Fujita
 Mode Tx

Mode	Frequency [MHz]	99 % Occupied Bandwidth [kHz]	6 dB Bandwidth [kHz]	Limit for 6 dB Bandwidth [kHz]
Tx	922.8	620.1917	767.577	> 500

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Maximum Peak Output Power

Report No. 14010071H
Test place Ise EMC Lab. No.5 Measurement Room
Date September 15, 2021
Temperature / Humidity 23 deg. C / 52 % RH
Engineer Ken Fujita
Mode Tx

Freq. [MHz]	Reading [dBm]	Cable Loss [dB]	Atten. Loss [dB]	Conducted Power				Antenna Gain [dBi]	e.i.r.p. for RSS-247					
				Result		Limit			Margin [dB]	Result		Limit		
				[dBm]	[mW]	[dBm]	[mW]			[dBm]	[mW]	[dBm]	[mW]	
922.8	-1.06	0.83	9.79	9.56	9.04	30.00	1000	20.44	0.00	9.56	9.04	36.02	4000	26.46

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

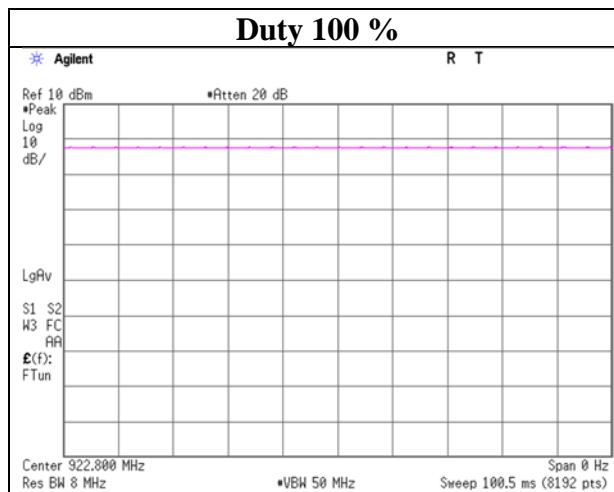
Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Average Output Power (Reference data for RF Exposure)

Report No. 14010071H
Test place Ise EMC Lab. No.5 Measurement Room
Date September 15, 2021
Temperature / Humidity 23 deg. C / 52 % RH
Engineer Ken Fujita
Mode Tx

Freq. [MHz]	Reading [dBm]	Cable Loss [dB]	Atten. Loss [dB]	Result (Time average)		Duty factor [dB]	Result (Burst power average)	
				[dBm]	[mW]		[dBm]	[mW]
922.8	-1.15	0.83	9.79	9.47	8.85	0.00	9.47	8.85


Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Result (Burst power average) = Time average + Duty factor

Burst rate confirmation

Report No. 14010071H
Test place Ise EMC Lab. No.5 Measurement Room
Date September 15, 2021
Temperature / Humidity 23 deg. C / 52 % RH
Engineer Ken Fujita
Mode Tx

Radiated Spurious Emission

Report No. 14010071H
 Test place Ise EMC Lab.
 Semi Anechoic Chamber No.4
 Date June 23, 2021 August 25, 2021
 Temperature / Humidity 23 deg. C / 54 % RH 22 deg. C / 61 % RH
 Engineer Kiyoshiro Okazaki Hiroki Numata
 (Above 1 GHz) (Below 1GHz)
 Mode Tx

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	30.7	23.7	-	18.1	7.1	32.0	-	16.9	-	40.0	-	23.1	-	
Hori.	102.6	22.4	-	10.5	8.0	32.0	-	8.9	-	43.5	-	34.6	-	
Hori.	479.4	24.8	-	17.2	10.6	32.0	-	20.6	-	46.0	-	25.4	-	
Hori.	721.3	26.8	-	20.0	11.7	32.1	-	26.5	-	46.0	-	19.6	-	
Hori.	824.1	22.1	-	20.8	12.1	31.6	-	23.4	-	46.0	-	22.6	-	
Hori.	892.8	22.0	-	21.9	12.3	31.2	-	25.0	-	46.0	-	21.0	-	
Hori.	2768.4	50.0	46.0	28.4	5.9	31.7	-	52.6	48.6	73.9	53.9	21.3	5.4	
Hori.	3691.2	52.5	48.6	29.2	6.3	31.4	-	56.6	52.7	73.9	53.9	17.4	1.2	
Hori.	4614.0	44.0	37.1	31.2	6.8	31.2	-	50.8	43.9	73.9	53.9	23.1	10.0	
Hori.	7382.4	42.2	33.4	36.4	8.0	32.5	-	54.1	45.2	73.9	53.9	19.8	8.7	Floor noise
Hori.	8305.2	41.7	33.3	36.3	8.2	32.6	-	53.7	45.2	73.9	53.9	20.2	8.7	Floor noise
Vert.	30.7	24.5	-	18.1	7.1	32.0	-	17.7	-	40.0	-	22.3	-	
Vert.	102.6	22.5	-	10.5	8.0	32.0	-	9.0	-	43.5	-	34.5	-	
Vert.	479.4	24.8	-	17.2	10.6	32.0	-	20.6	-	46.0	-	25.4	-	
Vert.	721.3	27.2	-	20.0	11.7	32.1	-	26.9	-	46.0	-	19.2	-	
Vert.	824.1	22.2	-	20.8	12.1	31.6	-	23.5	-	46.0	-	22.5	-	
Vert.	892.8	22.0	-	21.9	12.3	31.2	-	25.0	-	46.0	-	21.0	-	
Vert.	2768.4	52.0	48.1	28.4	5.9	31.7	-	54.5	50.6	73.9	53.9	19.4	3.3	
Vert.	3691.2	51.3	47.2	29.2	6.3	31.4	-	55.4	51.3	73.9	53.9	18.5	2.6	
Vert.	4614.0	42.1	33.9	31.2	6.8	31.2	-	48.9	40.6	73.9	53.9	25.1	13.3	
Vert.	7382.4	40.8	33.0	36.4	8.0	32.5	-	52.7	44.9	73.9	53.9	21.2	9.0	Floor noise
Vert.	8305.2	41.0	33.3	36.3	8.2	32.6	-	52.9	45.2	73.9	53.9	21.0	8.7	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor: 1 GHz - 10 GHz $20\log(4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

20dBc Data Sheet

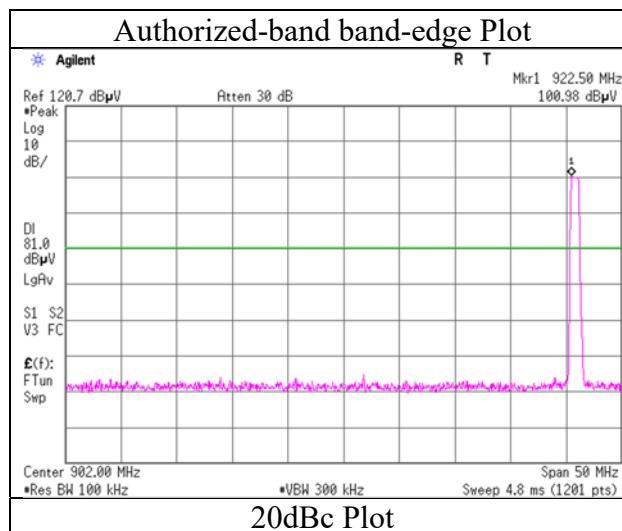
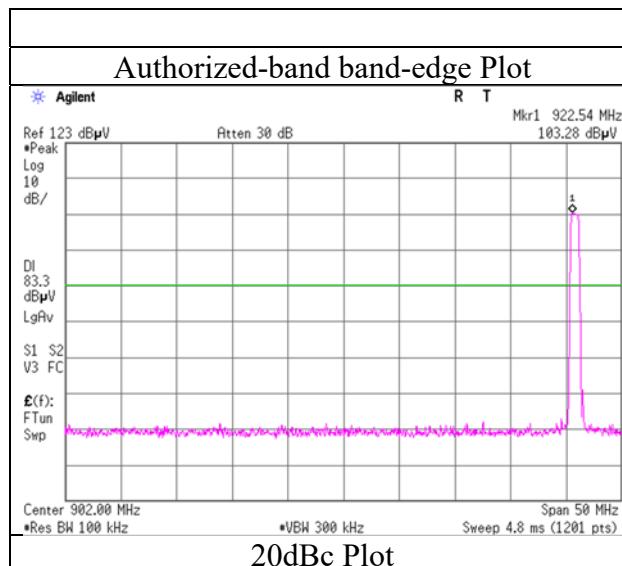
Polarity	Frequency	Reading (PK)	Ant Factor	Loss	Gain	Result	Limit	Margin	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	922.8	103.3	22.0	12.5	31.1	106.6	-	-	Carrier
Hori.	902.0	29.3	21.9	12.4	31.2	32.4	86.6	54.2	
Hori.	928.0	29.8	21.9	12.5	31.0	33.2	86.6	53.5	
Hori.	1845.6	59.1	25.4	5.4	32.4	57.5	86.6	29.2	
Hori.	5536.8	35.3	32.2	7.3	31.3	43.5	86.6	43.1	
Hori.	6459.6	39.0	34.0	7.7	31.8	48.9	86.6	37.7	
Hori.	9228.0	36.8	37.8	8.5	32.4	50.6	86.6	36.0	
Vert.	922.8	101.0	22.0	12.5	31.1	104.3	-	-	Carrier
Vert.	902.0	29.6	21.9	12.4	31.2	32.7	84.3	51.6	
Vert.	928.0	30.0	21.9	12.5	31.0	33.4	84.3	51.0	
Vert.	1845.6	59.8	25.4	5.4	32.4	58.2	84.3	26.2	
Vert.	5536.8	35.5	32.2	7.3	31.3	43.7	84.3	40.6	
Vert.	6459.6	35.7	34.0	7.7	31.8	45.6	84.3	38.7	
Vert.	9228.0	34.3	37.8	8.5	32.4	48.2	84.3	36.2	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz $20\log(4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

UL Japan, Inc.

Ise EMC Lab.

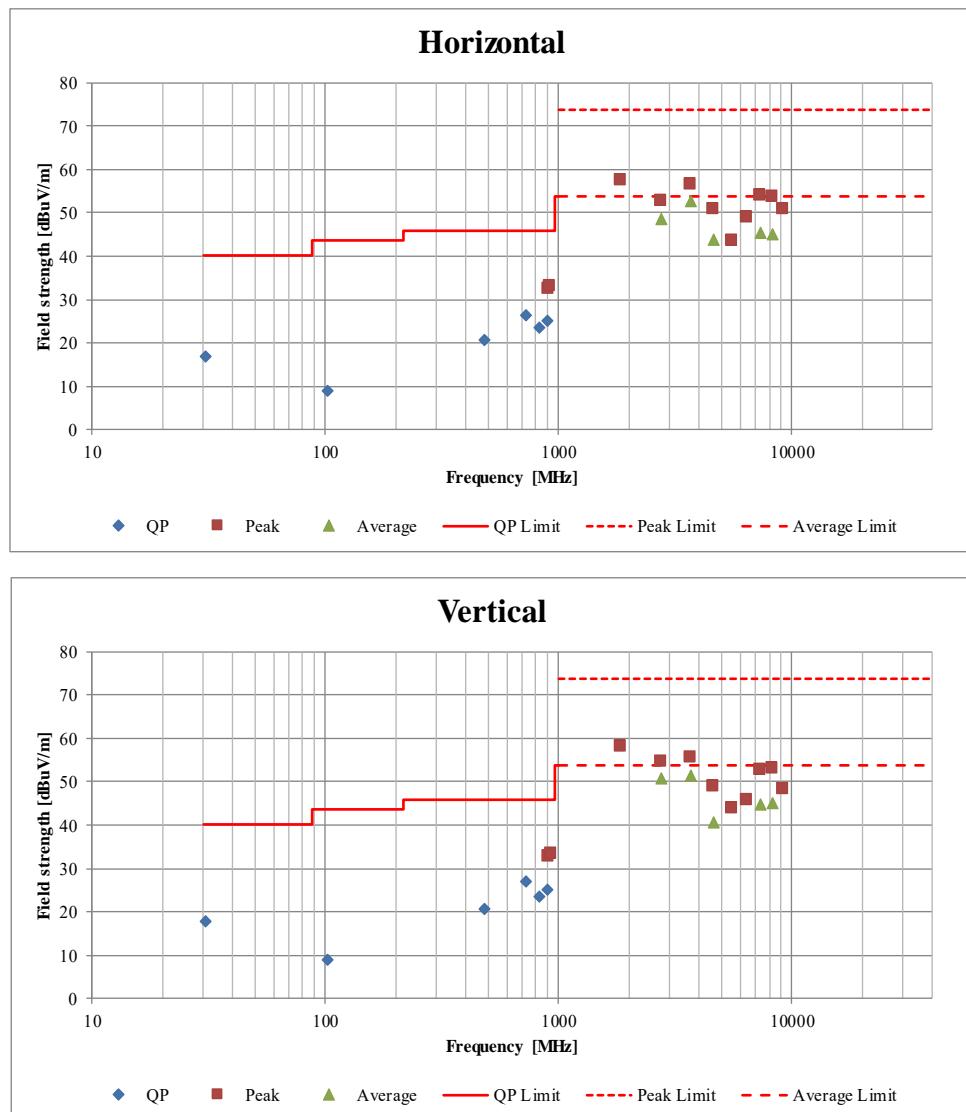


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Faxsimile : +81 596 24 8124

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 14010071H
Test place Ise EMC Lab.
Semi Anechoic Chamber No.4
Date August 25, 2021
Temperature / Humidity 22 deg. C / 61 % RH
Engineer Hiroki Numata
Mode Tx 922.8 MHz


* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.
Final result of restricted band edge was shown in tabular data.

UL Japan, Inc.
Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
Telephone : +81 596 24 8999
Facsimile : +81 596 24 8124

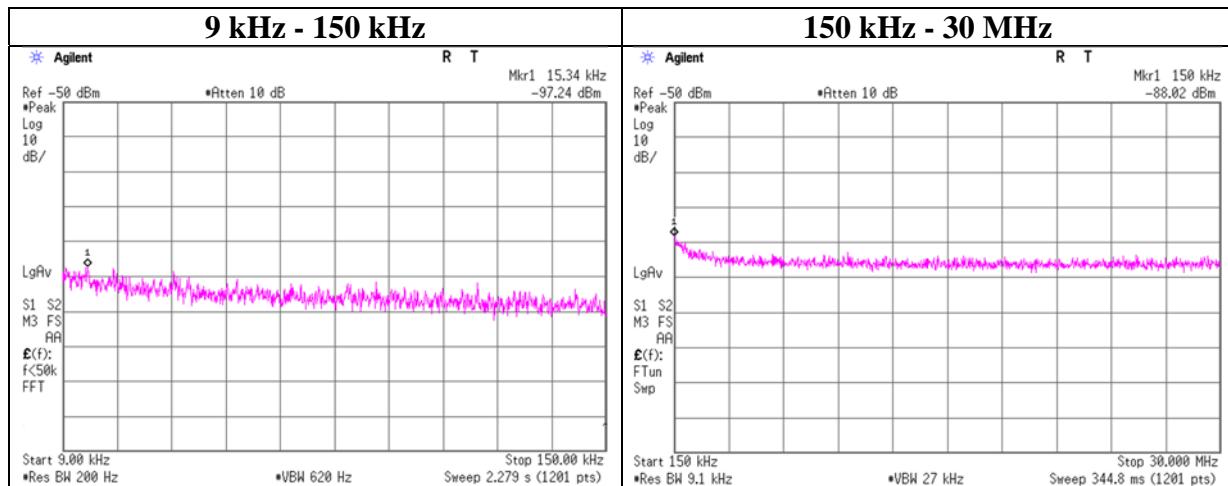
Radiated Spurious Emission (Plot data, Worst case)

Report No. 14010071H
 Test place Ise EMC Lab.
 Semi Anechoic Chamber No.4
 Date June 23, 2021 August 25, 2021
 Temperature / Humidity 23 deg. C / 54 % RH 22 deg. C / 61 % RH
 Engineer Kiyoshiro Okazaki Hiroki Numata
 (Above 1 GHz) (Below 1GHz)
 Mode Tx

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

UL Japan, Inc.

Ise EMC Lab.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Conducted Spurious Emission

Report No. 14010071H
 Test place Ise EMC Lab. No.5 Measurement Room
 Date September 15, 2021
 Temperature / Humidity 23 deg. C / 52 % RH
 Engineer Ken Fujita
 Mode Tx

Frequency [kHz]	Reading [dBm]	Cable Loss [dB]	Attenuator Loss [dB]	Antenna Gain* [dBi]	N (Number of Output)	EIRP [dBm]	Distance [m]	Ground bounce [dB]	E (field strength) [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Remark
15.34	-97.2	0.00	9.7	2.0	1	-85.6	300	6.0	-24.3	43.8	68.1	
150.00	-88.0	0.01	9.7	2.0	1	-76.3	300	6.0	-15.1	24.0	39.1	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

*2.0 dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

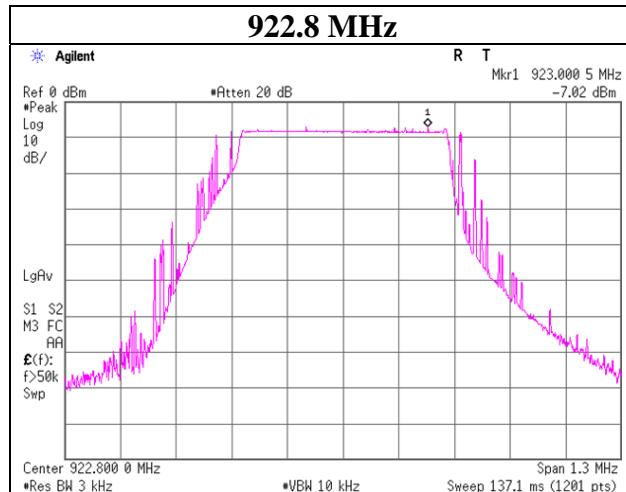
UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124


Power Density

Report No. 14010071H
Test place Ise EMC Lab. No.5 Measurement Room
Date September 15, 2021
Temperature / Humidity 23 deg. C / 52 % RH
Engineer Ken Fujita
Mode Tx

Freq. [MHz]	Reading [dBm / 3 kHz]	Cable Loss [dB]	Atten. Loss [dB]	Result [dBm / 3 kHz]	Limit [dBm / 3 kHz]	Margin [dB]
922.80	-7.02	0.83	9.79	3.60	8.00	4.40

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/05/2021	12
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/25/2020	24
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/15/2021	12
RE	MMM-10	141545	DIGITAL HiTESTER	HIOKI E.E. CORPORATION	3805	51201148	01/07/2021	12
RE	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	-
RE	COTS-MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/02/2021	12
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+BBA9106	VHA 91031302	08/28/2021	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	11/06/2020	12
RE	MLA-23	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-192	08/28/2021	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	02/18/2021	12
RE	MSA-15	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	10/15/2020	12
RE	MCC-217	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/04/2021	12
RE	MCC-178	141227	Microwave Cable	Junkosha	MMX221-00500DMSDMS	1502S305	03/01/2021	12
RE	MHF-04	141403	High Pass Filter 1.22-4.60GHz	Mini-Circuits	VHF-1200	10435	08/18/2021	12
RE	MHF-27	141297	High Pass Filter(1.1-10GHz)	TOKYO KEIKI	TF219CD1	1001	01/14/2021	12
RE	MRF-12	192072	Band Rejection Filter(902-928MHz)	Wakoh Communication Industrial Co., Ltd.	WFR-481	19122541	03/04/2021	12
RE	MPA-12	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/19/2020	12
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	557	05/10/2021	12
RE	MAEC-04-SVSWR	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/12/2021	24
AT	MOS-14	141561	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1401	01/15/2021	12
AT	MMM-18	141558	Digital Tester(TRUE RMS MULTIMETER)	Fluke Corporation	115	17930030	05/24/2021	12
AT	MSA-03	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	03/10/2021	12
AT	MPM-13	141810	Power Meter	Anritsu Corporation	ML2495A	824014	12/14/2020	12
AT	MCC-176	141279	Microwave Cable	Junkosha	MMX221-00500DMSDMS	1502S303	03/01/2021	12
AT	MAT-26	141244	Attenuator(10dB)	Weinschel - API Technologies Corp	WA8-10-34	A198	02/24/2021	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Faxsimile : +81 596 24 8124