

FCC/IC - TEST REPORT

Report Number	: 68.950.17.0782.01 Date of Issue: January 24, 2018					
Model	: ADI002					
Product Type	: Heating Controls and monitoring device					
Applicant	: Centrica Connected home Limited					
Address	: Millstream Maidenhead road Berkshire United Kingdom SL4 5GD					
Production Facility	: Computime Electronics (Shenzhen) Co Ltd.					
Address	: Yuekenguangyu Industrial Park, Kangqiao Road 88#, Danzhutou					
	: Community, Nanwan Street Office, Longgang District, 518114					
	: Shenzhen, PEOPLE'S REPUBLIC OF CHINA					
Test Result	n Positive o Negative					
Total pages including Appendices	: 33					

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment Under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration	9
9	Technical Requirement	0
9.	Conducted Emission1	0
9.	2 Conducted peak output power1	3
9.	3 Power spectral density	6
9.	6 dB Bandwidth and 99% Occupied Bandwidth1	9
9.	5 Spurious RF conducted emissions	2
9.	6 Band edge2	6
9.	7 Spurious radiated emissions for transmitter	8
10	Test Equipment List	2
11	System Measurement Uncertainty	3

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052 P.R. China
Telephone: Fax:	86 755 8828 6998 86 755 828 5299
FCC Registration	514049
IC Registration No.:	10320A -1

3 Description of the Equipment Under Test

Product:	Heating Controls and monitoring device
Model no.:	ADI002
FCC ID:	WJHADI002
IC:	21719-ADI002
Options and accessories:	Nil
Rating:	Input Voltage:120-230Vac~50/60Hz Switching Power:120-230Vac~50/60Hz, 3(1)A
RF Transmission	2405MHz-2480MHz
Frequency: No. of Operated Channel:	16
Modulation:	OQPSK
Antenna Type:	Internal Antenna
Antenna Gain:	0.5dBi
Description of the EUT:	The Equipment Under Test (EUT) is Heating Controls monitoring device operated at 2.4GHz

and

4 Summary of Test Standards

Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES			
10-1-2016 Edition	Subpart C - Intentional Radiators			
RSS-Gen Issue 4	General Requirements and Information for the Certification of Radio			
November 2014	Apparatus			
RSS-247	Digital Transmission Systems (DTSS), Frequency Hopping Systems			
Issue 2 February 2017	(FHSS) and License-Exempt Local Area Network (LE-LAN) Devices			

All the test methods were according to KDB558074 v04 DTS Measurement Guidance and ANSI C63.10 (2013).

5 Summary of Test Results

	Technical Requirements						
FCC Part 15 Sub	part C/RSS-247 Iss	ue 2/RSS-Gen Issue 4					
Test Condition			Pages	Test Site	Tes Pass	t Res Fail	ult N/ A
§15.207	RSS-Gen, 8.8	Conducted emission AC power port	10	Site 1			
§15.247 (b) (1)	RSS-247 5.4(d)	Conducted peak output power	13	Site 1			
§15.247(a)(1)	RSS-247 5.1(a) & RSS-Gen 6.6	20dB bandwidth					\boxtimes
§15.247(a)(1)	RSS-247 5.1(b)	Carrier frequency separation					\boxtimes
§15.247(a)(1)(iii)	RSS-247 5.1(d)	Number of hopping frequencies					\boxtimes
§15.247(a)(1)(iii)	RSS-247 5.1(d)	Dwell Time					\boxtimes
§15.247(a)(2)	RSS-247 5.2(a)	6dB bandwidth and 99% Occupied Bandwidth	16	Site 1			
§15.247(e)	RSS-247 5.2(b)	Power spectral density	19	Site 1	\square		
§15.247(d)	RSS-247 5.5	Spurious RF conducted emissions	22	Site 1	\square		
§15.247(d)	RSS-247 5.5	Band edge	26	Site 1	\square		
§15.247(d) & §15.209	RSS-247 5.5 & RSS-Gen 6.13	Spurious radiated emissions for transmitter	28	Site 1			
§15.203	RSS-Gen 8.3	Antenna requirement	See no	te 1			

Note 1: N/A=Not Applicable.

Note 2: The EUT uses a Integrated antenna, which gain is 0.5dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: WJHADI002, IC: 21719-ADI002 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C, RSS-247 and RSS-Gen rules.

ADI002 is Heating Controls and monitoring device with Bluetooth and ZigBee function. The Bluetooth TX and RX range is 2402MHz-2480MHz. The ZigBee TX and RX range is 2405MHz-2480MHz.

Note: This report ZigBee only.

SUMMARY:

All tests according to the regulations cited on page 5 were

n - Performed

O - Not Performed

The Equipment under Test

n - Fulfills the general approval requirements.

• - **Does not** fulfill the general approval requirements.

Sample Received Date: November 11, 2017

Testing Start Date: November 11, 2017

Testing End Date: November 23, 2017

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

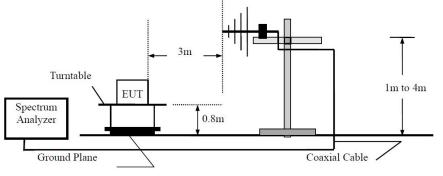
the

Phoebe Hu EMC Section Manager

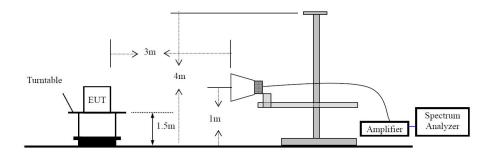
Prepared by:

Tested by:

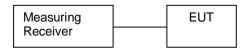
Mark chen

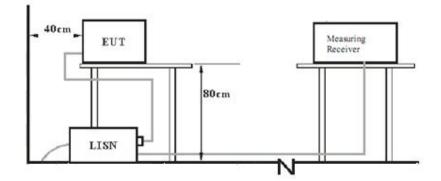

Mark Chen EMC Project Engineer

Tree them


Tree Zhan EMC Test Engineer

7 Test Setups


Below 1GHz


Above 1GHz

Conducted RF test setups

AC Power Line Conducted Emission test setups

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

8 Systems test configuration

Auxiliary Equipment Used during Test:

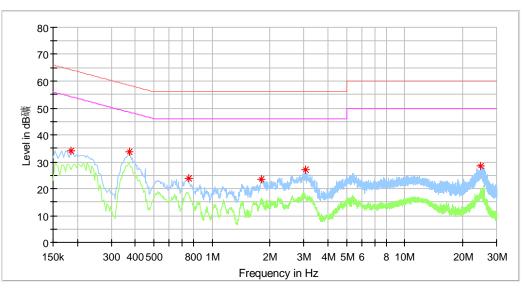
DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Mobile Phone	HUAWEI		
thermostat			

9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line


Limit

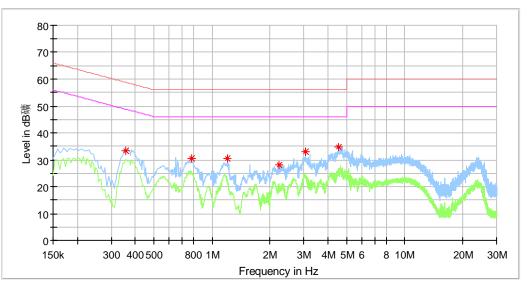
Frequency	QP Limit	AV Limit
MHz	dBµV	dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

Product Type	:	Heating Controls and monitoring device
M/N	:	ADI002
Operating Condition	:	Normal +BT Link+ ZigBee Link
Test Specification	:	Line
Comment	:	AC 120V/60Hz

Critical_Freqs

Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.186000	33.87		64.21	30.34	L1	10.2
0.374000	33.53		58.41	24.88	L1	10.9
0.758000	23.83		56.00	32.17	L1	10.2
1.794000	23.66		56.00	32.34	L1	10.3
3.042000	26.90		56.00	29.10	L1	10.3
24.878000	28.55		60.00	31.45	L1	11.3


Final_Result

Frequency	QuasiPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)

Remark: Correct factor=cable loss + LISN factor

Product Type	:	Heating Controls and monitoring device
M/N	:	ADI002
Operating Condition	:	Normal +BT Link+ ZigBee Link
Test Specification	:	Neutral
Comment	:	AC 120V/60Hz

Critical_Freqs

Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.358000	33.38		58.77	25.40	Ν	10.3
0.782000	30.60		56.00	25.40	Ν	10.4
1.206000	30.43		56.00	25.57	Ν	10.4
2.242000	28.06		56.00	27.94	N	10.4
3.062000	32.86		56.00	23.14	Ν	10.5
4.558000	34.79		56.00	21.21	Ν	10.5
	(MHz) 0.358000 0.782000 1.206000 2.242000 3.062000	(MHz) (dBµV) 0.358000 33.38 0.782000 30.60 1.206000 30.43 2.242000 28.06 3.062000 32.86	(MHz) (dBµV) (dBµV) 0.358000 33.38 0.782000 30.60 1.206000 30.43 2.242000 28.06 3.062000 32.86	(MHz) (dBμV) (dBμV) (dBμV) 0.358000 33.38 58.77 0.782000 30.60 56.00 1.206000 30.43 56.00 2.242000 28.06 56.00 3.062000 32.86 56.00	(MHz) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) 0.358000 33.38 58.77 25.40 0.782000 30.60 56.00 25.40 1.206000 30.43 56.00 25.57 2.242000 28.06 56.00 27.94 3.062000 32.86 56.00 23.14	(MHz) (dBμV) (dBμV) (dBμV) (dB 0.358000 33.38 58.77 25.40 N 0.782000 30.60 56.00 25.40 N 1.206000 30.43 56.00 25.57 N 2.242000 28.06 56.00 27.94 N 3.062000 32.86 56.00 23.14 N

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)

Remark: Correct factor=cable loss + LISN factor.

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

According to §15.247 (b) (1), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table

Frequency MHz	Conducted Peak Output Power dBm	Result
Bottom channel 2405MHz	5.22	Pass
Middle channel 2440MHz	7.0	Pass
Top channel 2480MHz	7.66	Pass

Report Number: 68.950.17.0782.01

Low channel 2405MHz

Date: 22.NOV.2017 09:15:32

Middle channel 2440MHz

Date: 22.NOV.2017 09:17:17

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 14 of 33

High channel 2480MHz

Ref Level 30.00 dBm Att 45 dB	Offset 1.00 dB RBW SWT 1 ms VBW		
∋1Pk Max		•	
		M1[1]	7.66 dBm 2.47948630 GHz
20 dBm			
10 dBm	м		
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
CF 2.48 GHz		691 pts	Span 5.0 MHz

Date: 22.NOV.2017 09:21:04

9.3 Power spectral density

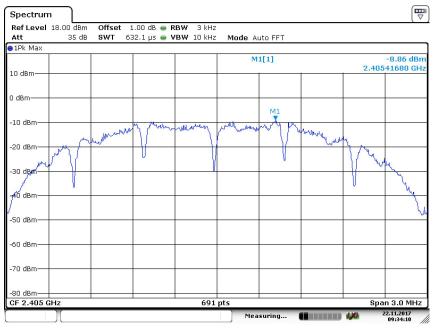
Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- 1. Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

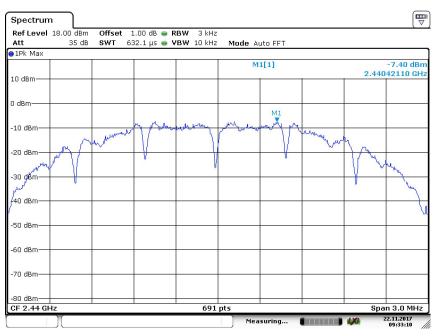
Limit

Limit [dBm]


≤8

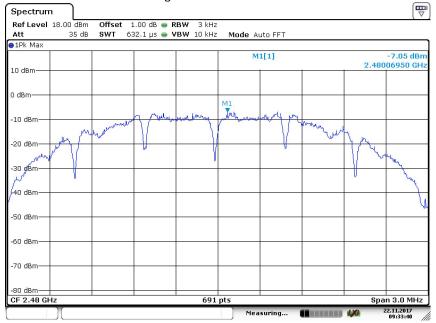
Test result

	Result
dBm	
-8.86	Pass
-7.40	Pass
-7.05	Pass
	-8.86 -7.40



Low channel 2405MHz

Date: 22.NOV.2017 09:34:11


Date: 22.NOV.2017 09:33:11

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 17 of 33

High channel 2480MHz

Date: 22.NOV.2017 09:33:40

9.4 6 dB Bandwidth and 99% Occupied Bandwidth

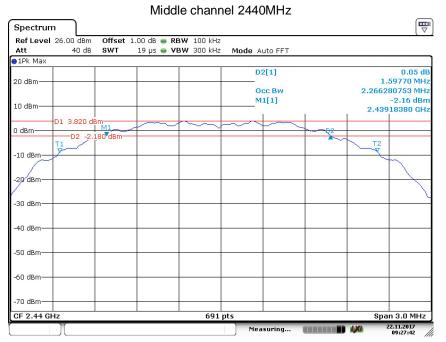
Test Method

1. Use the following spectrum analyzer settings:

RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

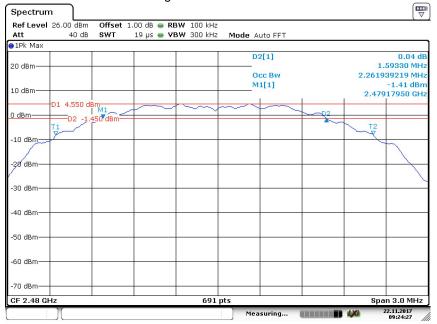
Limit


	Limit [kH	lz]	
-	≥500		
Test result_			
Frequency MHz	6dB bandwidth kHz	99 bandwidth kHz	Result
Bottom channel 2405MHz	1632.4	2287.99	Pass
Middle channel 2440MHz	1597.7	2266.28	Pass
Top channel 2480MHz	1593.3	2261.94	Pass

6 dB Bandwidth

Ref Level 26.00 dBm		dB 🔵 RBW 100 kHz		
Att 40 dB	SWT 19	µs 🖷 VBW 300 kHz	Mode Auto FFT	
1Pk Max			D2[1]	0.06 df 1.63240 MH
			Occ Bw M1[1]	2.287988423 MH: -4.06 dBn
D dBm D1 1.970 c	IBm-			2.40416210 GH
	.030 dBm	Y		
20.4Bm				
30 dBm				
40 dBm				
50 dBm				
60 dBm				
70 dBm				

Date: 22.NOV.2017 09:26:31


Date: 22.NOV.2017 09:27:42

EMC_SZ_FR_21.00 FCC Release 2014-03-20 Page 20 of 33

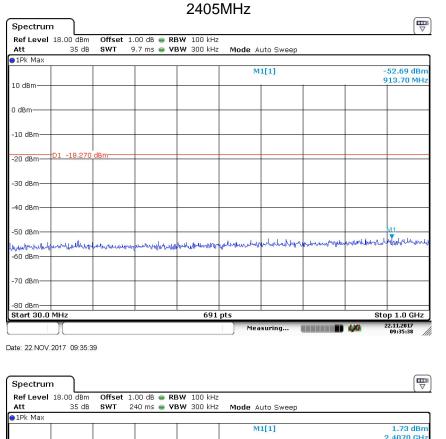
Report Number: 68.950.17.0782.01

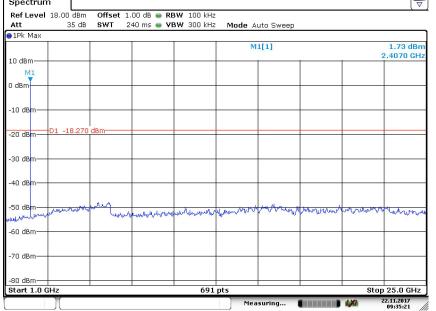
High channel 2480MHz

Date: 22.NOV.2017 09:24:27

9.5 Spurious RF conducted emissions

Test Method


- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.


Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

Date: 22.NOV.2017 09:35:21

EMC_SZ_FR_21.00 FCC Release 2014-03-20

2440MHz

Spectrum					
Ref Level 18.00 dBr	m Offset 1.00 dB 👄 RE	W 100 kHz			
Att 35 d	IB SWT 9.7 ms 🖷 VE	3W 300 kHz Mode	Auto Sweep		
●1Pk Max					
			M1[1]		-53.18 dBm 774.70 MHz
10 dBm					774.70 MHZ
0 dBm					
-10 dBm					
-20 dBm	90 dBm				
-30 dBm					
-40 dBm					
-50 dBm				M1	100 - 2
mullance month with	delander and a here show when	a allow all the broken it was been and	guarder and with	When the stand we have the	Millinudueta
-60 dBm					
-70 dBm					
-80 dBm					
Start 30.0 MHz		691 pts		St	op 1.0 GHz
) M	easuring	III 420	22.11.2017 09:40:10

Date: 22.NOV.2017 09:40:11

Ref Level 18.00 dBm	Offset 1.00 dB				(
Att 35 dB	SWT 240 ms (VBW 300 kHz	Mode Auto Sweep		
1Pk Max					
			M1[1]		2.81 dBr
.0 dBm					2.4410 GH
M1					
I dBm					
10 dBm					
D1 -17.190	dBm				
20 dBn					
30 dBm					
40 dBm					
	a. 300		12.12		
50 dBn	way	whenterwhenter	when when the day	mul mu toronalis	where the where we
analon	armonia	www.uniter.com			
60 dBm					
70 dBm					
, o abin					
80 dBm					
start 1.0 GHz		691	nts		top 25.0 GHz

Date: 22.NOV.2017 09:39:57

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

2480MHz

	18.00 dBm		1.00 dB 👄 RI						
Att 1Pk Max	35 dB	SWT	9.7 ms 🖷 V l	BW BUUKHZ	Mode A	uto Sweep			
10 dBm					м	1[1]			-51.42 dBm 924.90 MHz
0 dBm									
-10 dBm—									
-20 dBm	D1 -16.760	dBm							
-30 dBm									
-40 dBm									
-50 dBm	Ann Malalamata	orN sends in a	unoutherhors	secol as and but	Ale un conservationer	Murrison	July whether when	بالاسم	MI
-60 dBm	- De Dorde - adm	a materia	manana ang ang ang ang ang ang ang ang an	an anthe hear of					
70 dBm									
-80 dBm									
Start 30.0	MHz			691	pts			Sto	op 1.0 GHz

Date: 22.NOV.2017 09:47:46

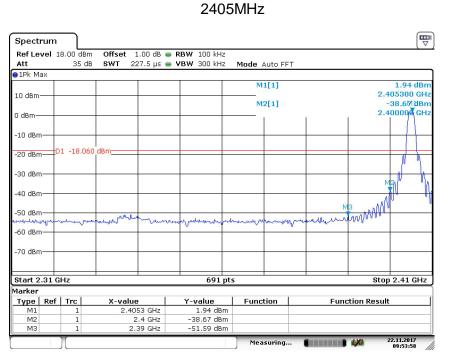
Ref Level			1.00 dB 👄 RI						
Att 1Pk Max	35 dB	SWT	240 ms 🖷 VI	BW 300 KHZ	Mode A	uto Sweep			
					М	1[1]			3.24 dBm 2.4760 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -16.760	dBm							
-30 dBm									
-40 dBm									
-50 dBm	withundersont	adizan	- mar mar house	www.	how when to	part they	twww.ph	www.marth	munner
-60 dBm									
-70 dBm									
-80 dBm				691					p 25.0 GHz

Date: 22.NOV.2017 09:47:31

EMC_SZ_FR_21.00 FCC Release 2014-03-20

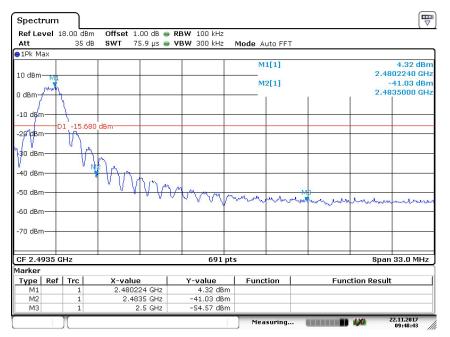
9.6 Band edge

Test Method


- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20



Band edge testing

Date: 22.NOV.2017 09:53:58

2480MHz

Date: 22.NOV.2017 09:48:44

EMC_SZ_FR_21.00 FCC Release 2014-03-20

9.7 Spurious radiated emissions for transmitter

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle).

4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at requencyabove1GHz

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below:

Low channel 2405MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-	944.93	28.91	Н	46	QP	17.09	-15.2	Pass
1000MHz	944.82	34.51	V	46	QP	11.49	-14.4	Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

Middle channel 2440MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

High channel 2480MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

10 Test Equipment List

List of Test Instruments

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2018-7-7
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2018-7-14
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2018-7-14
Horn Antenna	Rohde & Schwarz	HF907	102294	2018-7-14
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2018-7-14
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7

Conducted Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2018-7-14
LISN	Rohde & Schwarz	ENV4200	100249	2018-7-14
LISN	Rohde & Schwarz	ENV432	101318	2018-7-14
LISN	Rohde & Schwarz	ENV216	100326	2018-7-14
ISN	Rohde & Schwarz	ENY81	100177	2018-7-14
ISN	Rohde & Schwarz	ENY81-CA6	101664	2018-7-14
High Voltage Probe	Rohde & Schwarz	TK9420(VT94 20)	9420-584	2018-7-14
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2018-7-14
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2018-7-7
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A

C - Conducted RF tests

- · Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density*
- · Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncerta	inty
Test Items	Extended Uncertainty
Uncertainty for Conducted Emission 150kHz-30MHz (for test using High Voltage Probe TK9420(VT9420))	2.92 dB
Uncertainty for Radiated Spurious Emission 25MHz- 3000MHz	Horizontal: 4.98dB; Vertical: 5.06dB;
Uncertainty for Radiated Spurious Emission 3000MHz- 18000MHz	Horizontal: 4.95dB; Vertical: 4.94dB;
Uncertainty for Radiated Spurious Emission 18000MHz- 40000MHz	Horizontal: 5.14dB; Vertical: 5.12dB;
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 1.05dB Frequency test involved: 1.16×10-7