

23, Headington Drive, Cambridge. CB1 9HE Tel: 01954 251974 (test site) or: 01223 241140 (accounts) Fax: 01954 251907 web: www.dbtechnology.co.uk email: mail@dbtechnology.co.uk

REPORT ON ELECTROMAGNETIC COMPATIBILITY TESTS

Performed at: TWENTY PENCE TEST SITE

Twenty Pence Road, Cottenham, Cambridge U.K. CB24 8PS

on

AlertMe.com Ltd

nano Hub

dated

17th September 2009

Document History

Issue	Date	Affected page(s)	Description of modifications	Revised by	Approved by
1	17/09/09		Initial release		
2	18/07/11	10	Added equipment calibration data	DS	DB
3	26/07/11	all	hyphen removed from FCC ID	DS	DB

Based on report template: v090319

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	2 of 80

Equipment Under	Test (EUT):	nano Hub		
Test Commissione	ed by:	AlertMe.com Ltd Compass House 80 Newmarket Road Cambridge CB5 8DZ		
Representative:		Bruce Benson		
Test Started:		10th Septembe	r 2009	
Test Completed:		16th Septembe	r 2009	
Test Engineer:		Dave Smith		
Date of Report:		17th Septembe	r 2009	
Written by:	Dave Smith	Checked by:	Derek Barlow	
Signature:	D. A. Smitt	Signature:	D. Barbon	
Date:	17th September 2009	Date:	17th September 2009	

dB Technology can only report on the specific unit(s) tested at its site. The responsibility for extrapolating this data to a product line lies solely with the manufacturer.

Test Standards Applied

CFR 47 : 2008 Code of Federal Regulations: Pt 15 Subpart C - Radio Frequency Devices - Intentional Radiators

In particular, the rules of part 15.247 were applied.

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	3 of 80

Test Results Summary

FCC Part	Parameter	
15.207	Conducted Emissions	PASS
15.209	Radiated Emissions	PASS (for frequencies in the Restricted Bands list of 15.205 only - all other parts of 15.209 are not applicable - 15.247 takes precedence.)
15.247(a)(2)	Minumum 6dB bandwidth (must be >500kHz)	PASS
15.247(b)(3)	Peak power (must be <1W)	PASS
15.247(b)(4)	Antenna gain (must be < 6dBi)	Manufacturer data states a gain of 1dBi. Only integral antenna.
15.247(b)(5)	Exposure to RF	See separate declaration based on calculation.
15.247(d)	Conducted Antenna Spurious (Must be at least 20dB below carrier in - 100kHz bw)	PASS
15.247(e)	Spectral Density (must not exceed 8dBm in any 3kHz band)	PASS

/ ₱\	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	4 of 80

Contents

	EUT Details	
1.1	General	. 6
1.2	Modifications to EUT and Peripherals	. 6
1.3	EUT Operating Modes	. 7
	Figure 1 General Arrangement of EUT and Peripherals	. 7
	Photograph 1 Conducted Emissions - Front	. 8
	Photograph 2 Conducted Emissions - Back	. 8
	Photograph 3 Radiated Emissions - Front	. 9
	Photograph 4 Radiated Emissions - Back	. 9
2 1	Test Equipment	10
3	Test Methods	11
3.1	Conducted Emissions - ac power	11
3.2	Radiated Emissions	11
	Conducted Antenna Emissions	
	Test Results	
4.1	Conducted Emissions - ac power - 15.207	12
4.2		
4.3		
4.4		
4.5		16
4.6		
4.7		
4.8		
4.9		
4.9		
	PLOT 2 Conducted Emissions - Tx Channel 18 - Neutral	
	PLOT 3 Conducted Emissions - Tx Channel 11 - Neutral	
	PLOT 4 Conducted Emissions - Tx Channel 11 - Live	
	PLOT 5 Conducted Emissions - Tx Channel 25 - Live	
	PLOT 6 Conducted Emissions - Tx Channel 25 - Neutral	
	PLOT 7 Peak Power - Channel 11	
	PLOT 8 Peak Power - Channel 18	
	PLOT 9 Peak Power - Channel 25	
	PLOT 10 6dB Bandwidth - Channel 11	
	PLOT 11 6dB Bandwidth - Channel 18	
	PLOT 12 6dB Bandwidth - Channel 25	
	PLOT 13 Spectral Density - Channel 11	
	PLOT 14 Spectral Density - Channel 18	34
	PLOT 15 Spectral Density - Channel 25	35
	PLOT 16 Antenna Conducted Spurious - Ch 11 - 9kHz to 500kHz	36
	PLOT 17 Antenna Conducted Spurious - Ch 11 - 500kHz to 30MHz	37
	PLOT 18 Antenna Conducted Spurious - Ch 11 - 30MHz to 1GHz	
	PLOT 19 Antenna Conducted Spurious - Ch 11 - 1GHz to 5GHz	39
	PLOT 20 Antenna Conducted Spurious - Ch 11 - 2.3GHz to 2.583GHz	
	PLOT 21 Antenna Conducted Spurious - Ch 11 - 5GHz to 15GHz	
	PLOT 22 Antenna Conducted Spurious - Ch 11 - 15GHz to 25GHz	
	PLOT 23 Antenna Conducted Spurious - Ch 18 - 9kHz to 500kHz	
	PLOT 24 Antenna Conducted Spurious - Ch 18 - 500kHz to 30MHz	
	PLOT 25 Antenna Conducted Spurious - Ch 18 - 30MHz to 1GHz	
	PLOT 26 Antenna Conducted Spurious - Ch 18 - 1GHz to 5GHz	
	PLOT 27 Antenna Conducted Spurious - Ch 18 - 2.3GHz to 2.583GHz	
	PLOT 28 Antenna Conducted Spurious - Ch 18 - 2.5GHz to 2.5GGHz	
	PLOT 29 Antenna Conducted Spurious - Ch 18 - 3GHz to 25GHz	
	PLOT 30 Antenna Conducted Spurious - Ch 25 - 9kHz to 500kHz	
	PLOT 31 Antenna Conducted Spurious - Ch 25 - 500kHz to 30MHz	
	1 LO1 - 51 - Amerina Conauciea Sparious - Cn 25 - 500kHz to 50thHz	IJΙ

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
1 /	Test No:	T3258	Test Report	Page:	5 of 80

Antenna Conducted Spurious - Ch 25 - 30MHz to 1GHz	
Antenna Conducted Spurious - Ch 25 - 1GHz to 5GHz	
Antenna Conducted Spurious - Ch 25 - 2.3GHz to 2.583GHz	
Antenna Conducted Spurious - Ch 25 - 5GHz to 15GHz	
Antenna Conducted Spurious - Ch 25 - 15GHz to 25GHz	
Radiated Emissions - 25MHz to 275MHz - Vertical	
Radiated Emissions - 25MHz to 275MHz - Horizontal	
Radiated Emissions - 250MHz to 1GHz - Horizontal	
Radiated Emissions - 1GHz to 2GHz - Vertical	
Radiated Emissions - 1GHz to 2GHz - Horizontal	
Radiated Emissions - 2.75GHz to 4.75GHz - Vertical	
Radiated Emissions - 2.75GHz to 4.75GHz - Horizontal	
Radiated Emissions - 4.5GHz to 6.5GHz - Vertical	
Radiated Emissions - 4.5GHz to 6.5GHz - Horizontal	
Radiated Emissions - 6GHz to 10GHz - Vertical	
Radiated Emissions - 6GHz to 10GHz - Horizontal	
Radiated Emissions - 9GHz to 13GHz - Vertical	
Radiated Emissions - 9GHz to 13GHz - Horizontal	
Radiated Emissions - 12GHz to 16GHz - Vertical	
Radiated Emissions - 12GHz to 16GHz - Horizontal	
Radiated Emissions - 14GHz to 18GHz - Vertical	
Radiated Emissions - 14GHz to 18GHz - Horizontal	
Radiated Emissions - 18GHz to 22GHz - Vertical	
Radiated Emissions - 18GHz to 22GHz - Horizontal	
Radiated Emissions - 21GHz to 25GHz - Horizontal	
	Antenna Conducted Spurious - Ch 25 - 1GHz to 5GHz Antenna Conducted Spurious - Ch 25 - 2.3GHz to 2.583GHz Antenna Conducted Spurious - Ch 25 - 5GHz to 15GHz 55 Antenna Conducted Spurious - Ch 25 - 15GHz to 25GHz 67 Radiated Emissions - 25MHz to 275MHz - Vertical 77 Radiated Emissions - 25MHz to 275MHz - Horizontal 58 Radiated Emissions - 25MHz to 1GHz - Vertical 79 Radiated Emissions - 250MHz to 1GHz - Vertical 79 Radiated Emissions - 250MHz to 1GHz - Horizontal 70 Radiated Emissions - 1GHz to 2GHz - Horizontal 70 Radiated Emissions - 1GHz to 2GHz - Horizontal 70 Radiated Emissions - 1GHz to 2GHz - Horizontal 70 Radiated Emissions - 2GHz to 3GHz - Vertical 70 Radiated Emissions - 2GHz to 3GHz - Horizontal 70 Radiated Emissions - 2.75GHz to 4.75GHz - Vertical 71 Radiated Emissions - 2.75GHz to 4.75GHz - Vertical 72 Radiated Emissions - 4.5GHz to 6.5GHz - Horizontal 73 Radiated Emissions - 4.5GHz to 6.5GHz - Horizontal 74 Radiated Emissions - 6GHz to 10GHz - Vertical 75 Radiated Emissions - 6GHz to 10GHz - Vertical 76 Radiated Emissions - 9GHz to 13GHz - Vertical 77 Radiated Emissions - 12GHz to 16GHz - Horizontal 78 Radiated Emissions - 12GHz to 16GHz - Vertical 79 Radiated Emissions - 12GHz to 16GHz - Vertical 70 Radiated Emissions - 12GHz to 16GHz - Vertical 71 Radiated Emissions - 12GHz to 16GHz - Horizontal 72 Radiated Emissions - 12GHz to 16GHz - Horizontal 74 Radiated Emissions - 14GHz to 18GHz - Vertical 75 Radiated Emissions - 14GHz to 18GHz - Vertical 76 Radiated Emissions - 14GHz to 18GHz - Vertical 77 Radiated Emissions - 14GHz to 18GHz - Vertical 77 Radiated Emissions - 18GHz to 22GHz - Vertical 77 Radiated Emissions - 18GHz to 22GHz - Vertical 77 Radiated Emissions - 18GHz to 22GHz - Vertical 77 Radiated Emissions - 18GHz to 22GHz - Vertical 77 Radiated Emissions - 18GHz to 25GHz - Vertical 78 Radiated Emissions - 18GHz to 25GHz - Vertical 78 Radiated Emissions - 18GHz to 25GHz - Vertical

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	6 of 80

1 EUT Details

1.1 General

The EUT was an AlertMe.com nanoHub. The nanoHub incorporates an intentional radiator operating in the 2.4GHz to 2.4835GHz band. The device operates on 15 equally spaced channels starting at 2.405GHz (channel 11) and ending at 2.475GHz (channel 25).

The EUT is powered from an external mains powered supply.

The intended FCC ID for this products is:

Details of the EUT and associated peripherals used during the tests are listed below. Figure 1 shows the interconnections between the EUT and peripherals.

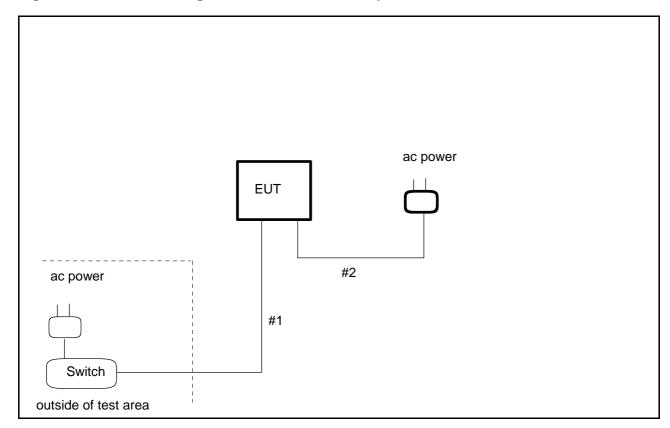
Item	Manufacturer	Model	Description	Serial No:	Notes
1	AlertMe.com	nanoHub	EUT with integral antenna	sample 1	
2	AlertMe.com	nanoHub	EUT with temporary sma connection instead of antenna to allow conducted measurements	sample 2	
3	Sunfone	ACGN-28B	EUT Power Supply		
4	D-Link	DES-1005D	Ethernet Switch	B21B44B001162	#1

^{#1} The D-Link switch was always located outside of the test area.

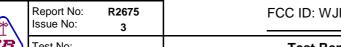
1.2 Modifications to EUT and Peripherals

Details of any modifications that were required to achieve compliance are listed below. The modification numbers are referred to in the results sections as appropriate.

Mod No:	Details	Implemented for
0	Original unit with ethernet forced to 10Mb/s. All production units will be set to fixed 10Mb/s ethernet. No modifications were made during the course of testing.	

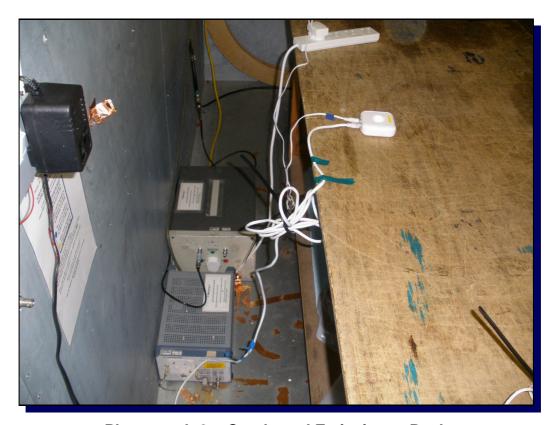

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
1 /	Test No:	T3258	Test Report	Page:	7 of 80

1.3 EUT Operating Modes


The EUT was tested in the following operating mode or modes. Generally, operating modes are chosen that will exercise the functions of the EUT as fully as possible and in a manner likely to produce maximum emission levels or susceptibility. Individual test result sheets reference the operating mode of the EUT.

Operating Mode	Details
1	Continuously transmitting constant packet stream. The transmit channel was set to either Channel 11, 18 or 25. Individual test results show the actual operating channel.
	In normal usage packets are intermittently sent in short pulses with no more than 10 msec ON duration in any 100msec period.

Figure 1 General Arrangement of EUT and Peripherals


- #1 Unscreened ethernet 2m.
- #2 Unscreened 2 wire dc cable 2m.


FCC ID: WJHNH11 Page: Test No: **Test Report** T3258 8 of 80

Conducted Emissions - Front Photograph 1

Photograph 2 **Conducted Emissions - Back**


FCC ID: WJHNH11

Test Report Page:

9 of 80

Photograph 3 Radiated Emissions - Front

Photograph 4 Radiated Emissions - Back

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	10 of 80

2 Test Equipment

The test equipment used during the tests was one or more of the items listed below. Individual test result sheets indicate which items were used.

Ref No:	Details	Serial Number	Calibration Date	Calibratio Interval
A12	Chase Bilog CBL6111A	1012	10/11/08	1 year
A20	Alpha 61932500 Horn Antenna (18-26GHz)	050	14/05/09	1 year
A22	Alpha 61932400 Horn Antenna (12.4-18GHz)	055	14/05/09	1 year
A23	EMCO 3115 DR Guide (1-18GHz)	9507-4525	06/11/08	1 year
A5	Chase Bilog CBL6111A	1760	02/10/08	1 year
L1	EMCO 3825/2 LISN	1358	05/11/09	1 year
PRE7	LUCIX 0.1GHz to 20GHz	24485	10/02/09	1 year
PRE8	LUCIX 18GHz to 26.5GHz	24486	11/02/09	1 year
R1	CHASE LHR 7000	1056	07/11/08	1 year
R4	R&S ESVS10	843744/002	09/10/08	1 year
R8	Agilent E7405A Spectrum Analyser	MY44212494	11/09/08	1 year
R9	Agilent E7405A Spectrum Analyser	MY45110758	04/10/08	1 year
RFF01	High Pass RF Filter 3GHz to 12.75GHz	01	09/02/09	1 year
RFF04	Low Pass RF Filter OMHz to 2GHz	04	09/02/09	1 year

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	11 of 80

3 Test Methods

3.1 Conducted Emissions - ac power

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Bench top EUTs and peripheral equipment are normally placed on a 0.8m high non-conducting bench, positioned 0.4m from one of the metallic walls of a screened room. Floor standing EUTs are normally placed 0.1m above the metallic floor of the screened room. Mains leads are bundled so as not to exceed 1m

The EUT is powered using a 50ohm/50uH Line Impedance Stabilisation Network (LISN). Peripherals are powered using a second a 50ohm/50uH LISN. These LISNs are bonded to the screened room floor.

With the correct supply voltage applied to the EUT scans are performed on both the live and neutral line outputs of the LISN using quasi-peak detection over the specified frequency range. The results of these scans are shown in the plots section at the end of the report.

Significant emissions identified by the scans are measured and the results tabulated. The table of results is shown in the conducted emissions results section.

3.2 Radiated Emissions

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Initial scans are performed in a semi-anechoic screened room at a distance of up to 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The results of the scans are shown in the plots included at the end of the report. Attempts are made to identify the layout of cables that give highest readings.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using the specified detector function. Maximised readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1 m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

3.3 Conducted Antenna Emissions

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

The antenna port of the EUT was connected directly to the input of a spectrum analyser. Sweeps were made over the required frequency ranges with the specified detectors applied.

4 Test Results

The following sections contain tabulated test results. Plots of various scans are included at the back of this section.

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
I /\	Test No:	T3258	Test Report	Page:	12 of 80

Conducted Emissions - ac power - 15.207 4.1

Factor Set 1: L1_07B CSET001_07D Factor Set 2: Factor Set 3: Test Equipment: R1 L1

			ns (Powe											
Com	pany:	Alert	Me.co	m Lto	d			Produc	^{/ct:} nano Hub					
Date		15/09	/09					Test E	ng: Da	ve Smith				
Ports Test		ac pov		2002	ina l	inaita	-t	FCC//	٦١		CICDDAAG)\		
Ports		ANSI	C63.4:	2003	using I	imits	OT	FCC(3)	=	:CISPR22(E	5)		
Test	:				using l	imits	of							
Plot	Op Mode	Mod State	Line (L/N)	Fact Set	Freq. MHz	Det qp/ av	Rec. Level dBuV	Corr'n Factor dB	Total Level dBuV	Limit CISPR22(B) dBuV	Margin CISPR22(B) dB	Notes		
	1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1	0.474 0.474 0.533 0.533 4.555 4.555 0.474 0.474 0.532 0.532 4.554 4.554	qp av qp av qp av qp av qp av	32.0 28.6 30.0 25.9 31.8 24.2 27.8 22.8 26.1 19.9 29.2 22.3	9.9 9.9 9.9 10.2 10.2 9.9 9.9 9.9 10.2 10.2	41.9 38.5 39.9 35.8 42.0 34.4 37.7 36.0 29.8 39.4 32.5	56.5 46.5 56.0 46.0 56.0 46.0 56.5 46.5 56.0 46.0 56.0	14.5 7.9 16.1 10.2 14.0 11.6 18.7 13.7 20.0 16.2 16.6 13.5			
	Resul	lts					Minimu PASS/F	_	jin	7.9 PASS	dB			
No	tes						Comme	nts and	Obser	vations				
										ere similar 18 are sho		smit channels.		
		1	PASS											

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	13 of 80

4.2 Peak Power - 15.247(b)(3)

Test Equipment: R8

Peak Power

Teak TOW	C1	
Compan	^{y:} AlertMe.com Ltd	^{Product:} nano Hub
Date:	10/09/2009	Test Eng: Dave Smith
Ports:	Antenna	
Test:	15.247(b)(3	
Ports:		

Comments and Observations

Ports: Test:

Notes

This was performed as a conducted measurement on sample 2.
Results of scans shown in plots 7 to 9.
Because the bandwidth of the transmit signal was in the order of 1.6MHz it was possible to measure peak power using a spectrum analyser with the resolution bandwidth set to 5MHz.

Channel	Level (dBm)	Limit (dBm)	
11	-1.54	30	PASS
18	-1.07	30	PASS
25	-0.94	30	PASS

The plots show no significant deviation when the ac power supply is varied between 93.5V and 126.5V.

PASS

Results were as follows:

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	14 of 80

4.3 Bandwidth - 15.247(a)(2)

Test Equipment: R8

Bandwidth

-	244			
	Company:	AlertMe.com Ltd	Product:	nano Hub
	Date:	15/09/09	Test Eng:	Dave Smith
	Ports:	Antenna		
	Test:	15.247(a)(2)		
	Ports:			

	15.247(a)(2)										
Ports: Test:											
Notes		Col	mments and Obse	rvations							
	This was perf	formed as a condu	cted measuremen	t on sample 2.							
	Results of scans shown in plots 10 to 12.										
	The results are as follows:										
	Channel	Measured Bandwidth	Limit								
	11 18 25	1.587MHz 1.612MHz 1.600MHz	> 500kHz > 500kHz > 500kHz	PASS PASS PASS							
	PASS										

A	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	15 of 80

4.4 Power Spectral Density in 3kHz bw - 15.247(e)

Test Equi	pment: R8
Spectral De	ensity
Company	AlertMe.com Ltd Product: nano Hub
Date:	15/09/09 Test Eng: Dave Smith
Ports: Test:	Antenna
Ports:	15.247(e)
Test:	
Notes	Comments and Observations
	This was performed as a conducted measurement on sample 2.
	Results of scans shown in plots 13 to 15.
	In all cases the spectral density is below 8dBm/3kHz.
	PASS

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	16 of 80

4.5 Antenna Conducted Spurious Emissions using 100kHz bw - 15.247(d)

Test Equipment: R8

Conducted Emissions (Signal)

Conducted Emissions (Signal)						
Company:	AlertMe.com Ltd	Product:	nano Hub			
Date:	10/09/2009	Test Eng:	Dave Smith			
Ports:	Antenna					
Test:	15.247(d)					
Ports:						
Toote						

2.4835						_	
Frequency Tx Ch Level Level Limit Margin W.r.t Fundemental MHz dBm dB dB dB dB dB 2.4048 Ch 11 -5.4 2.4000 Ch 11 -47.8 -42.4 -20 22.4 PA 2.4835 Ch 11 -57.0 -51.7 -20 31.7 PA 4.8115 Ch 11 -27.1 -21.7 -20 1.7 PA 7.2172 Ch 11 -43.5 -38.1 -20 18.1 PA 2.4400 Ch 18 -4.4 2.4000 Ch 18 -56.9 -52.5 -20 32.5 PA 2.4835 Ch 18 -57.1 -52.7 -20 32.7 PA 4.8815 Ch 18 -57.1 -52.7 -20 32.7 PA 4.8815 Ch 18 -27.0 -22.6 -20 2.6 PA 7.3222 Ch 18 -43.0 -38.5 -20 18.5 PA 2.4753 Ch 25 -4.4 2.4000 Ch 25 -57.9 -53.4 -20 33.4 PA 2.4835 Ch 25 -53.5 -49.0 -20 29.0 PA 4.9515 Ch 25 -26.6 -22.1 -20 2.1 PA 7.4273 Ch 25 -44.8 -40.4 -20 20.4 PA * This emission falls within a restricted band and was therefore also measure	This was pe	rformed as a	a conducted m	neasuremen	t on sample	2.	
W.r.t Fundemental MHz	Results of se	cans shown	in plots 16 to	36.			
# This emission falls within a restricted band and was therefore also measure Fundemental ABm AB AB AB	Frequency	Tx Ch	Level	Level	Limit	Margin	
MHz dBm dB dB dB 2.4048 Ch 11 -5.4 2.4000 Ch 11 -47.8 -42.4 -20 22.4 PA 2.4835 Ch 11 -57.0 -51.7 -20 31.7 PA 4.8115 Ch 11 -27.1 -21.7 -20 1.7 PA 7.2172 Ch 11 -43.5 -38.1 -20 18.1 PA 2.4400 Ch 18 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.8 -57.1 -52.7 -20 32.7 PA -4.8 -4.8 -57.1 -52.7 -20 32.7 PA -4.8 -43.0 -38.5 -20 18.5 PA -4.8 -43.0 -38.5 -20 2.6 PA -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4 -4.4							
2.4048							
2.4000 Ch 11	MHz		dBm	dB	dB	dB	
2.4835 Ch 11 -57.0 -51.7 -20 31.7 PA 4.8115 Ch 11 -27.1 -21.7 -20 1.7 PA 7.2172 Ch 11 -43.5 -38.1 -20 18.1 PA 2.4400 Ch 18 -4.4 2.4000 Ch 18 -56.9 -52.5 -20 32.5 PA 2.4835 Ch 18 -57.1 -52.7 -20 32.7 PA 4.8815 Ch 18 -27.0 -22.6 -20 2.6 PA 7.3222 Ch 18 -43.0 -38.5 -20 18.5 PA 2.4753 Ch 25 -4.4 2.4000 Ch 25 -57.9 -53.4 -20 33.4 PA 2.4835 Ch 25 -53.5 -49.0 -20 29.0 PA 4.9515 Ch 25 -26.6 -22.1 -20 2.1 PA 7.4273 Ch 25 -44.8 -40.4 -20 20.4 PA * This emission falls within a restricted band and was therefore also measure	2.4048	Ch 11	-5.4				
4.8115 Ch 11 -27.1 -21.7 -20 1.7 PA 7.2172 Ch 11 -43.5 -38.1 -20 18.1 PA 2.4400 Ch 18 -4.4 2.4000 Ch 18 -56.9 -52.5 -20 32.5 PA 2.4835 Ch 18 -57.1 -52.7 -20 32.7 PA 4.8815 Ch 18 -27.0 -22.6 -20 2.6 PA 7.3222 Ch 18 -43.0 -38.5 -20 18.5 PA 2.4753 Ch 25 -4.4 2.4000 Ch 25 -57.9 -53.4 -20 33.4 PA 2.4835 Ch 25 -53.5 -49.0 -20 29.0 PA 4.9515 Ch 25 -26.6 -22.1 -20 2.1 PA 7.4273 Ch 25 -44.8 -40.4 -20 20.4 PA * This emission falls within a restricted band and was therefore also measure	2.4000	Ch 11	-47.8	-42.4	-20	22.4	PASS
7.2172 Ch 11 -43.5 -38.1 -20 18.1 PA 2.4400 Ch 18 -4.4 2.4000 Ch 18 -56.9 -52.5 -20 32.5 PA 2.4835 Ch 18 -57.1 -52.7 -20 32.7 PA 4.8815 Ch 18 -27.0 -22.6 -20 2.6 PA 7.3222 Ch 18 -43.0 -38.5 -20 18.5 PA 2.4753 Ch 25 -4.4 2.4000 Ch 25 -57.9 -53.4 -20 33.4 PA 2.4835 Ch 25 -53.5 -49.0 -20 29.0 PA 4.9515 Ch 25 -26.6 -22.1 -20 2.1 PA 7.4273 Ch 25 -44.8 -40.4 -20 20.4 PA * This emission falls within a restricted band and was therefore also measure	2.4835	Ch 11	-57.0	-51.7	-20	31.7	PASS
2.4400	4.8115	Ch 11	-27.1	-21.7	-20	1.7	PASS
2.4000 Ch 18	7.2172	Ch 11	-43.5	-38.1	-20	18.1	PASS*
2.4835	2.4400	Ch 18	-4.4				
4.8815 Ch 18 -27.0 -22.6 -20 2.6 PA 7.3222 Ch 18 -43.0 -38.5 -20 18.5 PA 2.4753 Ch 25 -4.4 2.4000 Ch 25 -57.9 -53.4 -20 33.4 PA 2.4835 Ch 25 -53.5 -49.0 -20 29.0 PA 4.9515 Ch 25 -26.6 -22.1 -20 2.1 PA 7.4273 Ch 25 -44.8 -40.4 -20 20.4 PA * This emission falls within a restricted band and was therefore also measured and the content of the content	2.4000	Ch 18	-56.9	-52.5	-20	32.5	PASS
7.3222 Ch 18 -43.0 -38.5 -20 18.5 PA 2.4753 Ch 25 -4.4 2.4000 Ch 25 -57.9 -53.4 -20 33.4 PA 2.4835 Ch 25 -53.5 -49.0 -20 29.0 PA 4.9515 Ch 25 -26.6 -22.1 -20 2.1 PA 7.4273 Ch 25 -44.8 -40.4 -20 20.4 PA * This emission falls within a restricted band and was therefore also measure	2.4835	Ch 18	-57.1	-52.7	-20	32.7	PASS
2.4753	4.8815	Ch 18	-27.0	-22.6	-20	2.6	PASS*
2.4000 Ch 25 -57.9 -53.4 -20 33.4 PA 2.4835 Ch 25 -53.5 -49.0 -20 29.0 PA 4.9515 Ch 25 -26.6 -22.1 -20 2.1 PA 7.4273 Ch 25 -44.8 -40.4 -20 20.4 PA * This emission falls within a restricted band and was therefore also measur	7.3222	Ch 18	-43.0	-38.5	-20	18.5	PASS*
2.4835 Ch 25 -53.5 -49.0 -20 29.0 PA 4.9515 Ch 25 -26.6 -22.1 -20 2.1 PA 7.4273 Ch 25 -44.8 -40.4 -20 20.4 PA * This emission falls within a restricted band and was therefore also measur	2.4753	Ch 25	-4.4				
4.9515 Ch 25 -26.6 -22.1 -20 2.1 PA 7.4273 Ch 25 -44.8 -40.4 -20 20.4 PA * This emission falls within a restricted band and was therefore also measure	2.4000	Ch 25	-57.9	-53.4	-20	33.4	PASS
7.4273 Ch 25 -44.8 -40.4 -20 20.4 PA * This emission falls within a restricted band and was therefore also measure	2.4835	Ch 25	-53.5	-49.0	-20	29.0	PASS
* This emission falls within a restricted band and was therefore also measur	4.9515	Ch 25	-26.6	-22.1	-20	2.1	PASS*
	7.4273	Ch 25	-44.8	-40.4	-20	20.4	PASS*
	* This ami	ecion falle w	ithin a restrict	ted hand and	d was there	fore also m	assurad
as a radiated test asing the limits of 10.200.					a was there	TOTC also III	casarca
	do a radi	atou toot do	ing the infinte v	31 10.200.			
DA 00	D 4 00						
PASS	PASS						

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	17 of 80

4.6 Radiated Emissions - Up to 1GHz - 15.209

Factor Set 1: A12_FS_07A - CSET005_07A 25 m cable

Test Equipment: R4 A12 CSET005

Radiated Emissions

Radiated E							
Company	" AlertMe.com Ltd	b	Product:	nano Hu	b		
Date:	05/09/2009		Test Eng:	Dave Smit	h		
Ports:							
Test:	ANSI C63.4:2003	using limits of	f FCC(B)		=FCC B		
Ports:							
Test:		using limits of	f				
Plot Op	Mod Dist Fact	Freq. Ant I	Rec. Corr'n Corr	'n Total	Limit	Margin	Notes
Mod	e State m Set	MHz Pol I	evel Factor Fact	or Level	FCC B	FCC B	

Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
37 38 37 38 37 38 37 38 37 38 39 40 39	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1	39.380 39.380 71.880 71.880 100.000 100.000 155.600 155.600 173.800 300.057 300.057 500.000 500.000	> H > H > H > H > H > H > H >	-1.0 -3.0 10.2 3.5 15.7 17.5 5.7 3.3 5.5 3.6 10.2 14.4 8.8 8.9 -2.3	14.3 14.3 7.1 7.1 11.4 11.4 12.7 12.7 11.3 16.1 16.1 22.0 22.0 29.5		13.3 11.3 17.3 10.6 27.1 28.9 18.4 16.0 16.8 14.9 26.3 30.5 30.8 30.9 27.2	40.0 40.0 40.0 43.5 43.5 43.5 43.5 43.5 43.5 46.0 46.0 46.0	26.7 28.7 22.7 29.4 16.4 14.6 25.1 27.5 26.7 28.6 19.7 15.5 15.2 15.1	
40 39 40	1 1 1	0 0	3 3 3	1 1 1	900.111 1000.000 1000.000	H V H	2.0 6.1 9.2	29.5 31.1 31.1		31.5 37.2 40.3	46.0 54.0 54.0	14.5 16.8 13.7	

F	Minimum Margin PASS/FAIL	13.7 PASS	dB	

Notes	Comments and Observations								
	Results of scans shown in plots 37 to 40. The emissions listed above are maximised levels using a 120kHz quasi peak detector.								
	Only the emission at 1GHz actually falls within a restricted band.								
	PASS								

<u> </u>	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	18 of 80

4.7 Radiated Emissions - Above 1GHz - Channel 11 - 15.209

Factor Set 1: A23 3m 09B CBL059 CBL062 CBL065 CBL060 09C - -

Factor Set 2: A23_3m_09B PRE7_C51_C53_09A RFF01_09B -

Factor Set 3: - - - -

Test Equipment: R9 A23 PRE7 RFF01 RFF04 A22 A20 PRE8

Radiated Emissions

Com	pany:	AlertMe.com Ltd Product: nano Hub											
Date					09/09			Test	Eng:	ave Smitl	h		
Ports	s:												
Test		ANSI	C63.	4:20	03 using	limits	of	FCC	(B)		=FCC B		
Ports													
Test	:				using	limits	of						
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level	Corr'n Factor	Corr'n Factor	Total Level	Limit FCC_B	Margin FCC_B	Notes
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
					2400 005		100			10.0			DI
43	1	0	3	1	2400.000	V	16.2	32.4		48.6	74.0	25.4	PK AV
43 44	1 1	0 0	3	1	2400.000 2400.000	V H	5.6 19.0	32.4 32.4		38.0 51.5	54.0 74.0	16.0 22.5	PK
44	1	0	3	1	2400.000	Н	19.0	32.4		42.6	74.0 54.0	11.4	AV
47	'	0	3	2	4811.525	V	65.9	-5.8		60.1	74.0	13.9	PK
47	1	0	3	2	4810.575	V	57.4	-5.8		51.7	54.0	2.3	AV
48	1	0	3	2	4811.525	V	65.8	-5.8		60.0	74.0	14.0	PK
48	1	0	3	2	4810.575	Н	57.4	-5.8		51.6	54.0	2.4	AV
49	1	0	3	2	7217.220	Н	48.0	-1.8		46.2	74.0	27.8	PK
49	1	0	3	2	7216.995	V	35.0	-1.8		33.2	54.0	20.8	AV
50	1	0	3	2	7217.220	V	47.7	-1.8		45.9	74.0	28.1	PK
50	1	0	3	2	7216.995	Н	37.8	-1.8		36.0	54.0	18.0	AV
Results Minimum Margin 2.3 dB PASS/FAIL PASS								dB					
No	tes					Comr	nents ar	nd Obse	ervation	าร			
	Pagulta of coops shown in plots 41 to 60												

Results of scans shown in plots 41 to 60.

Measurements made using 1MHz RBW. VBW set to 3MHz for peak measurements and 30Hz for average measurements.

Because in normal use the transmission is pulsed, with a total on period of no more than 10mSec in a 100mSec period, the average measurements could be reduced further by a factor of 20dB (20*log(0.1)) to give an increased margin against the average limits.

<u> </u>	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	19 of 80

4.8 Radiated Emissions - Above 1GHz - Channel 18 - 15.209

Factor Set 1: A23_3m_09B CBL059_CBL062_CBL065_CBL060_09C - -

Factor Set 2: A23_3m_09B PRE7_C51_C53_09A RFF01_09B -

Factor Set 3: - - - -

Test Equipment: R9 A23 PRE7 RFF01 RFF04 A22 A20 PRE8

against the average limits.

Radiated Emissions

		Alert		com	Ltd			Prod	<i>uct:</i> n	ano Hul))		
Date					09/09			Test	Eng:	ave Smitl	h		
Port: Test		A NICI	000	4.20	00	11	r	F00	\(D\)		500 B		
Port		ANSI	C63	.4:20	03 using	limits	5 ОТ	FCC	,(B)		=FCC B		
Test					using	limits	s of						
	ı	1 1		ı	ı	ı	ı	1	ı			1	
Plot	Op	Mod State	Dist	Fact	Freq.	Ant Pol	Rec.		Corr'n	Total	Limit FCC B	Margin	Notes
	iviode	State	m	Set	MHz	POI	Level dBuV	Factor dB/m	Factor dB	Level dBuV/m	dBuV/m	FCC_B dB	
47	1			2	4004 475		61.0	F 4		F.C. F.	74.0	17.5	PK
47 47	1 1	0 0	3 3	2 2	4881.475 4880.600	V V	61.9 53.7	-5.4 -5.4		56.5 48.3	74.0 54.0	17.5 5.7	AV
48	1	0	3	2	4881.475	H	65.1	-5.4		59.7	74.0	14.3	PK
48	1	0	3	2	4880.600	Н	59.0	-5.4		53.6	54.0	0.4	AV
49	1	0	3	2	7322.175	V	48.1	-1.0		47.1	74.0	26.9	PK
49	1	0	3	2	7322.100	V	39.3	-1.0		38.3	54.0	15.7	AV
50 50	1	0 0	3 3	2 2	7322.175 7322.100	H H	52.4 43.5	-1.0 -1.0		51.4 42.4	74.0 54.0	22.6 11.6	PK AV
Results Minin								m Març	jin		0.4 PASS	dB	
No	tes					Comr	ments aı	nd Obse	ervation	าร			
			Resul	ts of	scans show	n in p	olots 41	to 60.					
					ents made for average	_			/BW se	t to 3MH	z for peak m	neasurement	s
			Because in normal use the transmission is pulsed, with a total on period of										

no more than 10mSec in a 100mSec period, the average measurements could be reduced further by a factor of 20dB (20*log(0.1)) to give an increased margin

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	20 of 80

4.9 Radiated Emissions - Above 1GHz - Channel 25 - 15.209

Factor Set 1: A23_3m_09B CBL059_CBL062_CBL065_CBL060_09C - -

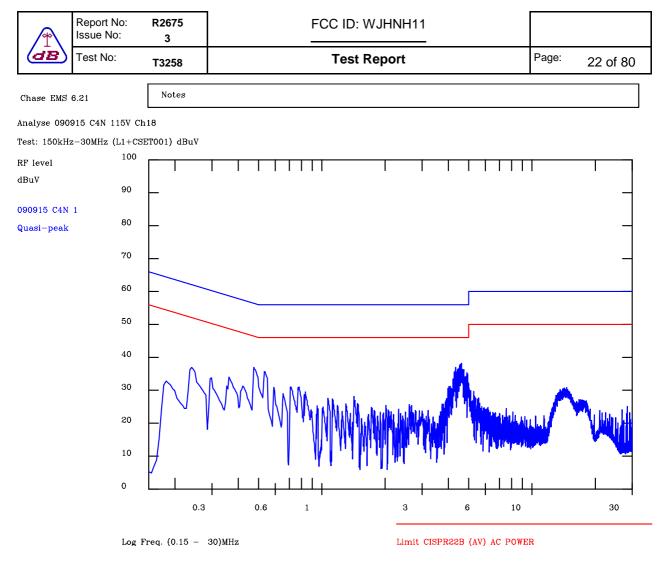
Factor Set 2: A23_3m_09B PRE7_C51_C53_09A RFF01_09B -

Factor Set 3: - - - -

Test Equipment: R9 A23 PRE7 RFF01 RFF04 A22 A20 PRE8

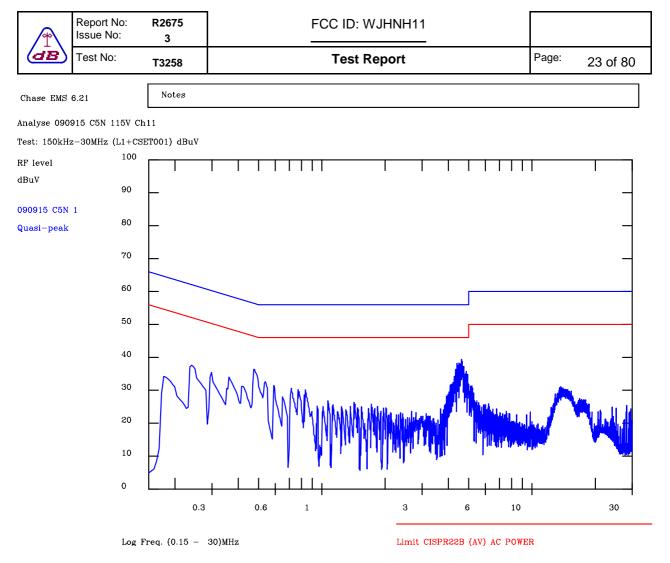
Radiated Emissions

Com	pany:	Alert	Me.	com	Ltd			Prod	<i>uct:</i> n	ano Hul)		
Date					09/09			Test	Eng:	ave Smitl	h		
Ports													
Test		ANSI	C63	.4:20	03 using	limits	s of	FCC	(B)		=FCC B		
Ports Test					using	limite	o of						
7631	•				using	IIIIII	5 01						
Plot	Ор	Mod	Dist	Fact	Freq.	Ant	Rec.	Corr'n	Corr'n	Total	Limit	Margin	Notes
	Mode	State	m	Set	MHz	Pol	Level	Factor	Factor	Level	FCC_B	FCC_B	
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
		_											5.4
43	1	0 0	3	1	2483.500	\	12.0	32.7		44.7	74.0	29.3	PK AV
43 44	1		3 3	1 1	2483.500 2483.500	V H	0.6 16.0	32.7		33.2 48.7	54.0 74.0	20.8 25.3	PK
44	1 1		3	1 1	2483.500	'' Н	5.4	32.7		38.0	54.0	16.0	AV
47	1	0	3	2	4951.525	V	64.2	-5.1		59.1	74.0	14.9	PK
47	1	0	3	2	4950.575	V	56.2	-5.1		51.1	54.0	2.9	AV
48	1	0	3	2	4951.525	Н	66.6	-5.1		61.6	74.0	12.4	PK
48	1	0	3	2	4950.575	н	58.5	-5.1		53.4	54.0	0.6	AV
49	1	0	3	2	7427.275	V	51.5	-0.5		51.0	74.0	23.0	PK
49	1	0	3	2	7427.100	V	41.9	-0.5		41.3	54.0	12.7	AV
50	1	0	3	2	7427.288	Н	52.9	-0.5		52.3	74.0	21.7	PK
50	1	0	3	2	7425.863	H	43.7	-0.6		43.2	54.0	10.8	AV
	Resul	ts					Minimu PASS/F		jin		0.6 PASS	dB	
No	tes					Com	ments aı	nd Obse	ervation	าร			
			Resul	lts of	scans show	/n in r	olots 41	to 60.					
		l			ents made for average				/BW se	t to 3MH	z for peak m	neasurement	S
	Because in normal use the transmission is pulsed, with a total on period of no more than 10mSec in a 100mSec period, the average measurements could be												


reduced further by a factor of 20dB (20*log(0.1)) to give an increased margin

against the average limits.

/ ♣\	Report No: Issue No:	R2675 3	FCC ID: WJHNH11	
dB	Test No:	T3258	Test Report	Page: 21 of 80
Chase EMS	6.21	Notes		
Analyse 0909	915 C3N 115V Ch	118		
Test: 150kHz	z-30MHz (L1+CSF	ET001) dBuV		
RF level dBuV	100			
000015 000	90	 		-
090915 C3N Quasi-peak	80			-
	70			_
	60			
	50			
	40		Λ.1.ΛΛ 	_
	30	F//		<u> </u>
	20			
	10	<u> </u>	ورور المراور والمراور المراور المراور المراور والمراور وا	T
	0		+ + + + + + + + + + + + + + + + + + + +	+
		0.3	0.6 1 3 6 10	30
	Log F	req. (0.15 -	30)MHz Limit CISPR22B (AV) AC POWEI	R


PLOT 1 Conducted Emissions - Tx Channel 18 - Live

Company:	Alertme		Product:	nanoHub	
Date:	15 Sep 09		Test Engineer:	Dave Smith	
Test:	ANSI C63.4		Limit:	FCC(B)QP + AV	
Notes:					
Tx channel 18.					
Equip:R1,L1,L2,	AB002,CBL005,C	CBL007.			
Line:	Live	Attenuator:	10dB Limiter	Operating Mode: 1	
Detector:	QuasiPeak			Mod. State: 0	
LISN:	EMCO	Filename:	C9915718.plt		

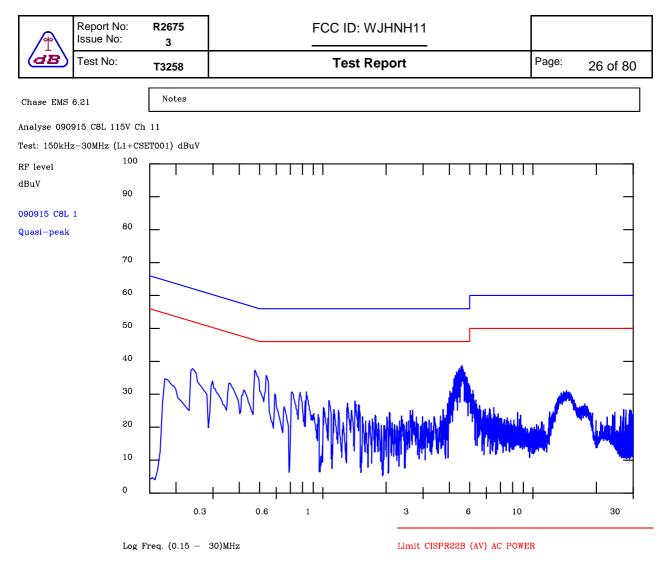
PLOT 2 Conducted Emissions - Tx Channel 18 - Neutral

Company:	Alertme		Product:	nanoHub
Date:	15 Sep 09		Test Engineer:	Dave Smith
Test:	ANSI C63.4		Limit:	FCC (B) QP + AV
Notes:				
Tx channel 18.				
Equip:R1,L1,L2,A	AB002,CBL005,C	BL007.		
Line:	Neutral	Attenuator:	10dB Limiter	Operating Mode: 1
Detector:	QuasiPeak			Mod. State: 0
LISN:	EMCO	Filename:	C9915723.plt	

PLOT 3 Conducted Emissions - Tx Channel 11 - Neutral

Company:	Alertme		Product:	nanoHub
Date:	15 Sep 09		Test Engineer:	Dave Smith
Test:	ANSI C63.4		Limit:	FCC (B) QP + AV
Notes:				
Tx channel 11.				
Equip:R1,L1,L2,A	AB002,CBL005,C	BL007.		
Line:	Neutral	Attenuator:	10dB Limiter	Operating Mode: 1
Detector:	QuasiPeak			Mod. State: 0
LISN:	EMCO	Filename:	C991572C.plt	

/ ♣\	Report No: Issue No:	R2675 3	FCC ID: WJHNH11	
dB	Test No:	T3258	Test Report	Page: 24 of 80
Chase EMS	6.21	Notes		
Analyse 0909	915 C6L 115V Ch	11		
Test: 150kHz RF level dBuV	z-30MHz (L1+CSI 100	ET001) dBuV		
	90			-
090915 C6L Quasi-peak	80	_		_
	70			_
	60			
	50			_
	40	F _n n	• • • • • • • • • • • • • • • • • • •	-
	30	$ \rangle$	MW * WWY IN THE HELL WINDS TO THE TABLE TO T	
	20	\vdash	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W. W.
	10	J	A Mark the filth that the state of the state	
	0	0.3	0.6 1 3 6 10	30
	Log F	req. (0.15 –	30)MHz Limit CISPR22B (AV) AC POWE	R

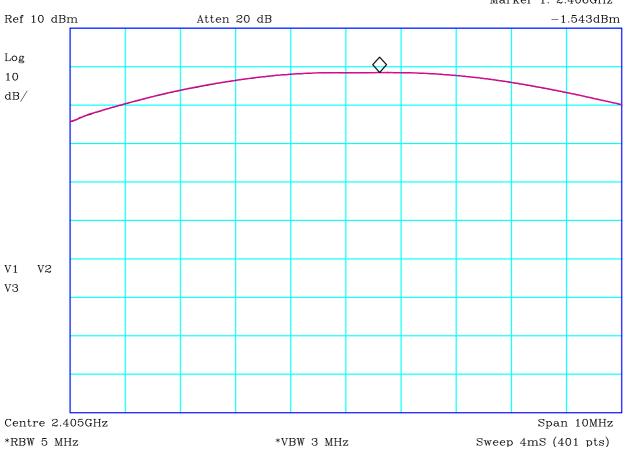

PLOT 4 Conducted Emissions - Tx Channel 11 - Live

Company:	Alertme		Product:	nanoHub	
Date:	15 Sep 09		Test Engineer	: Dave Smith	
Test:	ANSI C63.4		Limit:	FCC(B)QP + AV	J
Notes:					
Tx channel 11.					
Equip:R1,L1,L2,	AB002,CBL005,C	CBL007.			
Line:	Live	Attenuator:	10dB Limiter	Operating Mode:	1
Detector:	QuasiPeak			Mod. State:	0
LISN:	EMCO	Filename:	C9915735.plt		

/ ♣\	Report No: Issue No:	R2675 3	FCC ID: WJHNH11	
dB	Test No:	T3258	Test Report	Page: 25 of 80
Chase EMS	6.21	Notes		
Analyse 090	915 C7L 115V C	125		
Test: 150kHz	z-30MHz (L1+CS	ET001) dBuV		
RF level	100			
dBuV	90			
090915 C7L	1			
Quasi-peak	80			\dashv
	70			
	60	-	_	
	50			
	40	L. \(\cdot\)	Λ. Λ. ·	4
	30		MM MARA	
			/ Y VIVIVA Alan Manda ata an la lata da 💤 Talanda	data.
	20	Н		
	10		يدي يوسيدا الأسائلة الاينال البي	
		J	K., Trikir,	
	0		+	
		0.3	0.6 1 3 6	10 30
	Log 1	Freq. (0.15 -	30)MHz Limit CISPR22B (AV) AC	POWER

PLOT 5 Conducted Emissions - Tx Channel 25 - Live

Company:	Alertme		Product:	nanoHub	
Date:	15 Sep 09		Test Engineer:	: Dave Smith	
Test:	ANSI C63.4		Limit:	$FCC(B)QP + A^{*}$	V
Notes:					
Tx channel 25.					
Equip:R1,L1,L2,	AB002,CBL005,C	CBL007.			
Line:	Live	Attenuator:	10dB Limiter	Operating Mode:	1
Detector:	QuasiPeak			Mod. State:	0
LISN:	EMCO	Filename:	C991573F.plt		



PLOT 6 Conducted Emissions - Tx Channel 25 - Neutral

Company:	Alertme		Product:	nanoHub
Date:	15 Sep 09		Test Engineer:	Dave Smith
Test:	ANSI C63.4		Limit:	FCC (B) QP + AV
Notes:				
Tx channel 25.				
Equip:R1,L1,L2,A	AB002,CBL005,C	BL007.		
Line:	Neutral	Attenuator:	10dB Limiter	Operating Mode: 1
Detector:	QuasiPeak			Mod. State: 0
LISN:	EMCO	Filename:	C9915752.plt	

<u> </u>	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
(dB)	Test No:	T3258	Test Report	Page:	27 of 80

Marker 1: 2.406GHz

CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 7 Peak Power - Channel 11

Company:	Alertme	Product:	nanoHub			
Date:	10/09/09	Test Eng:	Dave Smith			
Method:		Method:				
Limit1:		Limit2:				
Limit3:		Limit4:				
Used 5MHz R						
Facility:	SCN_1	М	ode: 1			
		M	odification State: 0			

H9810443

File:

<u> </u>	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
(dB)	Test No:	T3258	Test Report	Page:	28 of 80

Centre 2.44GHz Span 10MHz
*RBW 5 MHz *VBW 3 MHz Sweep 4mS (401 pts)

CF1:CBL051_090306 CF2:Antenna_dBI

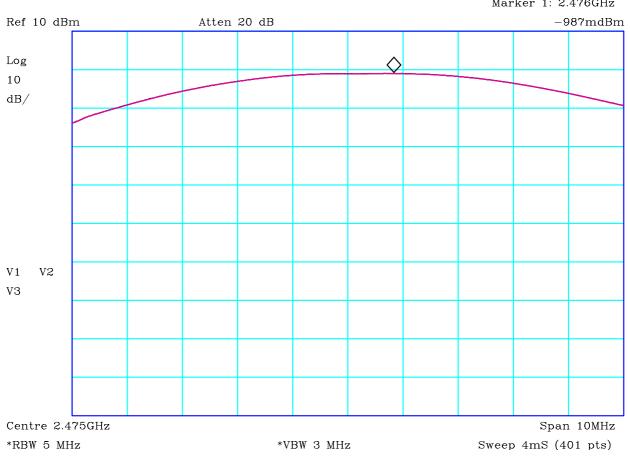
PLOT 8 Peak Power - Channel 18

Company:	Alertme	Product:	nanoHub
Date:	10/09/09	Test Eng:	Dave Smith
Method:		Method:	
Limit1:		Limit2:	
Limit3:		Limit4:	

Channel 18

VЗ

Black = power source 93.5V; Blue = power source 110V; Red = power source 126.5V

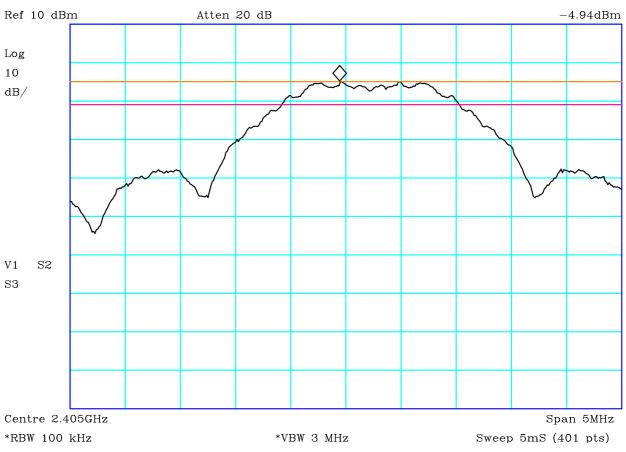

Used 5MHz RBW which is higher than EUT modulation bandwidth.

Maximum reading = -1.07dBm which therefore complies with the upper limit of Part15 Subpart (c) 15.247(b)(3) of 30dBm (1Watt).

Facility:	SCN_1			Mode:	1
				Modification State:	0
		File:	H981044B		

A	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	29 of 80

Marker 1: 2.476GHz

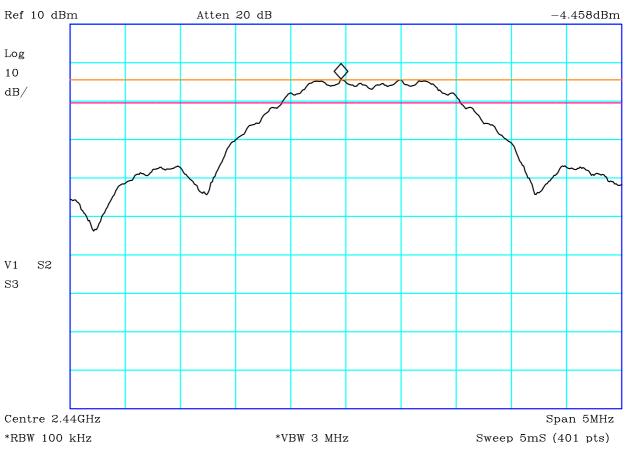


CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 9 Peak Power - Channel 25

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
Channel 25 Black = power source 93.5V; Blue = power source 110V; Red = power source 126.5V Used 5MHz RBW which is higher than EUT modulation bandwidth. Maximum reading = -0.99dBm which therefore complies with the upper limit of Part15 Subpart (c) 15.247(b)(3) of 30dBm (1Watt).					
Facility:	SCN_1			Mode:	1
				Modification State:	0
		File:	H9810451		

Marker 1: 2.405GHz

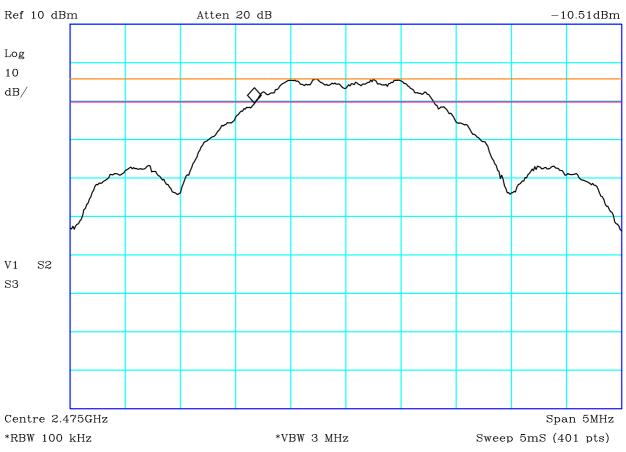


CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 10 6dB Bandwidth - Channel 11

Company:	Alertme		Product:	nanoHub
Date:	10/09/09		Test Eng:	Dave Smith
Method:			Method:	
Limit1:(ORG)	Peak Level		Limit2:(VIO)	Peak Level - 6dB
Limit3:			Limit4:	
Channel 11				
6dB bandwith lie	s between 2.404	44250GHz and 2.4	1060125GHz	
6dB bandwidth =	= 1.587MHz.			
Part 15 Subpart	(c) 15.247(a)(2)) requires the 6dB	bandwidth to be r	nore than 500kHz.
Facility:	SCN_1			Mode: 1
				Modification State: 0
		File:	H98104B0	

Marker 1: 2.44GHz


CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 11 6dB Bandwidth - Channel 18

Company:	Alertme		Product:	nanoHub
Date:	10/09/09		Test Eng:	Dave Smith
Method:			Method:	
Limit1:(ORG)	Peak Level		Limit2:(VIO)	Peak Level - 6dB
Limit3:			Limit4:	
Channel 18				
6dB bandwith lie	s between 2.43	9425GHz and 2.	4410375GHz	
6dB bandwidth =	: 1.6125MHz.			
Part 15 Subpart	(c) 15.247(a)(2	2) required the 6d	IB bandwidth to be	more than 500kHz.
Facility:	SCN_1			Mode: 1
				Modification State: 0
		File:	H98104BD	

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	32 of 80

Marker 1: 2.474GHz

CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 12 6dB Bandwidth - Channel 25

Company:	Alertme	Product:	nanoHub		
Date:	10/09/09	Test Eng:	Dave Smith		
Method:		Method:			
Limit1:(ORG)	Peak Level	Limit2:(VIO)	Peak Level - 6dB		
Limit3:		Limit4:			
Channel 25					
6dB bandwith lie	s between 2.4744375GHz and 2.47	60375GHz			
6dB bandwidth =	= 1.6MHz.				
Part 15 Subpart (c) 15.247(a)(2) required the 6dB bandwidth to be more than 500kHz.					

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
(dB)	Test No:	T3258	Test Report	Page:	33 of 80

 Centre 2.405GHz
 Span 2MHz

 *RBW 3 kHz
 *VBW 3 MHz
 Sweep 670S (401 pts)

CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 13 Spectral Density - Channel 11

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	8dBm/3kHz		Limit2:		
Limit3:			Limit4:		
Channel 11					
Maximum spectr	al density = -15	.42dBm/3kHz			
Part 15 Subpart	(c) 15.247(e) re	quires the spectra	al density to be be	elow 8dBm/3kHz	
Facility:	SCN_1			Mode:	1
				Modification State:	0
		File:	H9810519		

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
(dB)	Test No:	T3258	Test Report	Page:	34 of 80

Marker 1: 2.441GHz
Ref 20 dBm Atten 30 dB -15.09dBm

Log
10 dB/

M1 S2
S3

 Centre 2.44GHz
 Span 2MHz

 *RBW 3 kHz
 *VBW 3 MHz
 Sweep 670S (401 pts)

CF1:CBL051_090306 CF2:Antenna_dBI

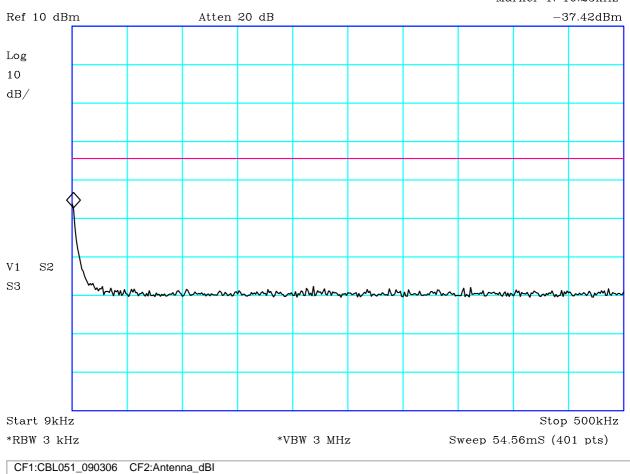
PLOT 14 Spectral Density - Channel 18

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	8dBm/3kHz		Limit2:		
Limit3:			Limit4:		
Channel 18					
Maximum spectr	al density = -15.09d	IBm/3kHz			
Part 15 Subpart (c) 15.247(e) require	es the spectral c	lensity to be belo	w 8dBm/3kHz	
Facility:	SCN_1			Mode:	1
				Modification State:	0
	File	e: H9	98104F2		

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
(dB)	Test No:	T3258	Test Report	Page:	35 of 80

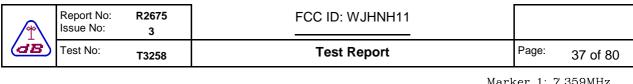
 Centre 2.475GHz
 Span 2MHz

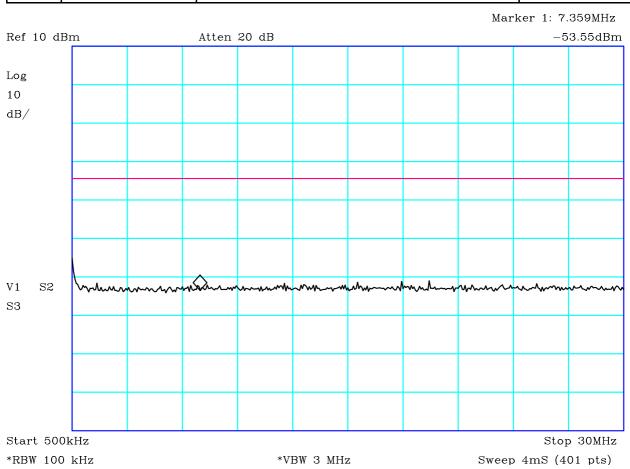
 *RBW 3 kHz
 *VBW 3 MHz
 Sweep 670S (401 pts)


CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 15 Spectral Density - Channel 25

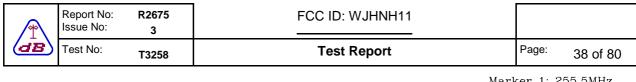
Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	8dBm/3kHz		Limit2:		
Limit3:			Limit4:		
Channel 25					
Maximum spectr	ral density = -15	.04dBm/3kHz			
Part 15 Subpart	(c) 15.247(e) re	quires the spectra	I density to be be	low 8dBm/3kHz	
Facility:	SCN_1			Mode:	1
racility.	SON_I			Modification State:	0
		File:	H9810537		

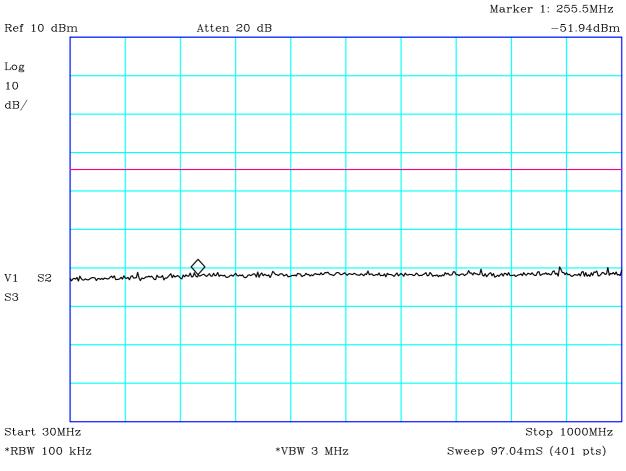

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	36 of 80


Marker 1: 10.23kHz

PLOT 16 Antenna Conducted Spurious - Ch 11 - 9kHz to 500kHz

					-
Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
	3kHz because lowest (c) 15.247(d) requires			s to be at leaset 20	dB below carrier.
Facility:	SCN_1			Mode:	1
			ı	Modification State:	0
	File:	H9	981057F		

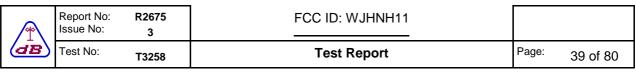




CF1:CBL051_090306 CF2:Antenna_dBI

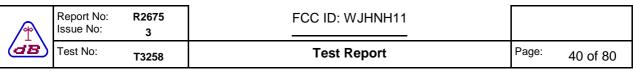
PLOT 17 Antenna Conducted Spurious - Ch 11 - 500kHz to 30MHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 11					
		uires spurious cond			
Facility:	SCN_1			ode:	1
				odification State:	0
		File: HS	981059C		



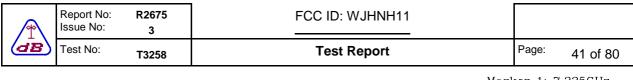
CF1:CBL051_090306 CF2:Antenna_dBI

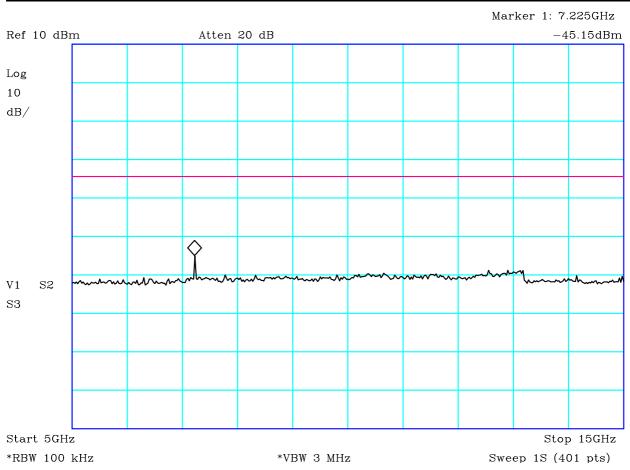
PLOT 18 Antenna Conducted Spurious - Ch 11 - 30MHz to 1GHz


Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 11					
		quires spurious con			
Facility:	SCN_1			ode:	1
				odification State:	0
		File: HS	981059F		

CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 19 Antenna Conducted Spurious - Ch 11 - 1GHz to 5GHz

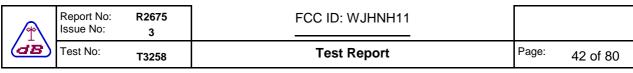

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 11					
		uires spurious con			
Facility:	SCN_1			ode:	1
				odification State:	0
		File: H	98105A1		



CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 20 Antenna Conducted Spurious - Ch 11 - 2.3GHz to 2.583GHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 11					
·	(c) 15.247(d) requires	spurious cond			
Facility:	SCN_1			/lode:	1
	File	Шо		Modification State:	0
	File:	H9	810597		



CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 21 Antenna Conducted Spurious - Ch 11 - 5GHz to 15GHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 11					
		quires spurious con			
Facility:	SCN_1				1
ı			Me	odification State:	0
i de la companya de		File: H	98105A3		
Facility:	(c) 15.247(d) red	quires spurious con	M	to be at leaset 200	1

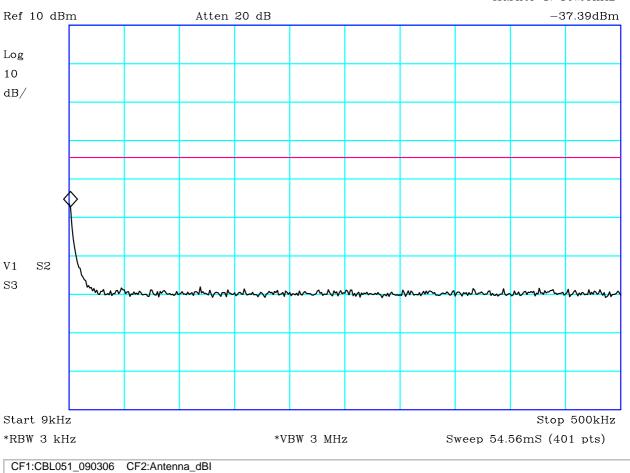
Marker 1: 17.23GHz

Ref 10 dBm Atten 20 dB -52.67dBm

Log 10 dB/

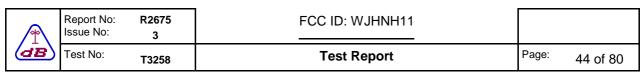
V1 S2
S3

Start 15GHz Stop 25GHz
*KBW 100 kHz *VBW 3 MHz Sweep 1S (401 pts)

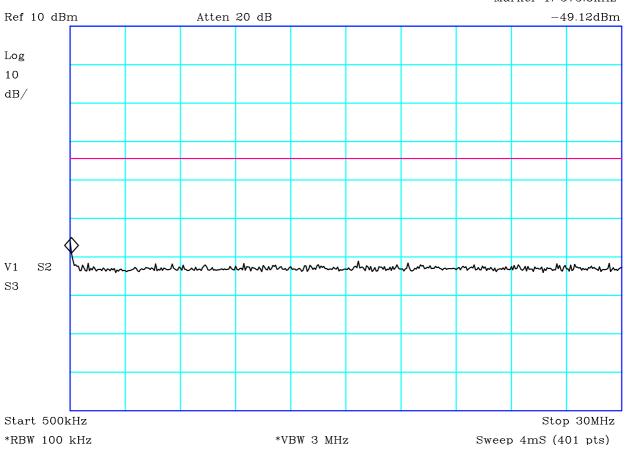

CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 22 Antenna Conducted Spurious - Ch 11 - 15GHz to 25GHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 11					
		quires spurious cor	nducted emission	s to be at leaset 20	dB below carrier.
Facility:	SCN_1			Mode:	1
				Modification State:	0
		File: H	198105A6		

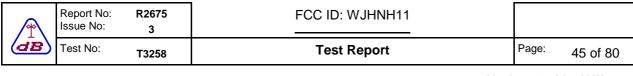

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
(dB)	Test No:	T3258	Test Report	Page:	43 of 80

Marker 1: 10.23kHz



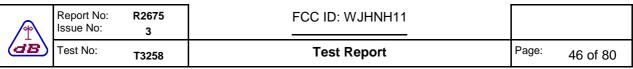
PLOT 23 Antenna Conducted Spurious - Ch 18 - 9kHz to 500kHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
		lowest frequency is quires spurious cor		s to be at leaset 20	dB below carrier.
Facility:	SCN_1			Mode:	1
				Modification State:	0
		File: H	9810581		


Marker 1: 573.8kHz

CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 24 Antenna Conducted Spurious - Ch 18 - 500kHz to 30MHz

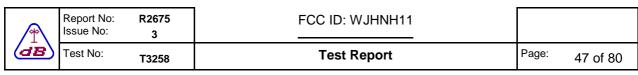

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 18					
		uires spurious cond			
Facility:	SCN_1			ode:	1
				odification State:	0
	l	File: H9	9810587		

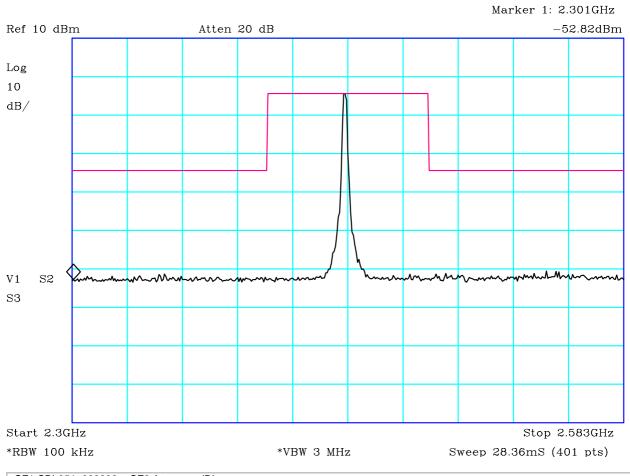
CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 25 Antenna Conducted Spurious - Ch 18 - 30MHz to 1GHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 18					
		quires spurious con			
Facility:	SCN_1	_		lode:	1
				Iodification State:	0
		File: H	9810589		

Marker 1: 4.88GHz Ref 10 dBm Atten 20 dB -28.36dBm Log 10 dB/ V1 S2 S3Start 1000MHz Stop 5GHz

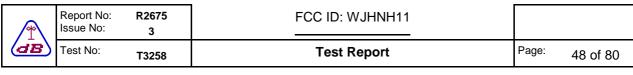

Sweep 400.1mS (401 pts) CF1:CBL051_090306 CF2:Antenna_dBI

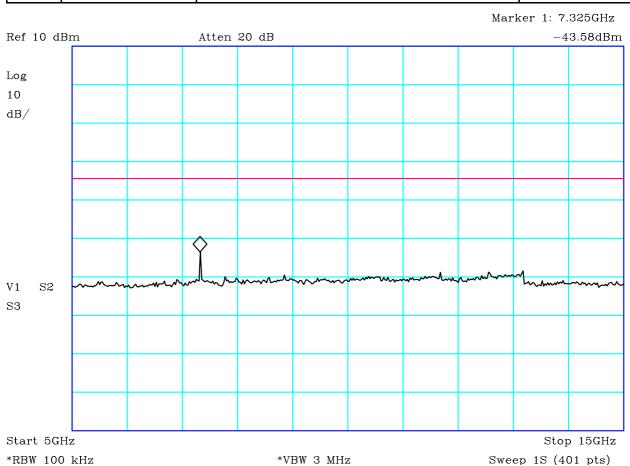

*VBW 3 MHz

PLOT 26 Antenna Conducted Spurious - Ch 18 - 1GHz to 5GHz

*RBW 100 kHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 18					
		uires spurious cond			
Facility:	SCN_1			ode:	1
				odification State:	0
		File: H9	981058E		

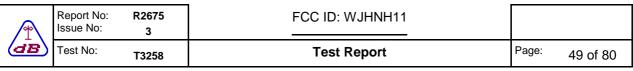




CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 27 Antenna Conducted Spurious - Ch 18 - 2.3GHz to 2.583GHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 18					
Part 15 Subpart	(c) 15.247(d) re	quires spurious co	nducted emissior	ns to be at leaset 20	dB below carrier.
Facility:	SCN_1			Mode:	1
				Modification State:	0
		File:	H9810584		



CF1:CBL051_090306 CF2:Antenna_dBI

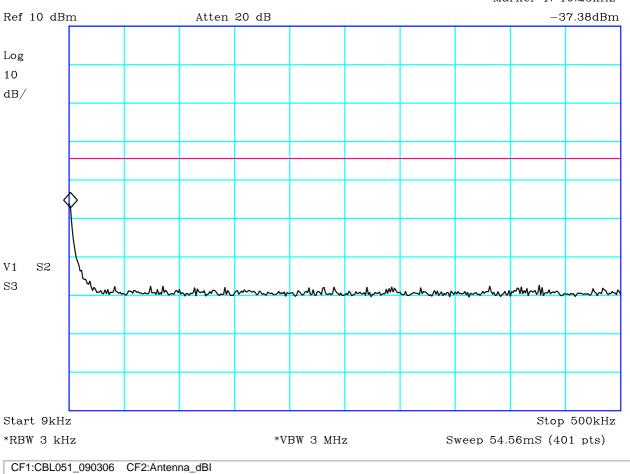
PLOT 28 Antenna Conducted Spurious - Ch 18 - 5GHz to 15GHz

Product:	nanoHub	
Test Eng:	Dave Smith	
Method:		
Limit2:		
Limit4:		
		1
	Modification State:	0
	Method: Limit2: Limit4:	Method: Limit2:

CF1:CBL051_090306 CF2:Antenna_dBI

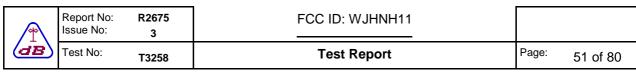
*VBW 3 MHz

Sweep 1S (401 pts)

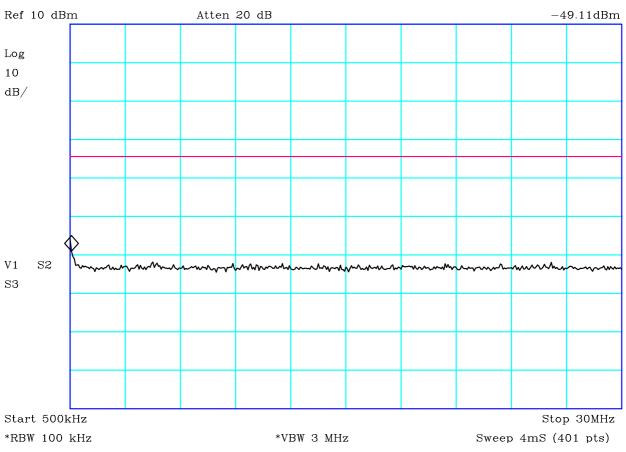

PLOT 29 Antenna Conducted Spurious - Ch 18 - 15GHz to 25GHz

*RBW 100 kHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 18					
·		ires spurious cond		to be at leaset 20	dB below carrier.
Facility:	SCN_1			Node:	1
	_			Modification State:	0
	Fi	ile: H9	810593		

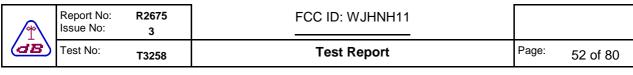

	Report No: Issue No:	R2675 3	FCC ID: WJHNH11		
dB	Test No:	T3258	Test Report	Page:	50 of 80

Marker 1: 10.23kHz



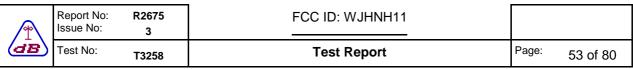
PLOT 30 Antenna Conducted Spurious - Ch 25 - 9kHz to 500kHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
		lowest frequency is quires spurious cor		s to be at leaset 20	dB below carrier.
Facility:	SCN_1			Mode:	1
				Modification State:	0
		File: F	19810578		


Marker 1: 573.8kHz

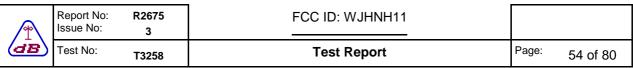
CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 31 Antenna Conducted Spurious - Ch 25 - 500kHz to 30MHz


Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 25					
		uires spurious cond			
Facility:	SCN_1			lode:	1
				odification State:	0
	I	File: H9	81056C		

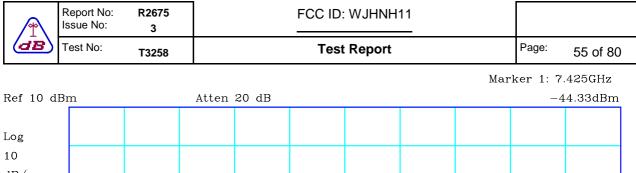
CF1:CBL051_090306 CF2:Antenna_dBI

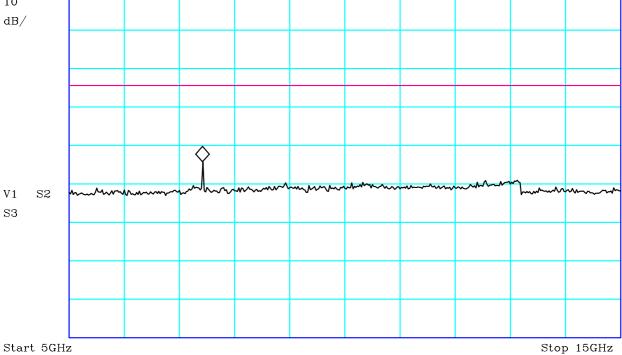
PLOT 32 Antenna Conducted Spurious - Ch 25 - 30MHz to 1GHz


Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 25					
		uires spurious cond			
Facility:	SCN_1			ode:	1
				odification State:	0
	I	File: H9	81056E		

CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 33 Antenna Conducted Spurious - Ch 25 - 1GHz to 5GHz


Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 25					
		uires spurious cond			
Facility:	SCN_1			ode:	1
			M	odification State:	0
		File: H9	810562		

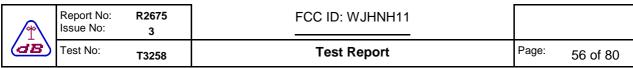


CF1:CBL051_090306 CF2:Antenna_dBI

PLOT 34 Antenna Conducted Spurious - Ch 25 - 2.3GHz to 2.583GHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 25					
		uires spurious cond			
Facility:	SCN_1			ode:	1
				odification State:	0
	F	File: H9	810550		

CF1:CBL051_090306 CF2:Antenna_dBI


*VBW 3 MHz

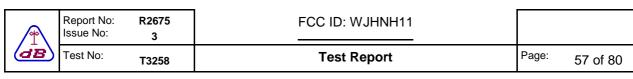
Sweep 1S (401 pts)

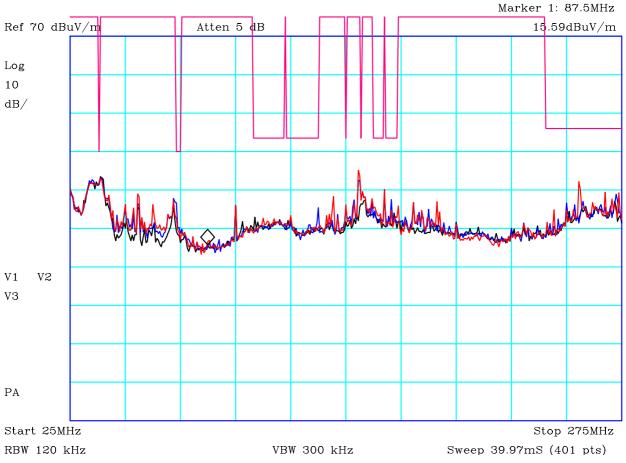
PLOT 35 Antenna Conducted Spurious - Ch 25 - 5GHz to 15GHz

*RBW 100 kHz

Company:	Alertme		Product:	nanoHub	
Date:	10/09/09		Test Eng:	Dave Smith	
Method:			Method:		
Limit1:(VIO)	-20dBc		Limit2:		
Limit3:			Limit4:		
Channel 25					
		uires spurious cond			
Facility:	SCN_1			ode:	1
				odification State:	0
	l	File: H9	810560		

CF1:CBL051_090306 CF2:Antenna_dBI

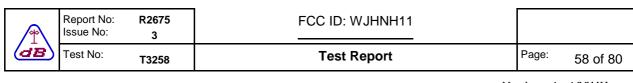

*VBW 3 MHz

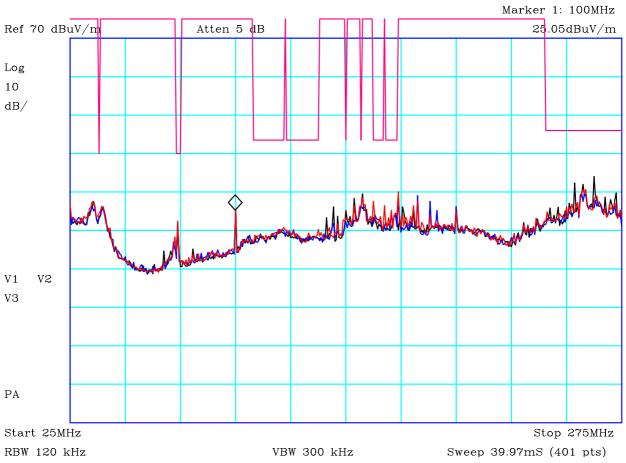

Sweep 1S (401 pts)

PLOT 36 Antenna Conducted Spurious - Ch 25 - 15GHz to 25GHz

*RBW 100 kHz

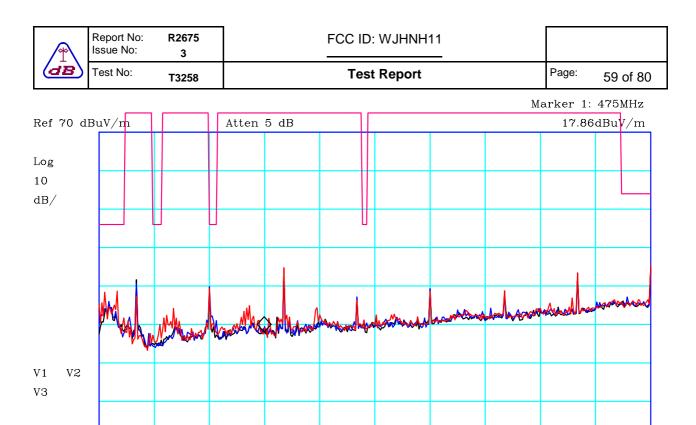
me	Product:	nanoHub
9/09	Test Eng:	Dave Smith
	Method:	
Вс	Limit2:	
	Limit4:	
247(d) requires spurious con		
		ode: 1
	Mo	odification State: 0
	9/09 Bc 247(d) requires spurious con	Method: Bc Limit2: Limit4: 247(d) requires spurious conducted emissions t





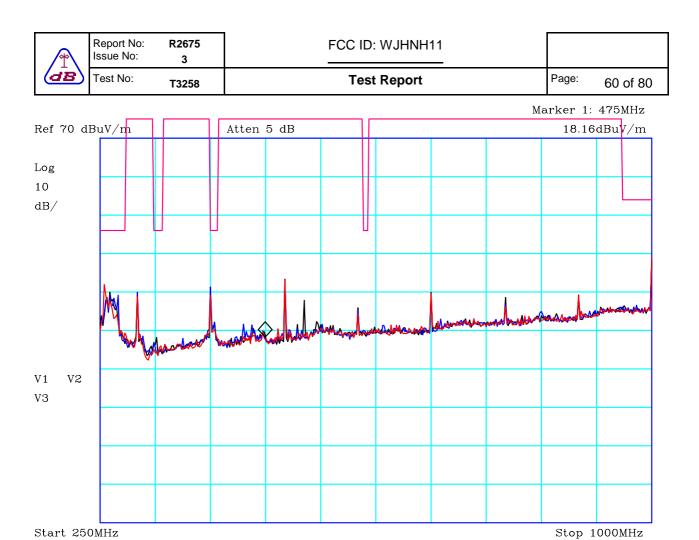
CF1:A5_FS_090306 CF2:CBL002_CBL003_090306 CF3:RFF04_090306

PLOT 37 Radiated Emissions - 25MHz to 275MHz - Vertical


Company:	Alertme		Product:	nanoHub	
Date:	12/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	15.209+Restri	icted Bands@3m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_1	Height	1m	Mode:	1
Distance	3m	Polarisation	V	Modification State:	0
Angle	0-360	File:	H98166D5		

PLOT 38 Radiated Emissions - 25MHz to 275MHz - Horizontal

Company:	Alertme		Product:	nanoHub	
Date:	12/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	15.209+Restri	icted Bands@3m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel Blue: Channel 18 Red: Channel 25	8				
Facility:	Anech_1	Height	1m	Mode:	1
Distance	3m	Polarisation	Н	Modification State:	0
Angle	0-360	File:	H98166D8		

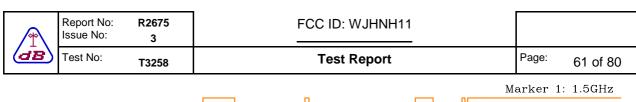


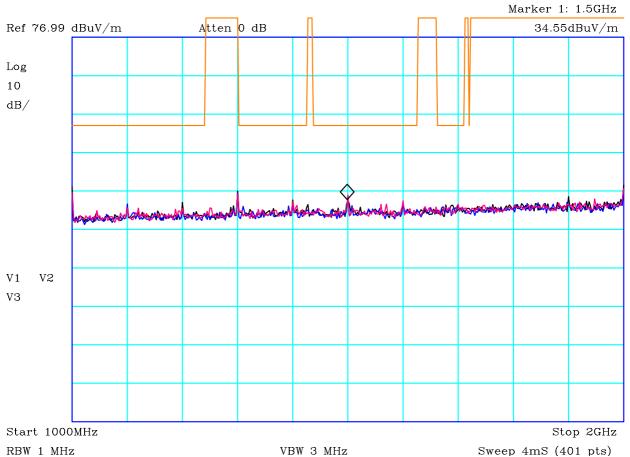
Start 250MHz Stop 1000MHz
RBW 120 kHz VBW 300 kHz Sweep 119.9mS (401 pts)

CF1:A5_FS_090306 CF2:CBL002_CBL003_090306 CF3:RFF04_090306 CF4:PRE7_090306

PLOT 39 Radiated Emissions - 250MHz to 1GHz - Vertical

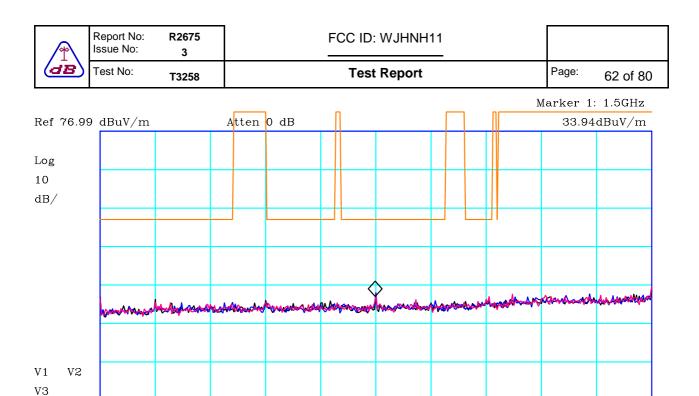
Company:	Alertme		Product:	nanoHub	
Date:	12/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	15.209+Restri	icted Bands@3m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel Blue: Channel 18 Red: Channel 25	8				
Facility:	Anech_1	Height	1m	Mode:	1
Distance	3m	Polarisation	V	Modification State:	0
Angle	0-360	File:	H98166DC		


VBW 300 kHz


Sweep 119.9mS (401 pts)

PLOT 40 Radiated Emissions - 250MHz to 1GHz - Horizontal

RBW 120 kHz

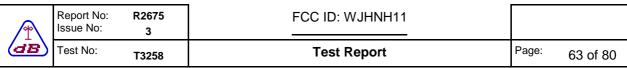

Company:	Alertme		Product:	nanoHub	
Date:	12/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	15.209+Restri	cted Bands@3m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_1	Height	1m	Mode:	1
Distance	3m	Polarisation	Н	Modification State:	0
Angle	0-360	File:	H98166DB		

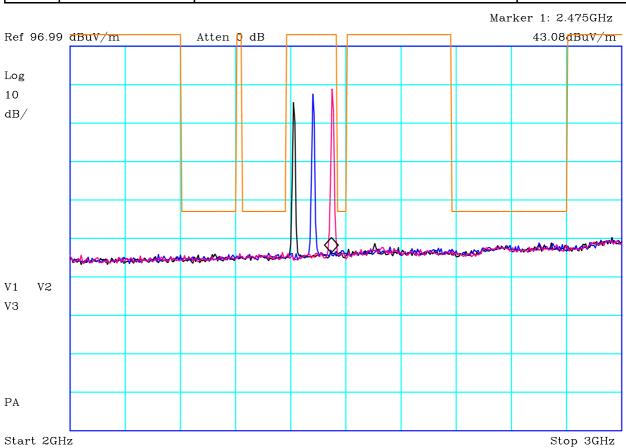
PLOT 41 Radiated Emissions - 1GHz to 2GHz - Vertical

Company:	Alertme		Product:	nanoHub	
Date:	15/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@3m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation	V	Modification State:	0
Angle	0-360	File:	H9815413		

Start 1000MHz

RBW 1 MHz

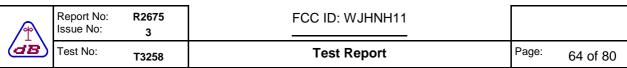

VBW 3 MHz

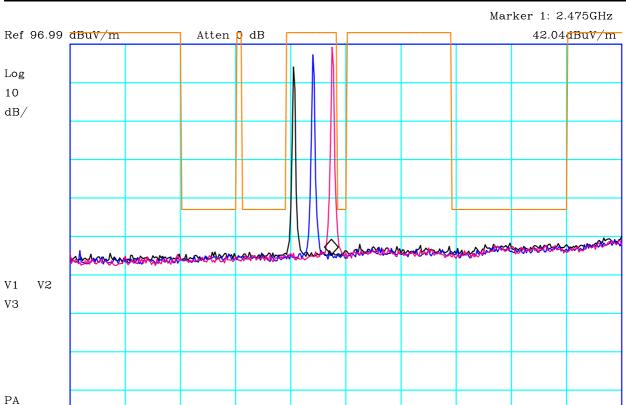

Sweep 4mS (401 pts)

CF1:A23_3m_090306 CF2:PRE7_CBL051_CBL053_090306 CF3:RFF04_090306

PLOT 42 Radiated Emissions - 1GHz to 2GHz - Horizontal

Company:	Alertme		Product:	nanoHub	
Date:	15/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	icted Bands@3m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation	Н	Modification State:	0
Angle	0-360	File:	H981541A		


Sweep 4mS (401 pts)


VBW 3 MHz

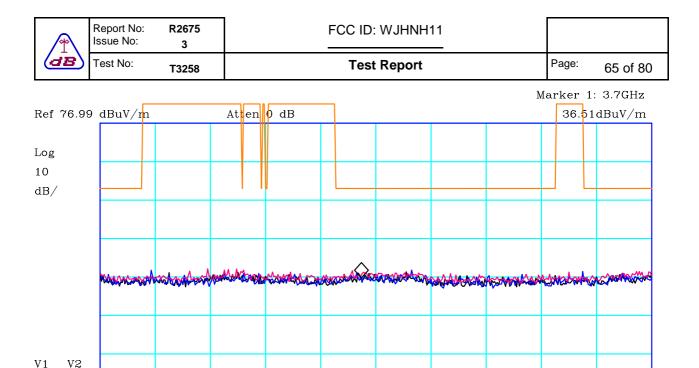
PLOT 43 Radiated Emissions - 2GHz to 3GHz - Vertical

RBW 1 MHz

	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restric	cted Bands@3m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 11 Blue: Channel 18 Red: Channel 25					
Facility: A	Anech_2	Height	1m	Mode:	1
Distance 3	Bm	Polarisation	V	Modification State:	0
Angle 0)-360	File:	H98144D5		

VBW 3 MHz

Stop 3GHz

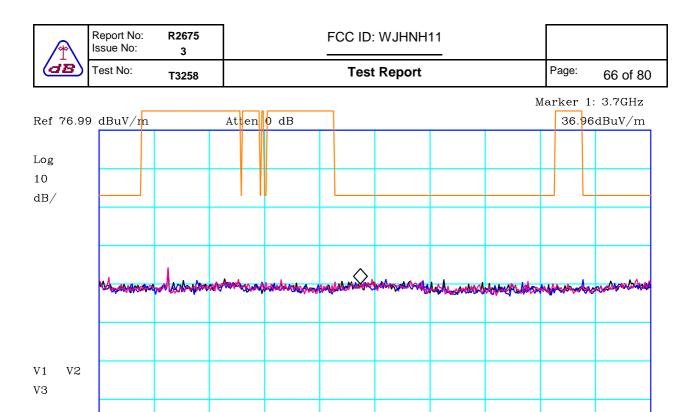

Sweep 4mS (401 pts)

PLOT 44 Radiated Emissions - 2GHz to 3GHz - Horizontal

Start 2GHz

RBW 1 MHz

Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@3m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 18 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation	Н	Modification State:	0
Angle	0-360	File:	H98144C7		


Start 2.75GHz Stop 4.75GHz
RBW 1 MHz VBW 3 MHz Sweep 5.242mS (401 pts)

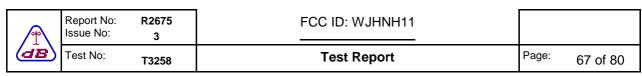
CF1:A23_3m_090306 CF2:PRE7_CBL051_CBL053_090306 CF3:RFF01_090306

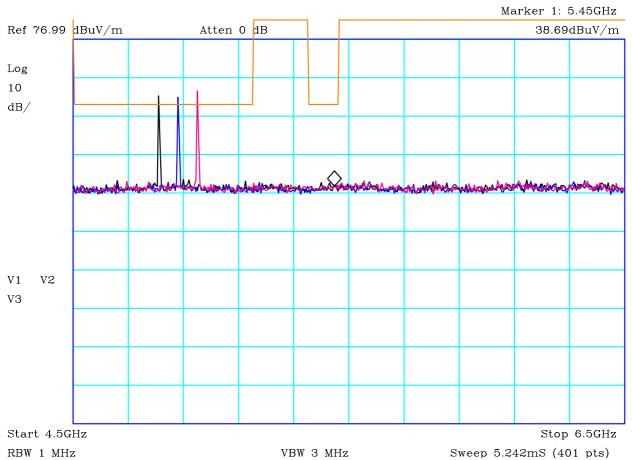
VЗ

PLOT 45 Radiated Emissions - 2.75GHz to 4.75GHz - Vertical

Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restr	icted Bands@1.5n	n Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel Blue: Channel 1 Red: Channel 25	8				
Facility:	Anech_2	Height	1m	Mode:	1
Distance	1.5m	Polarisation	V	Modification State:	0
Angle	0-360	File:	H9814505		

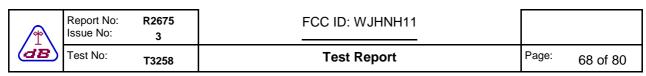
Start 2.75GHz

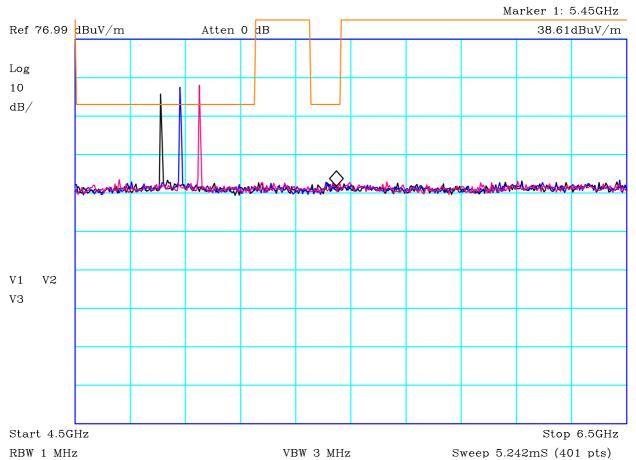

RBW 1 MHz


VBW 3 MHz

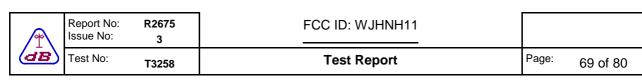
Sweep 5.242mS (401 pts)

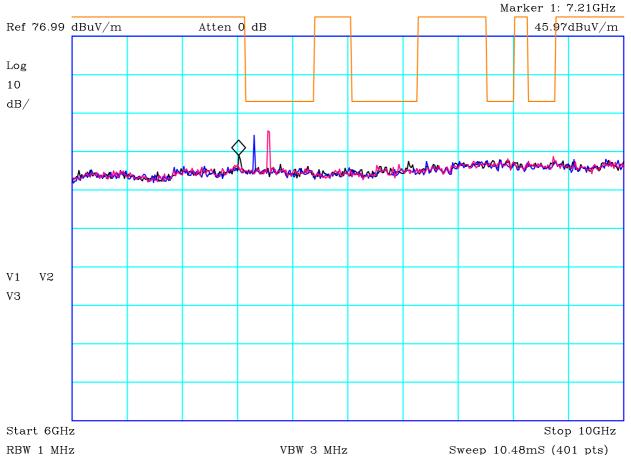
PLOT 46 Radiated Emissions - 2.75GHz to 4.75GHz - Horizontal


Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	icted Bands@1.5m	n Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 1 Red: Channel 25	8				
Facility:	Anech_2	Height	1m	Mode:	1
Distance	1.5m	Polarisation	Н	Modification State:	0
Angle	0-360	File:	H9814510		

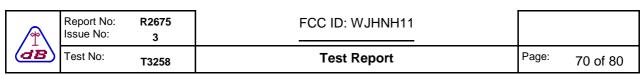


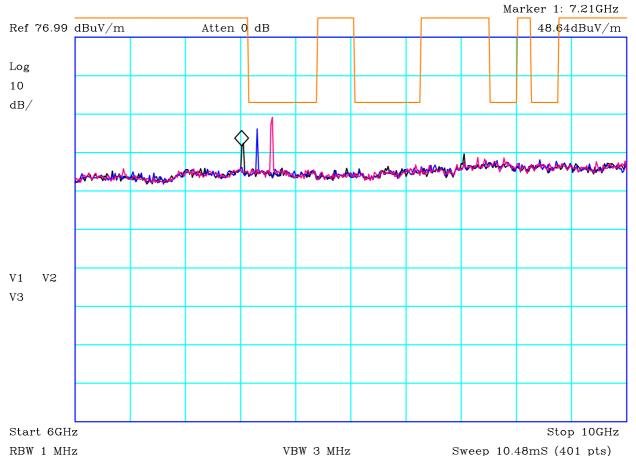
PLOT 47 Radiated Emissions - 4.5GHz to 6.5GHz - Vertical


Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	icted Bands@1.5n	n Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height	1m	Mode:	1
Distance	1.5m	Polarisation	V	Modification State:	0
Angle	0-360	File:	H981451E		

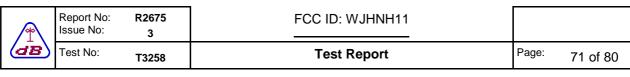


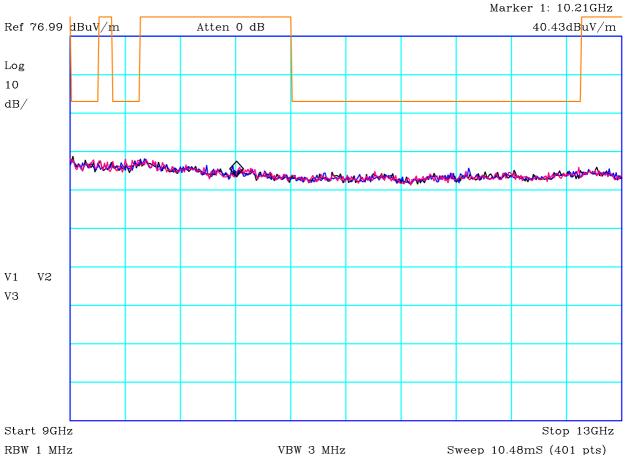
PLOT 48 Radiated Emissions - 4.5GHz to 6.5GHz - Horizontal


Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height	1m	Mode:	1
Distance	1.5m	Polarisation	H	Modification State:	0
Angle	0-360	File:	H9814516		

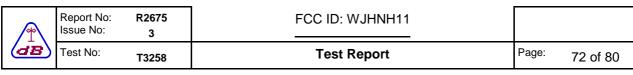


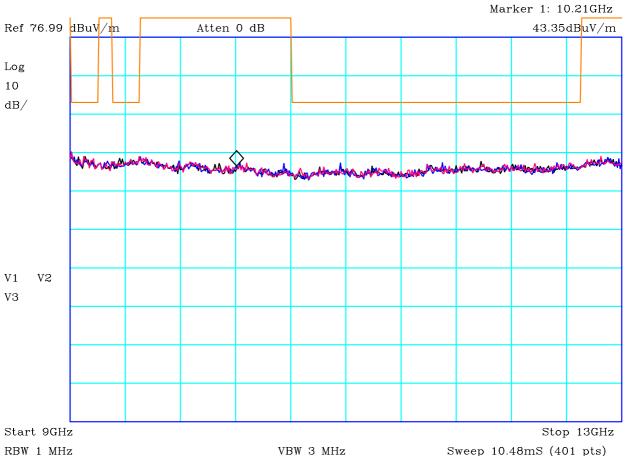
PLOT 49 Radiated Emissions - 6GHz to 10GHz - Vertical


Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height	1m	Mode:	1
Distance	1.5m	Polarisation	V	Modification State:	0
Angle	0-360	File:	H9814525		

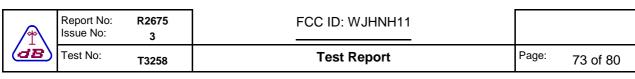


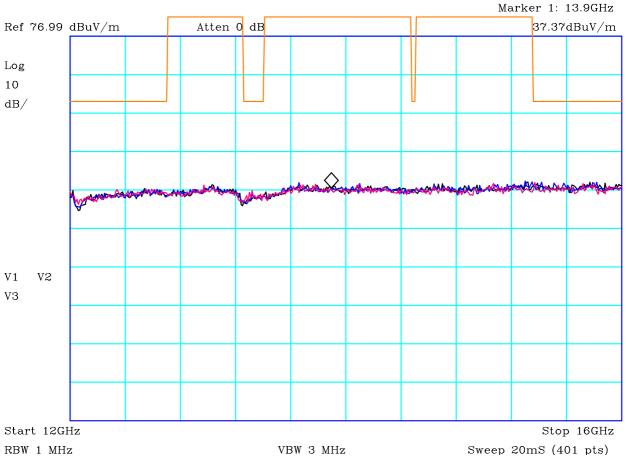
PLOT 50 Radiated Emissions - 6GHz to 10GHz - Horizontal


Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	icted Bands@1.5n	n Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height	1m	Mode:	1
Distance	1.5m	Polarisation	Н	Modification State:	0
Angle	0-360	File:	H981452B		



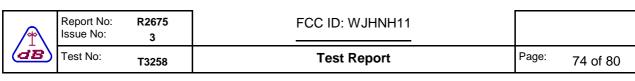
PLOT 51 Radiated Emissions - 9GHz to 13GHz - Vertical

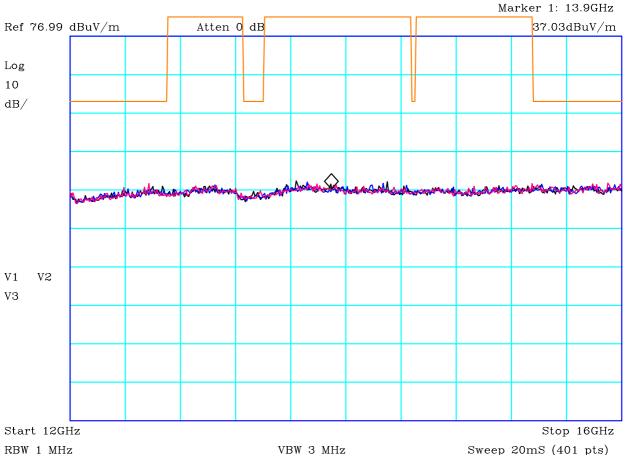

Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height	lm	Mode:	1
Distance	1.5m	Polarisation	/	Modification State:	0
Angle	0-360	File: I	H9814538		



PLOT 52 Radiated Emissions - 9GHz to 13GHz - Horizontal

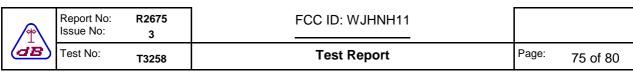
Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	n Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 11 Blue: Channel 18 Red: Channel 25					
Facility:	Anech_2	Height	1m	Mode:	1
Distance	1.5m	Polarisation	Н	Modification State:	0
Angle	0-360	File:	H9814531		

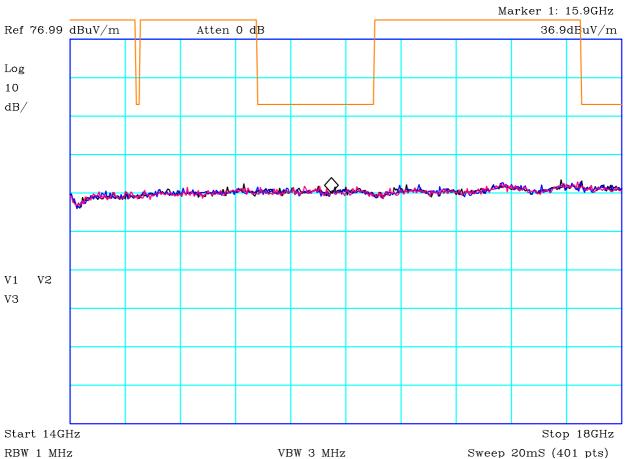




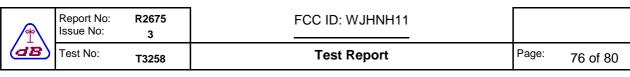
CF1:A22_3m_090526 CF2:PRE7_CBL051_CBL053_090306

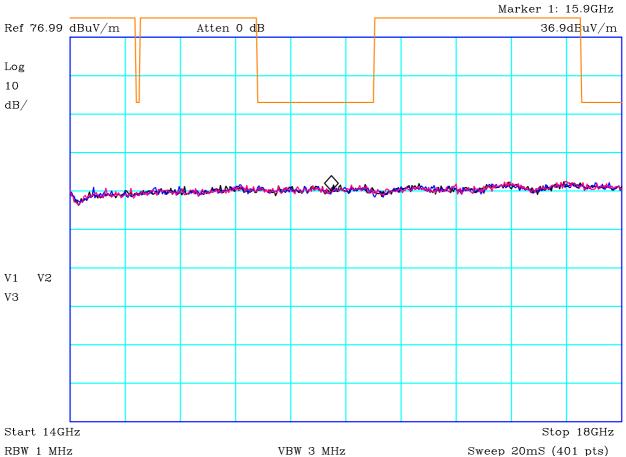
PLOT 53 Radiated Emissions - 12GHz to 16GHz - Vertical


Company:	Alertme		Product:	nanoHub	
Date:	14/09/09	14/09/09		Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height 1	m	Mode:	1
Distance	1.5m	Polarisation \	/	Modification State:	0
Angle	0-360	File: H	H9814695		

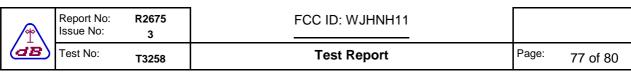


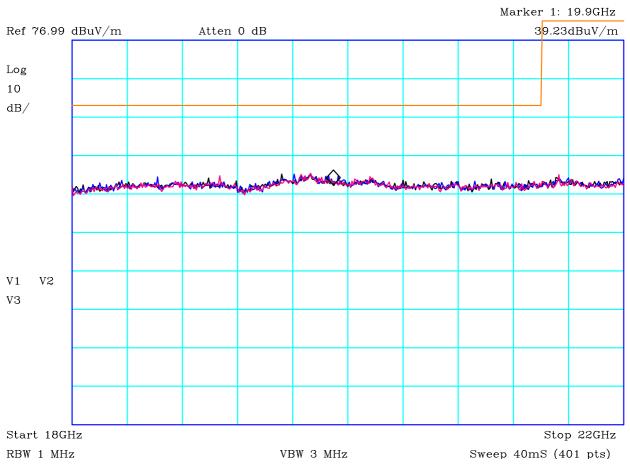
PLOT 54 Radiated Emissions - 12GHz to 16GHz - Horizontal


Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height 1	m	Mode:	1
Distance	1.5m	Polarisation F	1	Modification State:	0
Angle	0-360	File: H	1981469B		



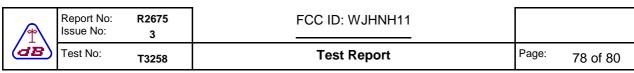
PLOT 55 Radiated Emissions - 14GHz to 18GHz - Vertical

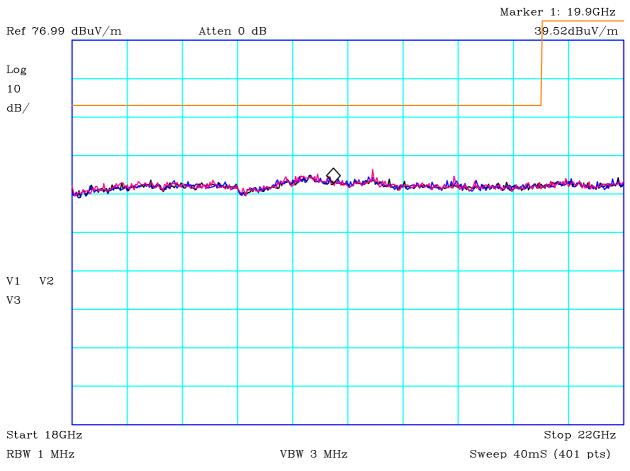

Company:	Alertme		Product:	nanoHub	
Date:	14/09/09	14/09/09		Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height 1	m	Mode:	1
Distance	1.5m	Polarisation \	/	Modification State:	0
Angle	0-360	File: H	H98146A8		



PLOT 56 Radiated Emissions - 14GHz to 18GHz - Horizontal

Company:	Alertme		Product:	nanoHub	
Date:	14/09/09	14/09/09		Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height 1	m	Mode:	1
Distance	1.5m	Polarisation I	1	Modification State:	0
Angle	0-360	File: H	198146A1		

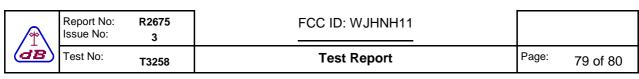


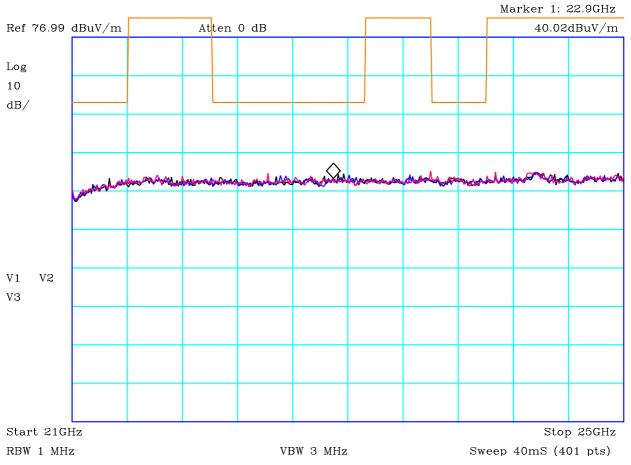


CF1:A20_3m_090526 CF2:PRE8_CBL051_CBL053_090306

PLOT 57 Radiated Emissions - 18GHz to 22GHz - Vertical

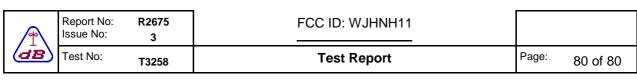
Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height 1	1m	Mode:	1
Distance	1.5m	Polarisation \	/	Modification State:	0
Angle	0-360	File:	H981466E		

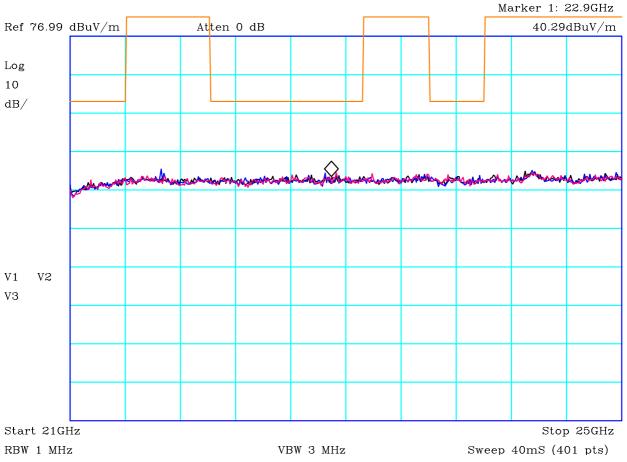




CF1:A20_3m_090526 CF2:PRE8_CBL051_CBL053_090306

PLOT 58 Radiated Emissions - 18GHz to 22GHz - Horizontal


Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height 1	m	Mode:	1
Distance	1.5m	Polarisation F	ł	Modification State:	0
Angle	0-360	File: H	19814675		



PLOT 59 Radiated Emissions - 21GHz to 25GHz - Vertical

Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height 1	m	Mode:	1
Distance	1.5m	Polarisation V	′	Modification State:	0
Angle	0-360	File: F	19814683		

PLOT 60 Radiated Emissions - 21GHz to 25GHz - Horizontal

Company:	Alertme		Product:	nanoHub	
Date:	14/09/09		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(ORG)	15.209+Restri	cted Bands@1.5m	Limit2:		
Limit3:			Limit4:		
Transmit Mode Black: Channel 1 Blue: Channel 18 Red: Channel 25	3				
Facility:	Anech_2	Height 1	m	Mode:	1
Distance	1.5m	Polarisation F	ł	Modification State:	0
Angle	0-360	File: H	1981467C		