

TEST REPORT

Product Name : Wireless Mini Speaker

Brand Mark : NA

Model No. : Bass 13 Wireless Mini Speaker

FCC ID : WKABSAA13

Report Number : BLA-EMC-202105-A5202

Date of Sample Receipt : 2021/5/14

: 2021/5/14 to 2021/6/25 **Date of Test**

Date of Issue : 2021/6/25

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result

Prepared for:

Maxell Corporation of America

3 Garret Mounain, 3rd Floor/Suite#300, Woodland Park NJ, 07424

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compiled by:

Approved by:

Review by:

Date:

Report No.: BLA-EMC-202105-A5202 Page 2 of 97

REPORT REVISE RECORD

Version No. Date		Description	
00	2021/6/25	Original	

TABLE OF CONTENTS

1	T	EST SUMMARY	6
2	G	ENERAL INFORMATION	7
3	G	ENERAL DESCRIPTION OF E.U.T.	7
4	Т	EST ENVIRONMENT	8
5		EST MODE	
		IEASUREMENT UNCERTAINTY	
6	IVI	ESCRIPTION OF SUPPORT UNIT	8
7			
8		ABORATORY LOCATION	
9	T	EST INSTRUMENTS LIST	10
10	Α	NTENNA REQUIREMENT	14
1	LO.1		
	-	ONDUCTED SPURIOUS EMISSIONS	
11	C		
	1.1		
	L1.2		
1	l1.3		
12	С	ONDUCTED PEAK OUTPUT POWER	
1	L2.1		
1	12.2		
1	12.3	TEST DATA	18
13	С	ONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	19
1	L3.1	LIMITS	19
1	13.2	BLOCK DIAGRAM OF TEST SETUP	19
1	13.3	PROCEDURE	19
1	L3.4	TEST DATA	21
14	R	ADIATED SPURIOUS EMISSIONS	23
1	L4.1	LIMITS	23
1	L4.2	BLOCK DIAGRAM OF TEST SETUP	24
1	L4.3	PROCEDURE	24
1	L4.4	TEST DATA	26

THE RESTRICTED BANDS34	
24	

15	RA	DIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	34
1	15.1	LIMITS	34
1	15.2	BLOCK DIAGRAM OF TEST SETUP	35
1	L5.3	PROCEDURE	35
1	L5.4	TEST DATA	37
16	СО	NDUCTED BAND EDGES MEASUREMENT	41
1	16.1	LIMITS	41
1	L6.2	BLOCK DIAGRAM OF TEST SETUP	41
1	16.3	TEST DATA	42
17	DW	ELL TIME	43
1	17.1	LIMITS	43
1	L7.2	BLOCK DIAGRAM OF TEST SETUP	43
1	17.3	TEST DATA	44
18	но	PPING CHANNEL NUMBER	45
1	L8.1	LIMITS	45
1	18.2	BLOCK DIAGRAM OF TEST SETUP	45
1	18.3	TEST DATA	45
19	CAI	RRIER FREQUENCIES SEPARATION	46
1	19.1	LIMITS	46
1	19.2	BLOCK DIAGRAM OF TEST SETUP	46
1	19.3	TEST DATA	46
20	200	OB BANDWIDTH	47
2	20.1	BLOCK DIAGRAM OF TEST SETUP	47
2	20.2	TEST DATA	47
21	API	PENDIX	48
2	21.1	MAXIMUM CONDUCTED OUTPUT POWER	48
2	21.2	-20dB Bandwidth	53
2	21.3	Occupied Channel Bandwidth	58
2	21.4	BAND EDGE	63
2	21.5	BAND EDGE(HOPPING)	70
2	21.6	CONDUCTED RF Spurious Emission	77
2	21.7	CARRIER FREQUENCIES SEPARATION	87
2	21.8	Dwell Time	91

Report No.: BLA-EMC-202105-A5202 Page 5 of 97

Report No.: BLA-EMC-202105-A5202 Page 6 of 97

TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass

Page 7 of 97

2 GENERAL INFORMATION

Applicant	Maxell Corporation of America	
Address	3 Garret Mounain, 3rd Floor/Suite#300, Woodland Park NJ, 07424	
Manufacturer	Shenzhen E-Ran Technology Co., Ltd	
Address	North Section, 6th Floor, Block 9A, Xiangxiang Industrial Park, Yingrenshi community, Shiyan Sub district, Baoan District, Shenzhen, China	
Factory	Shenzhen E-Ran Technology Co., Ltd	
Address	North Section, 6th Floor, Block 9A, Xiangxiang Industrial Park, Yingrenshi community, Shiyan Sub district, Baoan District, Shenzhen, China	
Product Name	Wireless Mini Speaker	
Test Model No.	Bass 13 Wireless Mini Speaker	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V1.0	
Software Version	V1.0	
Operation Frequency:	2402MHz-2480MHz	
Modulation Type:	GFSK, pi/4DQPSK, 8DPSK	
Channel Spacing:	1MHz	
Number of Channels:	79	
Antenna Type:	PCB Antenna	
Antenna Gain:	-0.58dBi(Provided by the applicant)	

Page 8 of 97

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	25°C	DC3.7V	
Extreme	-20℃ ~ +55℃	Low 3.5Vdc, High 4.2Vdc	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION	
Transmitting mode	Keep the EUT in continuously transmitting mode with modulation. (hopping and non hopping mode all have been tested, non hopping mode is worse case for RE)	
Remark: Full battery is used during all test except ac conducted emission, DH1,DH3, DH5 all have been tosted, during the test GESK, Bi/AOPSK, 8,DPSK modulation were all pro-scapped Only the 8,DPSK of the		

Remark: Full battery is used during all test except ac conducted emission, DH1,DH3, DH5 all have been tested, during the test, GFSK, Pi/4QPSK, 8-DPSK modulation were all pre-scanned Only the 8-DPSK, of the worst mode would be recorded in this report.

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)	
Radiated Emission(9kHz-30MHz)	±4.34dB	
Radiated Emission(30Mz-1000MHz)	±4.24dB	
Radiated Emission(1GHz-18GHz)	±4.68dB	
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB	

Parameter	Expanded Uncertainty (Confidence of 95%)		
Occupied Channel Bandwidth	±5 %		
RF output power, conducted	±1.5 dB		
Power Spectral Density, conducted	±3.0 dB		
Unwanted Emissions, conducted	±3.0 dB		
Temperature	±3 °C		
Supply voltages	±3 %		
Time	±5 %		
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB		
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB		

Page 9 of 97

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
AC Adapter	UGREEN	CD112	N/A	N/A
PC	HASEE	K610D	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Page 10 of 97

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Conducted Peak Output Power					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

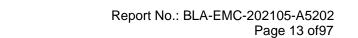
Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Shield room	SKET	833	N/A	2020/11/25	2023/11/24	
Receiver	R&S	ESPI3	101082	2020/10/12	2021/10/11	
LISN	R&S	ENV216	3560.6550.15	2020/10/12	2021/10/11	
LISN	安泰信	AT166-2	AKK1806000003	2020/10/12	2021/10/11	
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A	

Test Equipment Of Radiated Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

Page 11 of 97

Chamber	SKET	966	N/A	2020/11/10	2023/11/9
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

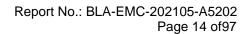
Test Equipment Of	Test Equipment Of Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Chamber	SKET	966	N/A	2020/11/10	2023/11/9	
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11	
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11	
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25	
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25	
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15	
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A	


Page 12 of 97

Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Test Equipment Of Conducted Band Edges Measurement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Dwell Time					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

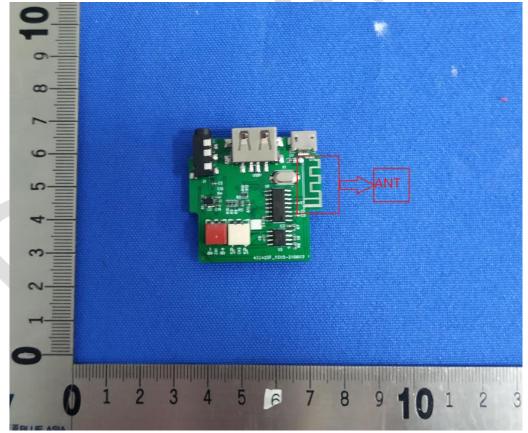

Test Equipment Of Hopping Channel Number					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Carrier Frequencies Separation Equipment S/N Manufacturer Model Cal.Date Cal.Due Spectrum R&S FSP40 2020/10/12 2021/10/11 100817 Spectrum Agilent N9020A MY49100060 2020/10/12 2021/10/11 Signal Generator 2020/10/12 2021/10/11 Agilent N5182A MY49060650 2020/10/12 2021/10/11 Signal Generator Agilent E8257D MY44320250

Test Equipment Of	20dB Bandwidth				
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

10 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


10.1 CONCLUSION

Standard Requirement:

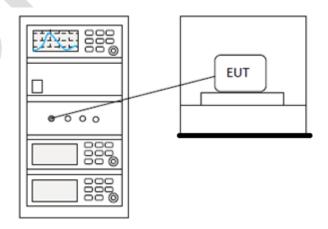
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

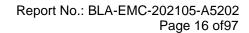
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58dBi.

Page 15 of 97

11 CONDUCTED SPURIOUS EMISSIONS

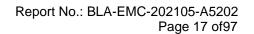

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Eason
Temperature	25℃
Humidity	52%


11.1 LIMITS

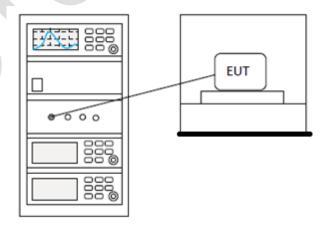
Limit:

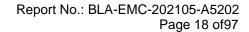
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP



11.3 TEST DATA


12 CONDUCTED PEAK OUTPUT POWER

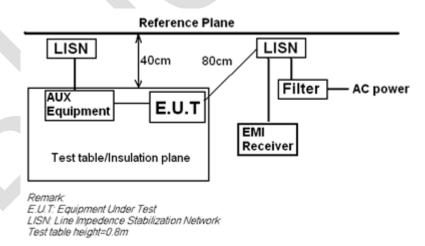

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Eason
Temperature	25℃
Humidity	52%

12.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)				
	1 for ≥50 hopping channels				
902-928	0.25 for 25≤ hopping channels <50				
	1 for digital modulation				
	1 for ≥75 non-overlapping hopping channels				
2400-2483.5	0.125 for all other frequency hopping systems				
	1 for digital modulation				
5725 5050	1 for frequency hopping systems and digital				
5725-5850	modulation				

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 TEST DATA


13 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Eason
Temperature	25℃
Humidity	52%

13.1 LIMITS

Frequency of	Conducted limit(dBµV)						
emission(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
*Decreases with the logarithm	of the frequency.						

13.2 BLOCK DIAGRAM OF TEST SETUP

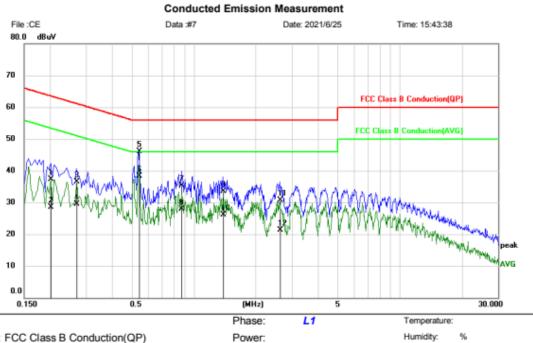
13.3 PROCEDURE

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

Page 20 of 97

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

13.4 TEST DATA

[TestMode: TX]; [Line: Line][Power:120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: BT mode

Note:

Site

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2020	27.44	9.83	37.27	63.53	-26.26	QP	
2		0.2020	18.73	9.83	28.56	53.53	-24.97	AVG	
3		0.2700	26.69	9.84	36.53	61.12	-24.59	QP	
- 4		0.2700	19.57	9.84	29.41	51.12	-21.71	AVG	
5		0.5420	36.14	9.87	46.01	56.00	-9.99	QP	
6	•	0.5420	28.50	9.87	38.37	46.00	-7.63	AVG	
7	,	0.8740	25.31	9.91	35.22	56.00	-20.78	QP	
8		0.8740	18.08	9.91	27.99	46.00	-18.01	AVG	
9		1.3860	23.61	9.93	33.54	56.00	-22.46	QP	
10		1.3860	16.10	9.93	26.03	46.00	-19.97	AVG	
11		2.6180	20.65	9.96	30.61	56.00	-25.39	QP	
12		2.6180	11.34	9.96	21.30	46.00	-24.70	AVG	

*:Maximum data x:Over limit !:over margin (Reference Only

Temperature:

Humidity:

[TestMode: TX]; [Line: Nutral][Power:120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: BT mode

Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2420	28.30	9.76	38.06	62.03	-23.97	QP	
2		0.2420	19.43	9.76	29.19	52.03	-22.84	AVG	
3		0.3020	27.51	9.77	37.28	60.19	-22.91	QP	
4		0.3020	18.44	9.77	28.21	50.19	-21.98	AVG	
5		0.4180	24.66	9.78	34.44	57.49	-23.05	QP	
6		0.4180	17.81	9.78	27.59	47.49	-19.90	AVG	
7		0.5420	34.48	9.79	44.27	56.00	-11.73	QP	
8	•	0.5420	29.10	9.79	38.89	46.00	-7.11	AVG	
9		0.9580	21.76	9.84	31.60	56.00	-24.40	QP	
10		0.9580	15.69	9.84	25.53	46.00	-20.47	AVG	
11		1.5300	20.74	9.85	30.59	56.00	-25.41	QP	
12		1.5300	14.36	9.85	24.21	46.00	-21.79	AVG	

Phase:

Power:

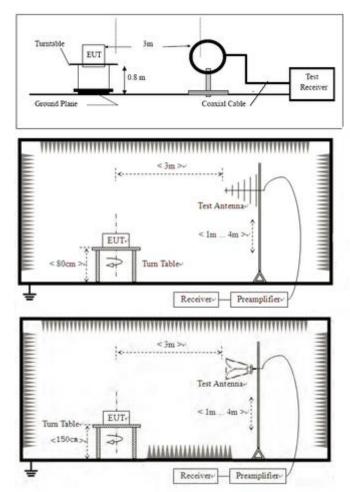
Ν

^{*:}Maximum data x:Over limit !:over margin (Reference Only

Page 23 of 97

14 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX middle channel;TX Low channel;TX high channel
Test Mode (Final Test)	TX middle channel;TX Low channel;TX high channel
Tester	Eason
Temperature	25℃
Humidity	52%


14.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

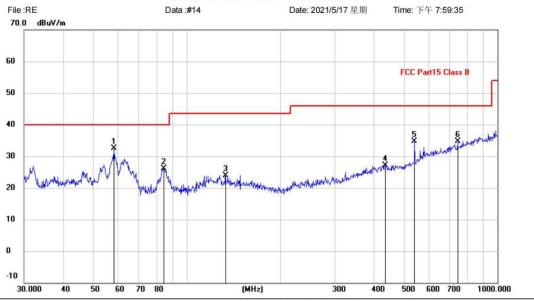
Page 25 of 97

- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

14.4 TEST DATA

[Test mode: TX]; [Polarity: Horizontal]

Radiated Emission Measurement

Site

Limit: FCC Part15 Class B

EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

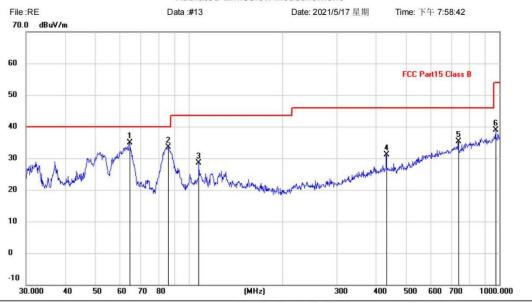
Mode: BT mode

Note:

Polarization: Horizontal Temperature:

Power: Humidity: %

Distance:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	58.4074	9.02	23.50	32.52	40.00	-7.48	QP			
2		84.1100	6.70	19.47	26.17	40.00	-13.83	QP			
3		133.1511	0.90	23.10	24.00	43.50	-19.50	QP			
4		434.0651	-0.72	27.92	27.20	46.00	-18.80	QP			
5		541.3725	4.99	29.63	34.62	46.00	-11.38	QP			
6		744.8661	1.33	33.43	34.76	46.00	-11.24	QP			

*:Maximum data x:Over limit !:over margin \(\text{Reference Only} \)

[Test mode: TX]; [Polarity: Vertical]

Radiated Emission Measurement

Site Limit: FCC Part15 Class B

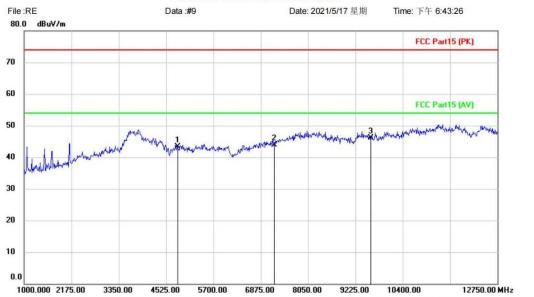
EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: BT mode

Note:

Polarization: Vertical Temperature:
Power: Humidity: 9


Distance:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	64.4331	12.42	22.51	34.93	40.00	-5.07	QP			
	85.8984	14.17	19.39	33.56	40.00	-6.44	QP			
	107.8877	7.22	21.28	28.50	43.50	-15.00	QP			
	432.5457	3.17	27.92	31.09	46.00	-14.91	QP			
	737.0714	2.06	33.29	35.35	46.00	-10.65	QP			
	972.3374	2.34	36.50	38.84	54.00	-15.16	QP			
	*	MHz * 64.4331 85.8984 107.8877 432.5457	Mk. Freq. Level MHz dBuV * 64.4331 12.42 85.8984 14.17 107.8877 7.22 432.5457 3.17 737.0714 2.06	Mk. Freq. Level Factor MHz dBuV dB * 64.4331 12.42 22.51 85.8984 14.17 19.39 107.8877 7.22 21.28 432.5457 3.17 27.92 737.0714 2.06 33.29	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 64.4331 12.42 22.51 34.93 85.8984 14.17 19.39 33.56 107.8877 7.22 21.28 28.50 432.5457 3.17 27.92 31.09 737.0714 2.06 33.29 35.35	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 64.4331 12.42 22.51 34.93 40.00 85.8984 14.17 19.39 33.56 40.00 107.8877 7.22 21.28 28.50 43.50 432.5457 3.17 27.92 31.09 46.00 737.0714 2.06 33.29 35.35 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB * 64.4331 12.42 22.51 34.93 40.00 -5.07 85.8984 14.17 19.39 33.56 40.00 -6.44 107.8877 7.22 21.28 28.50 43.50 -15.00 432.5457 3.17 27.92 31.09 46.00 -14.91 737.0714 2.06 33.29 35.35 46.00 -10.65	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m <td>Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm * 64.4331 12.42 22.51 34.93 40.00 -5.07 QP 85.8984 14.17 19.39 33.56 40.00 -6.44 QP 107.8877 7.22 21.28 28.50 43.50 -15.00 QP 432.5457 3.17 27.92 31.09 46.00 -14.91 QP 737.0714 2.06 33.29 35.35 46.00 -10.65 QP</td> <td>Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree * 64.4331 12.42 22.51 34.93 40.00 -5.07 QP 85.8984 14.17 19.39 33.56 40.00 -6.44 QP 107.8877 7.22 21.28 28.50 43.50 -15.00 QP 432.5457 3.17 27.92 31.09 46.00 -14.91 QP 737.0714 2.06 33.29 35.35 46.00 -10.65 QP</td>	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm * 64.4331 12.42 22.51 34.93 40.00 -5.07 QP 85.8984 14.17 19.39 33.56 40.00 -6.44 QP 107.8877 7.22 21.28 28.50 43.50 -15.00 QP 432.5457 3.17 27.92 31.09 46.00 -14.91 QP 737.0714 2.06 33.29 35.35 46.00 -10.65 QP	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree * 64.4331 12.42 22.51 34.93 40.00 -5.07 QP 85.8984 14.17 19.39 33.56 40.00 -6.44 QP 107.8877 7.22 21.28 28.50 43.50 -15.00 QP 432.5457 3.17 27.92 31.09 46.00 -14.91 QP 737.0714 2.06 33.29 35.35 46.00 -10.65 QP

*:Maximum data x:Over limit !:over margin \(\text{Reference Only} \)

[Test mode: TX Low channel]; [Polarity: Horizontal] Radiated Emission Measurement

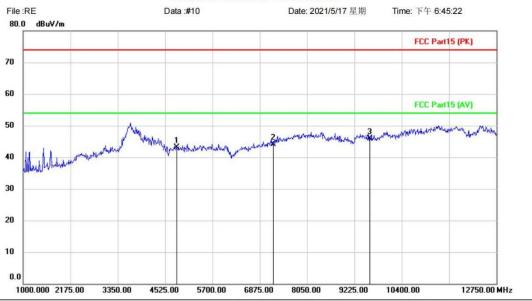
Site Limit: FCC Part15 (PK)

EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: TX-L Note:

Polarization: Horizontal Temperature: Power: Humidity:


Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	39.53	3.71	43.24	74.00	-30.76	peak			
2		7206.000	37.92	5.96	43.88	74.00	-30.12	peak			
3	*	9608.000	36.79	9.29	46.08	74.00	-27.92	peak			

*:Maximum data !:over margin (Reference Only x:Over limit

[Test mode: TX Low channel]; [Polarity: Vertical]
Radiated Emission Measurement

Site

Limit: FCC Part15 (PK)

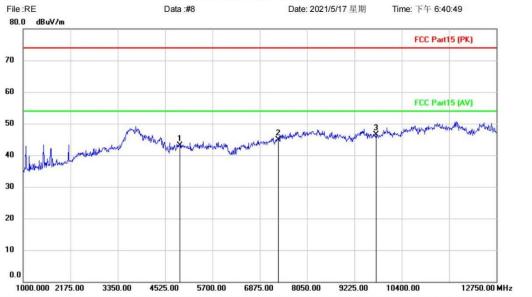
EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: TX-L Note:

Polarization: Vertical

Temperature: Power: Humidity:


Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	39.38	3.71	43.09	74.00	-30.91	peak			
2		7206.000	38.09	5.96	44.05	74.00	-29.95	peak			
3	*	9608.000	36.65	9.29	45.94	74.00	-28.06	peak			

*:Maximum data (Reference Only x:Over limit !:over margin

[Test mode: TX middle channel]; [Polarity: Horizontal] Radiated Emission Measurement

Site

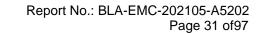
Limit: FCC Part15 (PK)

EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: TX-M Note:

Polarization: Horizontal


Power:

Temperature: Humidity:

Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4882.000	39.76	3.36	43.12	74.00	-30.88	peak			
2		7323.000	38.50	6.43	44.93	74.00	-29.07	peak			
3	*	9764.000	36.81	9.63	46.44	74.00	-27.56	peak			

*:Maximum data (Reference Only x:Over limit !:over margin

[Test mode: TX middle channel]; [Polarity: Vertical]

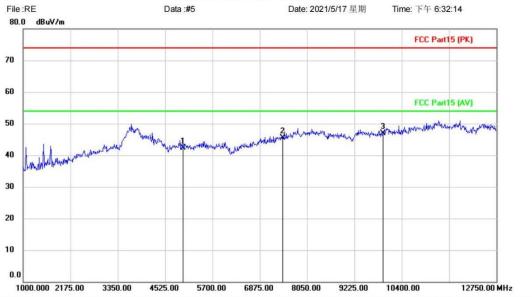
Radiated Emission Measurement

Site Limit: FCC Part15 (PK)

EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: TX-M Note: Polarization: Vertical Temperature:
Power: Humidity:


Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4882.000	39.79	3.36	43.15	74.00	-30.85	peak			
2		7323.000	39.17	6.43	45.60	74.00	-28.40	peak			
3	*	9764.000	36.31	9.63	45.94	74.00	-28.06	peak			

*:Maximum data x:Over limit !:over margin \(\text{Reference Only} \)

[Test mode: TX highest channel]; [Polarity: Horizontal] Radiated Emission Measurement

Site

Limit: FCC Part15 (PK)

EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: TX-H Note:

Polarization: Horizontal

Temperature: Humidity:

Distance:

Power:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4960.000	38.64	3.75	42.39	74.00	-31.61	peak			
2		7440.000	38.70	6.86	45.56	74.00	-28.44	peak			
3	*	9920.000	36.67	10.16	46.83	74.00	-27.17	peak			

*:Maximum data (Reference Only x:Over limit !:over margin

Humidity:

[Test mode: TX highest channel]; [Polarity: Vertical] Radiated Emission Measurement

Site Limit: FCC Part15 (PK)

EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: TX-H Note:

Polarization: Vertical

Power:

Distance:

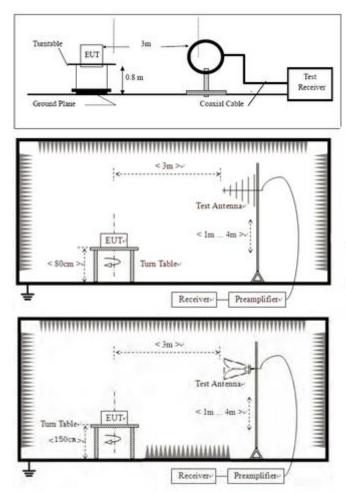
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4960.000	39.91	3.75	43.66	74.00	-30.34	peak			
2		7440.000	38.74	6.86	45.60	74.00	-28.40	peak			
3	*	9920.000	37.80	10.16	47.96	74.00	-26.04	peak			

*:Maximum data !:over margin (Reference Only x:Over limit

Page 34 of 97

15 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	TX Low channel;TX high channel
Test Mode (Final Test)	TX Low channel;TX high channel
Tester	Eason
Temperature	25℃
Humidity	52%


15.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

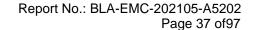
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 36 of 97


h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

15.4 TEST DATA

[Test mode: TX Low channel]; [Polarity: Horizontal]

Radiated Emission Measurement

Distance:

74.00

-31.38

Site

Limit: FCC Part15 (PK)

EUT: Wireless Mini Speaker

Freq.

MHz

2310.000

2378.150

2390.000

M/N: Bass 13 Wireless Mini Speaker

Reading

Level

dBuV

41.88

53.82

46.89

Correct

Factor

dB

-4.61

-4.32

-4.27

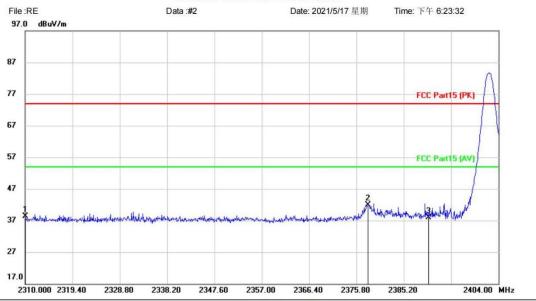
42.62

Mode: TX-L Note:

No. Mk.

2

3


0	2357.00	2366.40	2375.80	2385.20	240
	Polarizatio	n: Horiz	zontal	Tempera	ture:
	Power:			Humidity	: %

Measure- ment	Limit	Over		Antenna Height	Table Degree		
dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
37.27	74.00	-36.73	peak				
49.50	74.00	-24.50	peak				

*:Maximum data x:Over limit !:over margin (Reference Only

[Test mode: TX Low channel]; [Polarity: Vertical] Radiated Emission Measurement

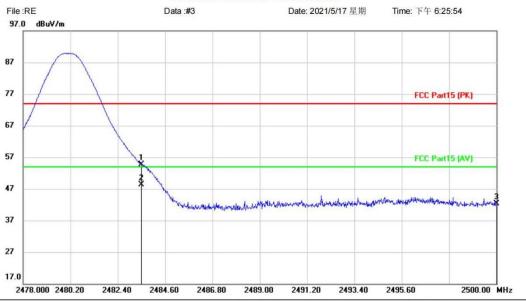
Site Limit: FCC Part15 (PK)

EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: TX-L Note:

Polarization: Vertical Temperature: Power: Humidity:


Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	42.88	-4.61	38.27	74.00	-35.73	peak			
2	*	2378.150	46.31	-4.32	41.99	74.00	-32.01	peak			
3		2390.000	42.16	-4.27	37.89	74.00	-36.11	peak			

*:Maximum data (Reference Only x:Over limit !:over margin

[Test mode: TX high channel]; [Polarity: Horizontal] Radiated Emission Measurement

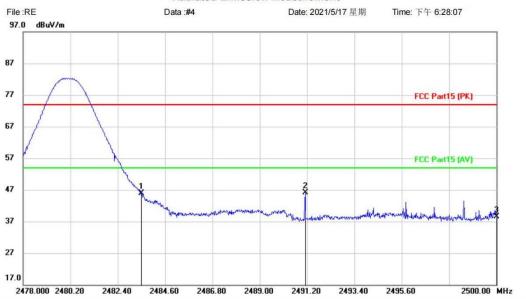
Site Limit: FCC Part15 (PK)

EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: TX-H Note:

Polarization: Horizontal Temperature: Power: Humidity:


Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	58.60	-3.84	54.76	74.00	-19.24	peak			
2	*	2483.500	52.07	-3.84	48.23	54.00	-5.77	AVG			
3		2500.000	46.03	-3.78	42.25	74.00	-31.75	peak			

*:Maximum data (Reference Only x:Over limit !:over margin

[Test mode: TX high channel]; [Polarity: Vertical] Radiated Emission Measurement

Limit: FCC Part15 (PK)

EUT: Wireless Mini Speaker

M/N: Bass 13 Wireless Mini Speaker

Mode: TX-H Note:

Site

Polarization:	Vertical	Temperature:			
Power:		Humidity:	%		

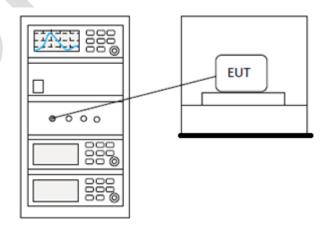
Distance:

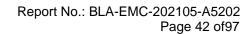
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	49.66	-3.84	45.82	74.00	-28.18	peak			
2	*	2491.112	49.84	-3.81	46.03	74.00	-27.97	peak			
3		2500.000	42.27	-3.78	38.49	74.00	-35.51	peak			

(Reference Only *:Maximum data x:Over limit !:over margin

Page 41 of 97

16 CONDUCTED BAND EDGES MEASUREMENT


Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			
Tester	Eason			
Temperature	25 ℃			
Humidity	52%			

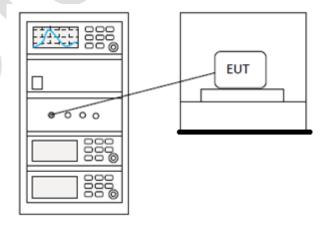

16.1 LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA


17 DWELL TIME

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.4			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			
Tester	Eason			
Temperature	25℃			
Humidity	52%			

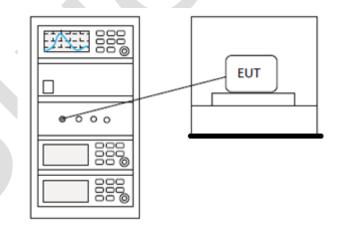
17.1 LIMITS

Frequency(MHz)	Limit		
	0.4S within a 20S period(20dB		
002.028	bandwidth<250kHz)		
902-928	0.4S within a 10S period(20dB		
	bandwidth≥250kHz)		
	0.4S within a period of 0.4S multiplied by the		
2400-2483.5	number		
	of hopping channels		
5725-5850	0.4S within a 30S period		

17.2 BLOCK DIAGRAM OF TEST SETUP

Page 44 of 97

17.3 TEST DATA


18 HOPPING CHANNEL NUMBER

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.3			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			
Tester	Eason			
Temperature	25℃			
Humidity	52%			

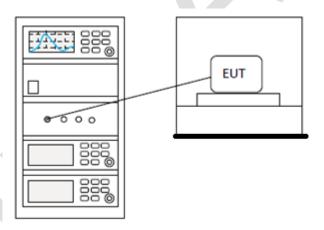
18.1 LIMITS

Frequency range(MHz)	Number of hopping channels (minimum)		
002.020	50 for 20dB bandwidth <250kHz		
902-928	25 for 20dB bandwidth ≥250kHz		
2400-2483.5	15		
5725-5850	75		

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 TEST DATA

Page 46 of 97


19 CARRIER FREQUENCIES SEPARATION

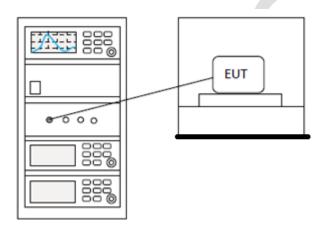
Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.2				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Eason				
Temperature	25℃				
Humidity	52%				

19.1 LIMITS

Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W

19.2 BLOCK DIAGRAM OF TEST SETUP

19.3 TEST DATA



Page 47 of 97

20 20DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.7			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			
Tester	Eason			
Temperature	25℃			
Humidity	52%			

20.1 BLOCK DIAGRAM OF TEST SETUP

20.2 TEST DATA