Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No. :	CQASZ20220200198E-02		
Applicant:	Avantronics Limited		
Address of Applicant:	The 4th Floor, Yuepeng Building, No.1019 Jiabin Rd, Luohu District, Shenzhen		
Equipment Under Test (E	UT):		
Product:	Avantree Roadtrip		
Model No.:	BTCK-12, BTCK-12-BLK, BTCK-12-BLU, BTCK-12-TTN, BTCK-12-GRY, BTCK-12P, BTCK-12S, BTCK-12B		
Test Model No.:	BTCK-12		
Brand Name:	Avantree		
FCC ID:	WJ5-BTCK-12		
Standards:	47 CFR Part 15, Subpart C		
Date of Receipt:	2022-02-16		
Date of Test:	2022-02-16 to 2022-03-01		
Date of Issue:	2022-03-11		
Test Result :	PASS*		

*In the configuration tested, the EUT complied with the standards specified above.

lewis 2hOU (Lewis Zhou) Tested By: uan **Reviewed By:** (Rock Huang) PPROVE Approved By: (Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20220200198E-02	Rev.01	Initial report	2022-03-11

2 Test Summary

Test Item	Test Item Test Requirement		Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

3 Contents

Page

1 VERSION	
2 TEST SUMMARY	
3 CONTENTS	
4 GENERAL INFORMATION	5
4.1 Client Information	
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Additional Instructions	
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 TEST LOCATION	
4.8 TEST FACILITY	
4.9 Abnormalities from Standard Conditions	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 Equipment List	11
5 TEST RESULTS AND MEASUREMENT DATA	12
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 20DB Occupy Bandwidth	
5.5 CARRIER FREQUENCIES SEPARATION	
5.6 Hopping Channel Number	
5.7 Dwell Time	
5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.9 Spurious RF Conducted Emissions	
5.10 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.11.1 Radiated Emission below 1GHz	
5.11.2 Transmitter Emission above 1GHz	
6 PHOTOGRAPHS - EUT TEST SETUP	81
6.1 Radiated Emission	
6.2 Conducted Emission	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	Avantronics Limited			
Address of Applicant:	The 4th Floor, Yuepeng Building, No.1019 Jiabin Rd, Luohu District, Shenzhen			
Manufacturer:	Avantronics Limited			
Address of Manufacturer:	The 4th Floor, Yuepeng Building, No.1019 Jiabin Rd, Luohu District, Shenzhen			
Factory:	Avantronics Limited			
Address of Factory:	The 4th Floor, Yuepeng Building, No.1019 Jiabin Rd, Luohu District, Shenzhen			

4.2 General Description of EUT

Product Name:	Avantree Roadtrip			
Model No.:	BTCK-12, BTCK-12-BLK, BTCK-12-BLU, BTCK-12-TTN, BTCK-12-GRY,			
	BTCK-12P, BTCK-12S, BTCK-12B			
Test Model No.:	BTCK-12			
Trade Mark:	Avantree			
Software Version:	CK1220211109V0			
Hardware Version:	PCB_CK12V5.3			
Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	V5.0			
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)			
Modulation Type:	GFSK, π/4DQPSK, 8DPSK			
Transfer Rate:	1Mbps/2Mbps/3Mbps			
Number of Channel:	79			
Hopping Channel Type:	Adaptive Frequency Hopping systems			
Product Type:	□ Mobile			
Test Software of EUT:	BlueTest3			
Antenna Type:	Chip antenna			
Antenna Gain:	4.85dBi			
Power Supply:	Li-ion battery: DC 3.7V 1120mAh, Charge by DC 5V for adapter			

Note:

Model No.: BTCK-12, BTCK-12-BLK, BTCK-12-BLU, BTCK-12-TTN, BTCK-12-GRY, BTCK-12P, BTCK-12S, BTCK-12B.

Only the model BTCK-12 was tested, the circuit design, layout, components used and internal wiring are all the same, except for the color difference.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

4.3 Additional Instructions

EUT Test Software Se	ettings:					
Mode:	 Special software is used. Through engineering command into the engineering mode. engineering command: *#*#3646633#*#* 					
EUT Power level:	Class2 (Power level is built-in set para selected)	ameters and cannot be changed and				
Use test software to set the l	owest frequency, the middle frequency and	the highest frequency keep				
transmitting of the EUT.		1				
Mode	Channel	Frequency(MHz)				
	СН0	2402				
DH1/DH3/DH5	CH39	2441				
	CH78	2480				
	СН0	2402				
2DH1/2DH3/2DH5	CH39	2441				
	CH78	2480				
	СНО	2402				
3DH1/3DH3/3DH5	СН39	2441				
	CH78 2480					

Run Software:

Test Commands ——		-Test Arguments		
CW TX CONTINUOUS TX	^	Channel (0-78)	78	Close
PACKET TX PACKET RX QHS		Power (0-9)	9	Help
RF TEST STOP		Туре	BREDR 1-PR9	Execute
POWER TABLE GET POWER TABLE SET		Pattern bits (1-	2	Reset
ENABLE DUT MODE	~	Pattern (hex)	00000001	
Test Results □ Save to file C:\Vsers\Administr		for f j Data\Local\QTIL\Blu	Display : 🗭 Standar eTest3\testapplog.tx	
Save to file C:\Users\Administr	rator Appr = 2402	Data\Local\QTIL\Blu		
Save to file C:\Users\Administr Continuous TX suc Continuous TX suc Continuous TX suc	rator\App r = 2402 ccessful r = 2441 ccessful	Data\Local\QTIL\Blu		
Save to file C:\Users\Administ	rator\App cessful cessful cessful cessful cessful cessful	oData\Local\QTIL\Blu MHz MHz MHz		
Save to file C:\Vsers\Administr Continuous TX suc Continuous TX suc	rator\App cessful cessful cessful cessful cessful cessful cessful cessful	oData\Local\QTIL\Blu MHz MHz MHz MHz		
Save to file C:\Vsers\Administ C:\Vsers\Administ Continuous TX suc Channel frequency Continuous TX suc Channel frequency CONTINUOUS TX suc Channel frequency CONTINUOUS TX suc Channel frequency CONTINUOUS TX suc	rator\App ressful r = 2402 ressful r = 2441 ressful r = 2480 ressful r = 2480 ressful r = 2480 ressful r = 2480	oData\Local\QTIL\Blu MHz MHz MHz MHz MHz		
Save to file C:\Vsers\Administ C:\Vsers\Administ Channel frequency CONTINUOUS TX suc Channel frequency CONTINUOUS TX suc Channel frequency CONTINUOUS TX suc Channel frequency	rator\App = 2402 ccessful = 2441 ccessful = 2480 ccessful = 2480 ccessful = 2480 ccessful = 2480 ccessful	oData\Local\QTIL\Blu MHz MHz MHz MHz MHz MHz MHz		

4.4 Test Environment

Operating Environment	Operating Environment:				
Temperature:	25 °C				
Humidity:	54% RH				
Atmospheric Pressure:	1009mbar				
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.				

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
Adapter	HUAWEI	HW-0502000C01	/	CQA

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: **IC Registration No.: 22984-1**

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/10	2022/9/9
Spectrum analyzer	R&S	FSU26	CQA-038	2021/9/10	2022/9/9
		AFS4-00010300-18-10P-			
Preamplifier	MITEQ	4	CQA-035	2021/9/10	2022/9/9
		AMF-6D-02001800-29-			
Preamplifier	MITEQ	20P	CQA-036	2021/9/10	2022/9/9
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2021/9/16	2024/9/15
Bilog Antenna	R&S	HL562	CQA-011	2021/9/16	2024/9/15
Horn Antenna	R&S	HF906	CQA-012	2021/9/16	2024/9/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/16	2024/9/15
Coaxial Cable					
(Above 1GHz)	CQA	N/A	C019	2021/9/10	2022/9/9
Coaxial Cable					
(Below 1GHz)	CQA	N/A	C020	2021/9/10	2022/9/9
Antenna Connector	CQA	RFC-01	CQA-080	2021/9/10	2022/9/9
RF					
cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2021/9/10	2022/9/9
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2021/9/10	2022/9/9
EMI Test Receiver	R&S	ESPI3	CQA-013	2021/9/10	2022/9/9
LISN	R&S	ENV216	CQA-003	2021/9/10	2022/9/9
Coaxial cable	CQA	N/A	CQA-C009	2021/9/10	2022/9/9

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
-----------------------	--

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

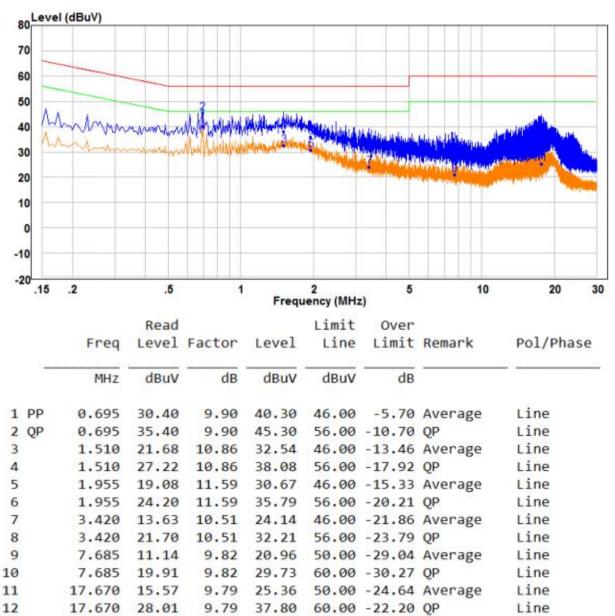
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Chip antenna. The best case gain of the antenna is 4.85 dBi.

5.2 Conducted Emissions

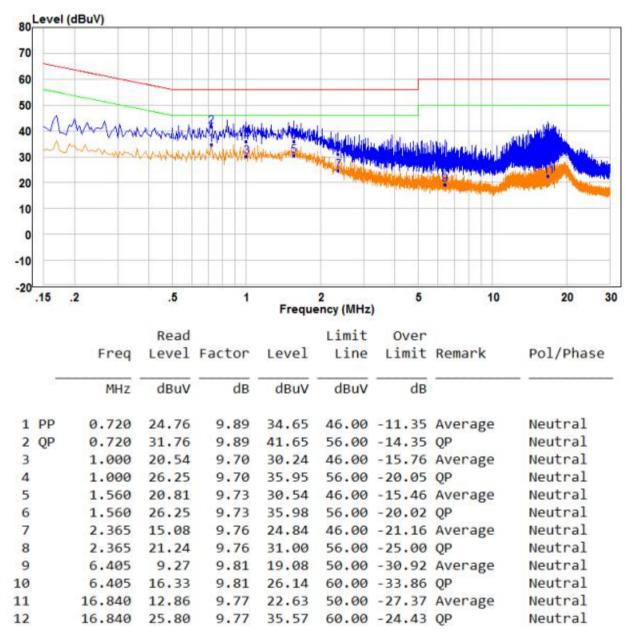
 Conducted Emissio	JII5		
Test Requirement:	47 CFR Part 15C Section 15.2	207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		
Limit:		Limit (dBuV)	
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithn	n of the frequency.	
Test Procedure:	 The mains terminal distur- room. The EUT was connected to Impedance Stabilization N- impedance. The power call connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single LI exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal gr The test was performed wi of the EUT shall be 0.4 m f vertical ground reference p reference plane. The LISN unit under test and bonded mounted on top of the grou between the closest points the EUT and associated ed In order to find the maximu equipment and all of the in ANSI C63.10: 2013 on con 	b AC power source thro etwork) which provides bles of all other units of SN 2, which was bonde he way as the LISN 1 for et outlet strip was used ISN provided the rating ced upon a non-metalling of floor-standing ar round reference plane, th a vertical ground ref from the vertical ground ref from the vertical ground ref from the vertical ground blane was bonded to the 1 was placed 0.8 m fro to a ground reference and reference plane. The s of the LISN 1 and the quipment was at least 0 im emission, the relative terface cables must be	bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω line f the EUT were d to the ground or the unit being d to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT v erence plane. The read d reference plane. The read d reference plane. The read d reference plane. The read d reference plane the EUT v end the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2 we positions of
Test Setup:	Shielding Room	AE USN2 + AC Ma Ground Reference Plane	Test Receiver



Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of
	data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Measurement Data

Live line:


Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)	
· ·		
Test Method: Test Setup:	ANSI C63.10:2013	
	Ground Reference Plane	
	Remark: Offset=Cable loss+ attenuation factor.	
Limit:	21dBm	
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type	
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFS modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPS$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.	
Test Results:	Pass	

Measurement Data

GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	0.81	21.00	Pass	
Middle	0.98	21.00	Pass	
Highest	1.73	21.00	Pass	
	π/4DQPSK m	ode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	-1.89	21.00	Pass	
Middle	-0.98	21.00	Pass	
Highest	-0.12	21.00	Pass	
	8DPSK mod	le		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest			Pass	
Middle	-0.66	21.00	Pass	
Highest	0.37	21.00	Pass	

Test plot as follows:

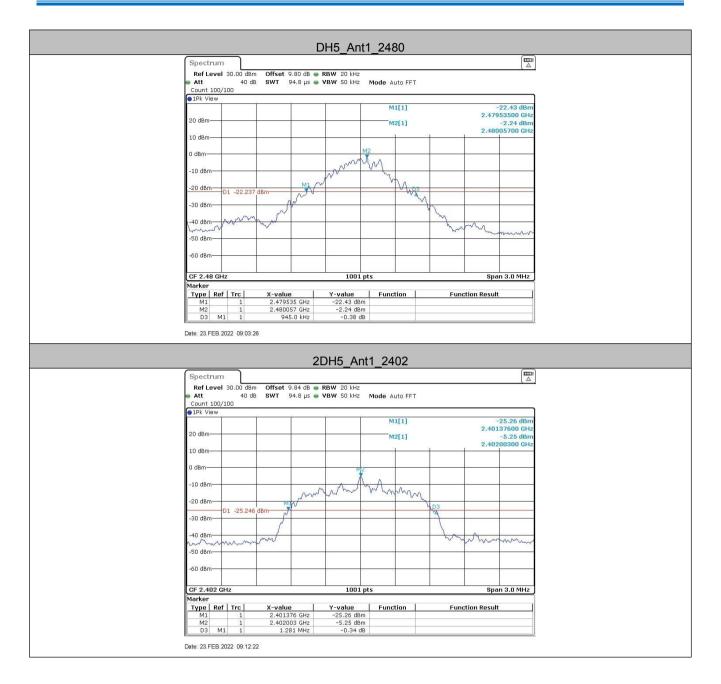
		DH5_An	ILI_2402		
Spectrum					
Ref Level 30.00 dBm	Offset 9.84 dB	RBW 3 MHz	2	(4	
Att 40 dB	SWT 1.3 μs	VBW 10 MHz	Mode Auto FFT		
Count 100/100 Pk View					Г
TLK NOW			M1[1]	0.81 dB	m
				 2.40225570 GH	Iz
20 dBm					1
10 dBm					1
			M1		
0 dBm				 	-
-10 dBm					-
-20 dBm					-
-30 dBm					1
-40 dBm					1
-50 dBm-					
-60 dBm					
CF 2.402 GHz		1001	nts	Span 8.0 MH	
Date: 23.FEB.2022 11:32:07					<u>-</u>
Date: 23.FEB.2022 11:32:07		DH5_An			-
Date: 23.FEB.2022 11:32:07		DH5_An	t1_2441		
Date: 23.FEB.2022 11:32.07	Offset 9.80 dB	DH5_An	t1_2441		-
Date: 23.FEB.2022 11:32.07 Spectrum Ref Level 30.00 dbm Att 40 db Count 100/100	Offset 9.80 dB	DH5_An	t1_2441		-
Date: 23.FEB.2022 11:32.07	Offset 9.80 dB	DH5_An	t1_2441	[]	
Date: 23.FEB.2022 11:32.07 Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 9 1Pk View	Offset 9.80 dB	DH5_An	t1_2441		
Date: 23.FEB.2022 11:32.07 Spectrum Ref Level 30.00 dbm Att 40 db Count 100/100	Offset 9.80 dB	DH5_An	t1_2441	 0.98 dB	
Date: 23.FEB.2022 11:32.07 Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 PIPk View 20 dBm 20 dBm	Offset 9.80 dB	DH5_An	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07 Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 9 1Pk View	Offset 9.80 dB	DH5_An RBW 3 MHz VBW 10 MHz	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07 Ref Level 30.00 dBm Att 40 dB Count 100/100 IPk View 20 dBm 10 dBm	Offset 9.80 dB	DH5_An RBW 3 MHz VBW 10 MHz	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07 Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 PIPk View 20 dBm 20 dBm	Offset 9.80 dB	DH5_An	t1_2441	0.98 dB	
Date: 23,FEB.2022 11:32:07 Spectrum Ref Level 30.00 dbm Att 40 db Count 100/100 ● IPk View 20 dbm 10 dbm 10 dbm 0 dbm 10 dbm	Offset 9.80 dB	DH5_An RBW 3 MHz VBW 10 MHz	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07 Ref Level 30.00 dBm Att 40 dB Count 100/100 P1Pk View 20 dBm 10 dBm	Offset 9.80 dB	DH5_An RBW 3 MHz VBW 10 MHz	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07 Ref Level 30.00 dBm Att 40 dB Count 100/100 IPk View 20 dBm 10 dBm -10 dBm	Offset 9.80 dB	DH5_An RBW 3 MHz VBW 10 MHz	t1_2441	0.98 dB	
Date: 23,FEB.2022 11:32:07 Spectrum Ref Level 30.00 dbm Att 40 db Count 100/100 ● IPk View 20 dbm 10 dbm 10 dbm 0 dbm 10 dbm	Offset 9.80 dB	DH5_An • RBW 3 MHz • VBW 10 MHz	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07	Offset 9.80 dB	DH5_An • RBW 3 MHz • VBW 10 MHz	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07 Ref Level 30.00 dBm Att 40 dB Count 100/100 IPk View 20 dBm 10 dBm -10 dBm	Offset 9.80 dB	DH5_An • RBW 3 MHz • VBW 10 MHz	t1_2441	0.98 dB	
Date: 23,FEB.2022 11:32.07 Ref Level 30.00 dBm Att 40 dB Count 100/100 ID IPk View 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm	Offset 9.80 dB	DH5_An • RBW 3 MHz • VBW 10 MHz	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07	Offset 9.80 dB	DH5_An • RBW 3 MHz • VBW 10 MHz	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07 Ref Level 30.00 dBm Att 40 dB Count 100/100 ● IPk View 20 dBm -10 dBm -20 dBm -40 dBm -40 dBm	Offset 9.80 dB	DH5_An • RBW 3 MHz • VBW 10 MHz	t1_2441	0.98 dB	
Date: 23,FEB.2022 11:32.07 Ref Level 30.00 dBm Att 40 dB Count 100/100 ID IPk View 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm	Offset 9.80 dB	DH5_An • RBW 3 MHz • VBW 10 MHz	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07 Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 PIPk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	Offset 9.80 dB	DH5_An • RBW 3 MHz • VBW 10 MHz	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07 Ref Level 30.00 dBm Att 40 dB Count 100/100 ● IPk View 20 dBm -10 dBm -20 dBm -40 dBm -40 dBm	Offset 9.80 dB	DH5_An • RBW 3 MHz • VBW 10 MHz	t1_2441	0.98 dB	
Date: 23.FEB.2022 11:32.07 Ref Level 30.00 dBm Att 40 dB Count 100/100 IPk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Offset 9.80 dB	DH5_An	t1_2441	0.98 dB 2.44067230 Gł	
Date: 23.FEB.2022 11:32.07 Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 PIPk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	Offset 9.80 dB	DH5_An RBW 3 MHz VBW 10 MHz	t1_2441	0.98 dB	

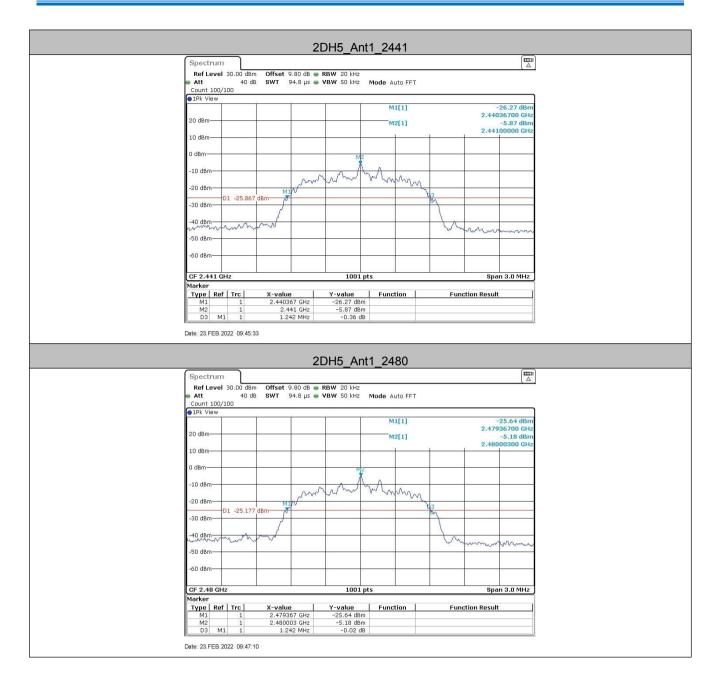
	3[OH5_Ant1_24	80		
Spectrum	٦				
Ref Level 30 ● Att Count 100/100	40 dB SWT 1.3 µs 👄		uto FFT		
●1Pk View					
		MI	[1]	0.37 dBm 2.47963240 GHz	
20 dBm					
10 dBm					
0 dBm		M1 V			
-10 dBm					
~20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
CF 2.48 GHz		1001 pts		Span 8.0 MHz	
Date: 23.FEB.2022	11:36:53				

5.4 20dB Occupy Bandwidth

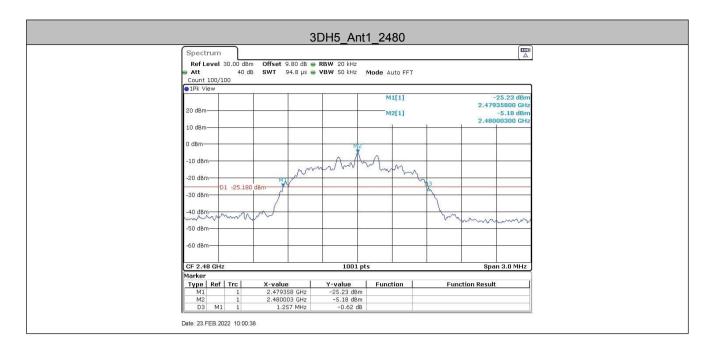

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
	Remark: Offset=Cable loss+ attenuation factor.		
Limit:	NA		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.		
Test Results:	Pass		

Measurement Data


Test shapped	20	0dB Occupy Bandwidth (MH	8DPSK 1.254	
Test channel	GFSK	π/4DQPSK	8DPSK	
Lowest	0.945	1.281	1.254	
Middle	0.942	1.242	1.257	
Highest	0.945	1.242	1.257	


Test plot as follows:



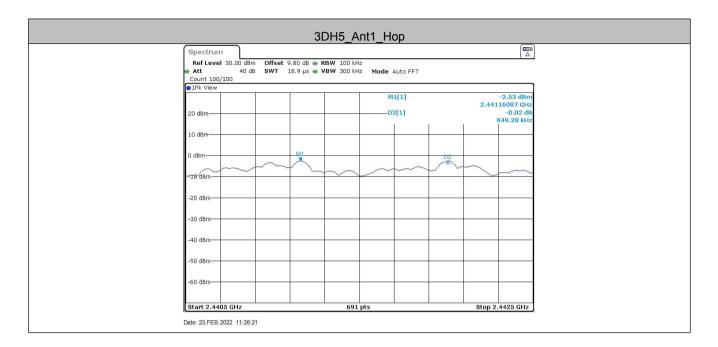


5.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.	
Limit:	2/3 of the 20dB bandwidth	
	Remark: the transmission power is less than 0.125W.	
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type	
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.	
Test Results:	Pass	

Measurement Data

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
DH5	Ant1	Нор	0.838	≥0.630	PASS
2DH5	Ant1	Нор	0.858	≥0.854	PASS
3DH5	Ant1	Нор	0.849	≥0.838	PASS


Mode	20dB bandwidth (MHz) (worse case)	Limit (MHz) (Carrier Frequencies Separation)
GFSK	0.945	0.630
π/4DQPSK	1.281	0.854
8DPSK	1.257	0.838

Test plot as follows:

5.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)						
Test Method:	ANSI C63.10:2013						
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.						
Limit:	At least 15 channels						
Exploratory Test Mode:	hopping transmitting with all kind of modulation and all kind of data type						
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.						
Test Results:	Pass						

Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

Test plot as follows:

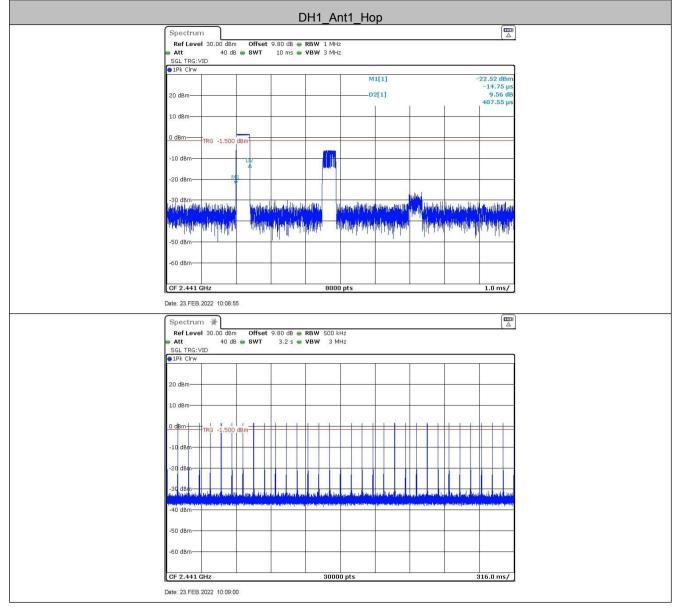
DH5_Ant1_Hop	
Spectrum	
Ref Level 30.00 dBm Offset 9.84 dB ■ RBW 100 kHz ● Att 40 dB SWT 94.8 µs ● VBW 300 kHz Mode Auto FFT	_
PIK View	_
20 dBm-	
10 dBm-	
-10 BPm	
╶⋨⋠ ⋧⋳⋬⋼⋭⋢⋟⋻⋎⋎⋺⋼⋳⋵⋳⋳⋳⋎⋳⋎⋳⋼⋺⋴⋳⋎⋳⋴⋺⋼⋳⋎⋼⋳⋴⋺⋼⋳⋎⋳⋳⋳⋻⋳⋎⋳⋎⋳⋳⋳⋻⋳∊⋳⋳∊⋳∊	
-20 dBm-	1
-90 dBm	
¥40 dBm	Juno
-50 dBm	_
-60 dBm-	
Start 2.4 GHz 691 pts Stop 2.4835 C	Hz
Date: 23.FEB.2022 10.07/36	
2DH5_Ant1_Hop	
Spectrum	
Ref Level 30.00 dBm Offset 9.84 dB ● RBW 100 kHz ● Att 40 dB SWT 94.8 µs ● VBW 300 kHz Mode Auto FFT	
1Pk View	
20 dBm-	
10 dBm	
0 dBm	
My Manual March Ma	
-10 BBX	
-10 4884	
-20 dBm-	
-20 dBm-	lug.
-20 dBm	lux
-20 dBm	luce
-20 dBm	l.
-20 dBm	i Hz

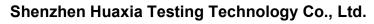
			30	DH5_A	nt1_H	ор			
(*	Spectrum								
	RefLevel 30.00 dBm Offset 9.84 dB ● RBW 100 kHz ● Att 40 dB SWT 94.8 µs ● VBW 300 kHz Mode Auto FFT								
	1Pk View	5 8WT 5	ч.о µз 🖝 🖣	BW 300 KH					
2	0 dBm								
1	.0 dBm								
ſ) dBm								
	MMr Munduly	Whythere	Mulha	MMMM	MALLAN	MALLA	MAMAA	Mah	MM
	10 dBm	1 . 1.				. he self			
-	20 dBm								
-	30 dBm								
	40 dBm								here
	50 dBm								
	60 dBm								
-	oo ubm								
	Start 2.4 GHz			691	nts			Stop 2.	4835 GHz

5.7 Dwell Time

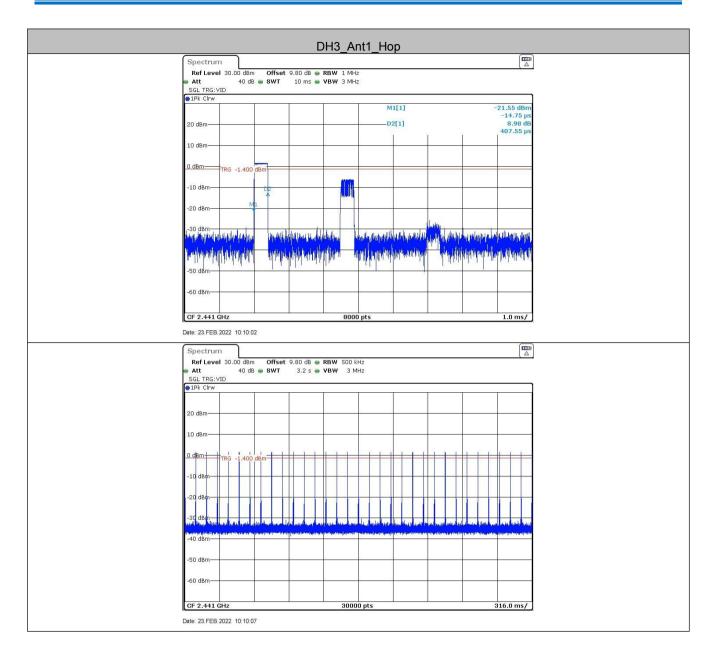
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Crowned Reference Plane
	Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Limit:	0.4 Second
Test Results:	Pass

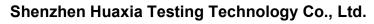
Measurement Data

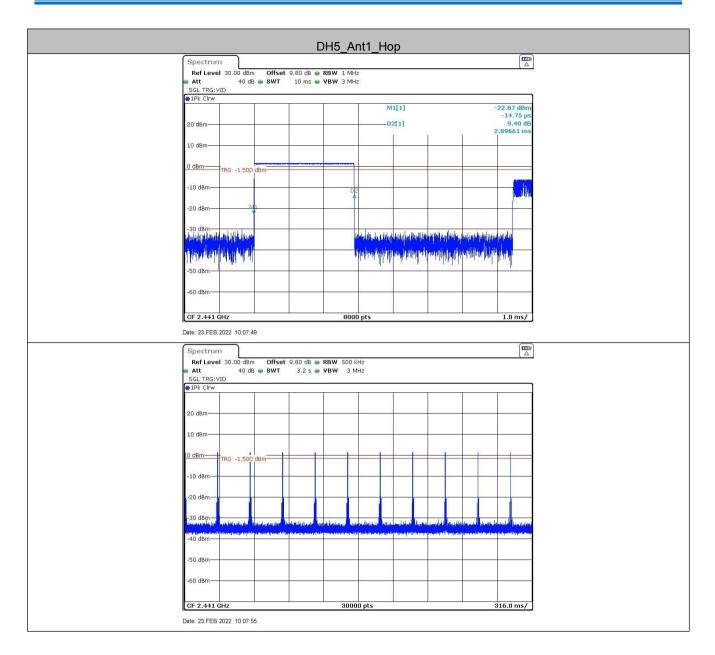

TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.41	320	0.13	≤0.4	PASS
DH3	Ant1	Нор	0.41	320	0.13	≤0.4	PASS
DH5	Ant1	Нор	2.90	110	0.319	≤0.4	PASS
2DH1	Ant1	Нор	0.42	320	0.134	≤0.4	PASS
2DH3	Ant1	Нор	1.66	160	0.266	≤0.4	PASS
2DH5	Ant1	Нор	2.90	110	0.319	≤0.4	PASS
3DH1	Ant1	Нор	0.42	320	0.134	≤0.4	PASS
3DH3	Ant1	Нор	1.66	160	0.266	≤0.4	PASS
3DH5	Ant1	Нор	2.90	110	0.319	<u> </u>	PASS

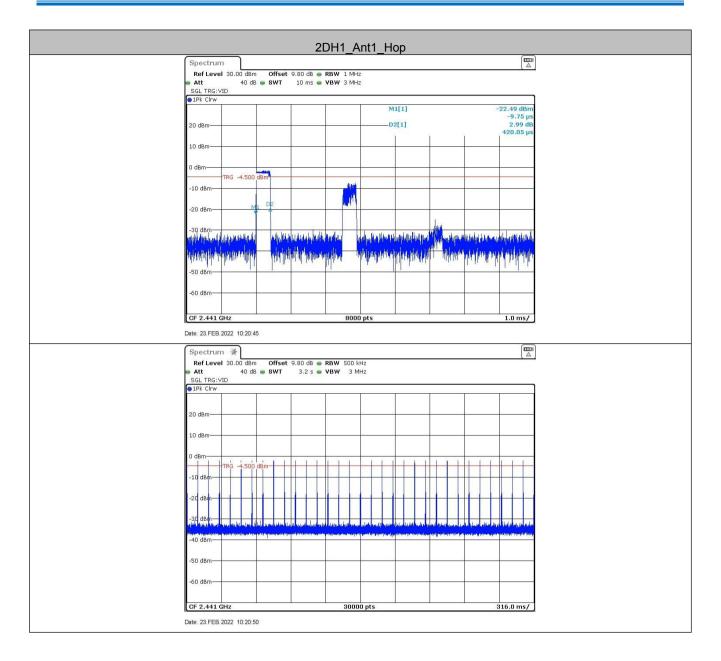

Remark:

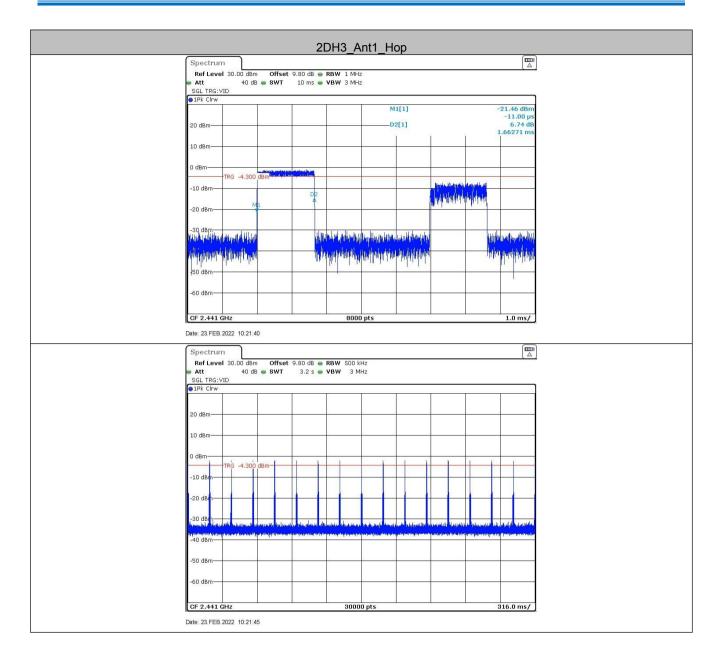
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

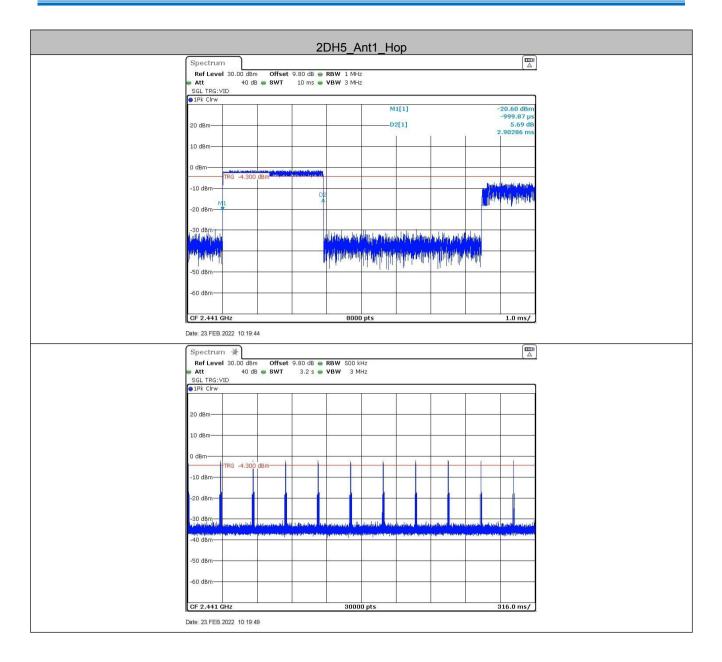


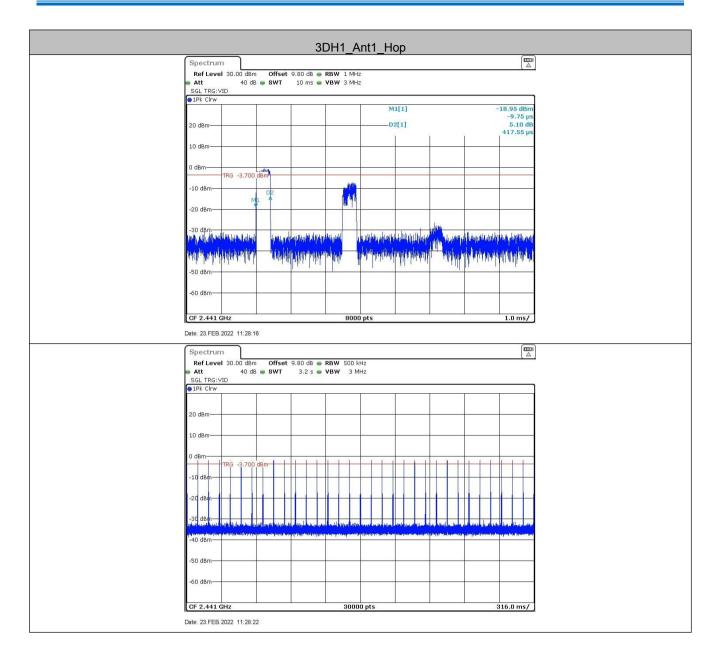

Test plot as follows:

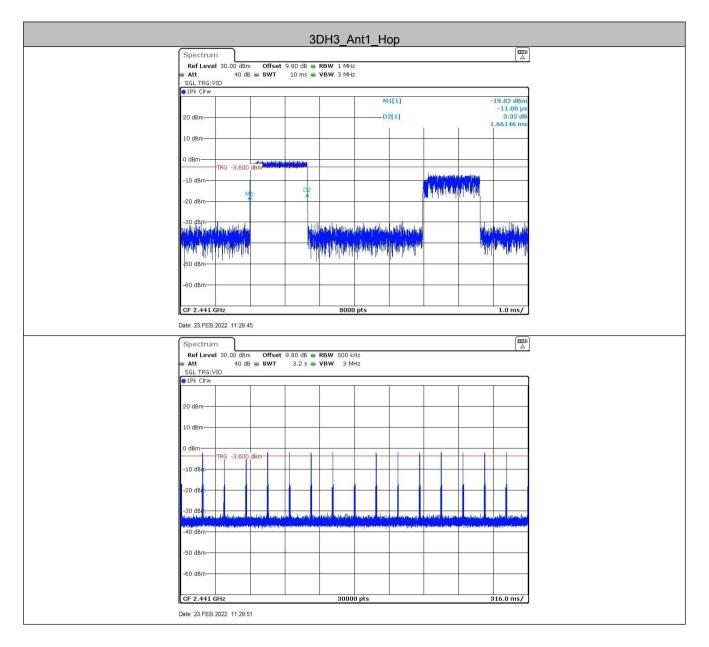


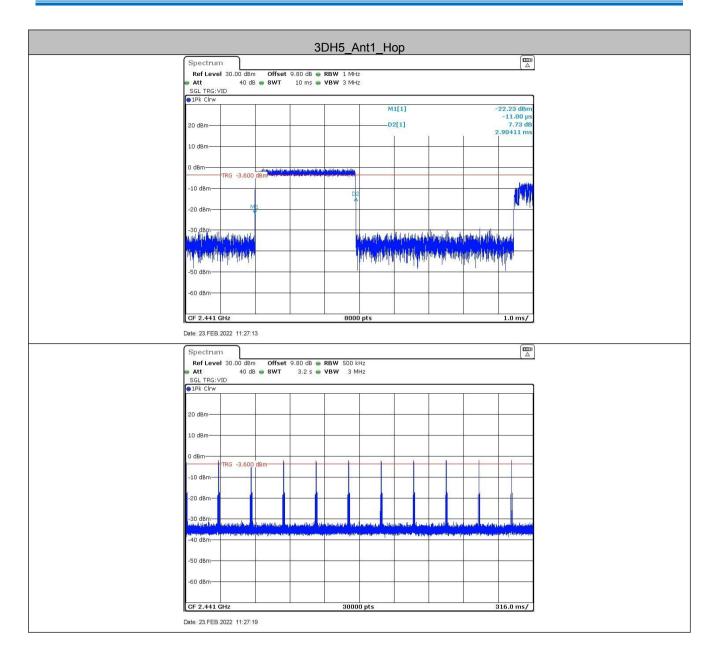












5.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
	Remark: Offset=cable loss+ attenuation factor.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.
Test Results:	Pass

Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.: CQASZ20220200198E-02

Measurement Data

TestMode	Antenna	ChName	Channel	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	0.41	-48.35	≤-19.59	PASS
		High	2480	1.09	-47.39	≤-18.91	PASS
DH5	Ant1	Low	Hop_2402	0.47	-47.84	≤-19.53	PASS
		High	Hop_2480	1.38	-43.34	≤-18.62	PASS
		Low	2402	-2.46	-48.49	≤-22.46	PASS
		High	2480	-2.48	-47.68	≤-22.48	PASS
2DH5	Ant1	Low	Hop_2402	-2.96	-48.59	≤-22.96	PASS
		High	Hop_2480	-2.65	-47.04	≤-22.65	PASS
		Low	2402	-3.26	-48.14	≤-23.26	PASS
		High	2480	-2.35	-47.23	≤-22.35	PASS
3DH5	Ant1	Low	Hop_2402	-3.76	-48.57	≤-23.76	PASS
		High	Hop_2480	-1.69	-45.37	≤-21.69	PASS

Test plot as follows:

			5_Ant1_L					
Spe	ctrum							
	fLevel 20.00 dBm	Offset 9.84 dB 🖷					(•
e Att	t 30 dB nt 300/300	SWT 75.8 μs 🖷	VBW 300 kHz	Mode Auto F	т			
	: View							
				M1[1]		0.10	0.41 dBm	
10 di	Bm-			M2[1]		2.40	21740 GHz 50.54 dBm	
0 dBi	m					2.40	00000 GHz	
							1	
-10 0	dBm			2				
	18m D1 -19.590 d	Bm	-					
100 C								
-30 c	3Bm						1	
-40 c	dBm			8			M	
450.45	Browner M4		month in	Junumunate	M3	a second	12/	
	1000 1000 10 - 90 500	and real range	a la sua da	On north manufactor	Active the wards	and an a chan	40	
-60 c	dBm							
-70 c	1Bm							
	t 2.35 GHz		691 pts	s		Stop :	2.405 GHz	
Mark	er e Ref Trc	X-value	Y-value	Function	Eup	ction Result		
N	41 1	2.402174 GHz	0.41 dBm		, run	enon kesult		
	12 1	2.4 GHz 2.39 GHz	-50.54 dBm -51.19 dBm					
N	43 1 44 1 23.FEB.2022 08:57:50	2.3590072 GHz	-48.35 dBm	ligh 248	0			
Date: 2	14 1	2.3590072 GHz	-48.35 dBm 5_Ant1_H	ligh_248	0			
Date: 2 Spe Re	44 1 23.FEB.2022 08:57:50 ectrum f Level 20.00 dBm	2.3590072 GHz	5_Ant1_H					
Date: 2 Spe Re • Att	44 1 3.FEB 2022 08:57:50 *ctrum f Level 20.00 dBm t 30 dB	2.3590072 GHz	5_Ant1_H					
Spe Re Cou	44 1 23.FEB.2022 08:57:50 ectrum f Level 20.00 dBm	2.3590072 GHz	5_Ant1_H	Mode Auto F				
Date: 2 Date: 2 Re ● Atti ● IPK	44 1 33 FEB 2022 08:57:50 54 Cerum 6 Level 20:00 dBm t 30 dB nt 300/300 View	2.3590072 GHz	5_Ant1_H			2.4	1.09 dBm]
Spe Re Cou	44 1 33 FEB 2022 08:57:50 sctrum	2.3590072 GHz	5_Ant1_H	Mode Auto F		-	1.09 dBm 80010 GHz 50.88 dBm	 _
Date: 2 Date: 2 Re ● Atti ● IPK	44 1 33, FEB, 2022 08:57:50 sctrum	2.3590072 GHz	5_Ant1_H	Mode Auto F M1[1]		-	1.09 dBm 80010 GHz	 !
Spe Re € 0 IPk 10 dl 0 dB	44 1 33.FEB.2022 08:57:50 sctrum	2.3590072 GHz	5_Ant1_H	Mode Auto F M1[1]		-	1.09 dBm 80010 GHz 50.88 dBm	
Spe Re Att Cou 10 d	44 1 33 FEB 2022 08:57:50 sctrum	2.3590072 GHz	5_Ant1_H	Mode Auto F M1[1]		-	1.09 dBm 80010 GHz 50.88 dBm	
Spe Re € 0 IPk 10 dl 0 dB	44 1 33 FEB 2022 08:57:50 sctrum	2.3590072 GHz	5_Ant1_H	Mode Auto F M1[1]		-	1.09 dBm 80010 GHz 50.88 dBm	
Spe Re Att Cou ● 1Pk 10 dl 0 db -10 c -20 c	44 1 33.FEB.2022 08:57:50 33.FEB.2022 08:57:50 33.FEB.2022 08:57:50 50.Bit 30.dB 1 30.dB	2.3590072 GHz	5_Ant1_H	Mode Auto F M1[1]		-	1.09 dBm 80010 GHz 50.88 dBm	
► Date: 2 Date: 2 Re • Att • OPA • 10 d • 19k • 10 d • 19k • 10 d • 2270 • 30 d	44 1 33.FEB.2022 06:57:50 sctrum	2.3590072 GHz	5_Ant1_H	Mode Auto F M1[1]		-	1.09 dBm 80010 GHz 50.88 dBm	
Spe Re Att Cou ● 1Pk 10 dl 0 db -10 c -20 c	44 1 33 FEB 2022 08:57:50 3ctrum 1 f Level 20:00 dBm 30 dB 30 dB 130/300 Wiew Bm 1 IBm 1 IBm 1 IBm 1 IBm 1	2.3590072 GHz	5_Ant1_H RBW 100 kHz yBW 300 kHz	Mode Auto F M1[1]		-	1.09 dBm 80010 GHz 50.88 dBm	
∑pete: 2 Date: 2 Re • Att • 10 d • 19k • 10 d • 10 d • -10 c • -20 c • -30 c • -40 c	44 1 33.FEB.2022 06:57:50 sctrum	2.3590072 GHz	5_Ant1_H RBW 100 kHz yBW 300 kHz	Mode Auto F M1[1]	т т	-	1.09 dBm 80010 GHz 50.88 dBm	
∑ Date: 2 Re • Att • 0 dB • 10 d • 10 d • 10 d • 10 d • 10 d • 40 d • -40 d • -50, 5	44 1 33.FEB.2022 08:57:50 sctrum 1 f Level 20:00 dBm t 30 dB t1 300/300 :View Bm 1 IBm 1 IBm 1 IBm 1 JBm M2	2.3590072 GHz	5_Ant1_H RBW 100 kH2 VBW 300 kH2	Mode Auto F M1[1]	т т	-	1.09 dBm 80010 GHz 50.88 dBm 83500 GHz	
∑ Date: 2 Spe Re Att Cou 0 dB -10 d -10 d -207 -30 d -40 d -40 d -56,6	44 1 33 FEB 2022 08:57:50 Stetrum f Level 20.00 dBm t 30 dB dBm dBm dBm dBm dBm dBm	2.3590072 GHz	5_Ant1_H RBW 100 kH2 VBW 300 kH2	Mode Auto F M1[1]	т т	-	1.09 dBm 80010 GHz 50.88 dBm 83500 GHz	
∑ Date: 2 Re • Att • 0 dB • 10 d • 10 d • 10 d • 10 d • 10 d • 40 d • -40 d • -50, 5	44 1 33 FEB 2022 08:57:50 Stetrum f Level 20.00 dBm t 30 dB dBm dBm dBm dBm dBm dBm	2.3590072 GHz	5_Ant1_H RBW 100 kH2 VBW 300 kH2	Mode Auto F M1[1]	т т	-	1.09 dBm 80010 GHz 50.88 dBm 83500 GHz	
► N Date: 2 Spe Re Att COU ● IPK 10 dl 0 db -10 c -20 c -30 c -40 c -50 c -70 c	44 1 23.FEB.2022 08:57:50 33.FEB.2022 08:57:50 50.TEB.2022 08:57:50 51.TEB.2022 08:57:50 52.TEB.2022 08:57:50 53.TEB.2022 08:57:50 53.0 dB 01 53.0 dB 11 53.0 dB 11 <t< td=""><td>2.3590072 GHz</td><td>5_Ant1_H</td><td>Mode Auto F </td><td>т т</td><td>2.4</td><td>1.09 dBm 80010 GHz 50.88 dBm 83500 GHz</td><td></td></t<>	2.3590072 GHz	5_Ant1_H	Mode Auto F 	т т	2.4	1.09 dBm 80010 GHz 50.88 dBm 83500 GHz	
■ Date: 2 Date: 2 Re Att Cou 0 dB -10 d -20 d -30 d -58,6 -50 d -58,5 -50 d -58,5 -50 d -70 d	44 1 23 FEB 2022 08:57:50 5ctrum f Level 20.00 dBm 30 dB 30 dB 130/300 Wiew Bm JBm J	2.3590072 GHz	5_Ant1_H RBW 100 kH2 VBW 300 kH2	Mode Auto F 	т т	2.4	1.09 dBm 80010 GHz 50.88 dBm 83500 GHz	
Spe Re Att Cou ● IPK 10 dl 0 db -10 c -20 c -30 c -50 c -50 c -50 c -50 c -50 c -70 c	44 1 23 FEB 2022 08:57:50 33 FEB 2022 08:57:50 33 FEB 2022 08:57:50 33 FEB 2022 08:57:50 5 FL 20:0 0 dBm f Level 20.00 dBm 1 300/300 Wiw Bm M1 M1 M1 M1 M2 JBm	2.3590072 GHz	5_Ant1_H RBW 100 kHz VBW 300 kHz VBW 300 kHz 	Mode Auto F	Т 	2.4	1.09 dBm 80010 GHz 50.88 dBm 83500 GHz	
■ Date: 2 Date: 2 Re ■ Att Cour ■ 1Pk 10 dl 0 dB -10 d -207 -30 d -40 d -40 d -50,6 -50,6 -50,6 -70 d Star Mark	44 1 33 FEB 2022 08:57:50 sctrum	2.3590072 GHz	5_Ant1_H RBW 100 kHz VBW 300 kHz 000	Mode Auto F	Т 	2.4	1.09 dBm 80010 GHz 50.88 dBm 83500 GHz	
■ Date: 2 Date: 2 Spe Re Att Cou ● 1Pk 10 db -10 d -207 -30 d -40 d -40 d -56,6 -60 d -70 d Star Mark Typ N N	44 1 23 FEB 2022 08:57:50 33 FEB 2022 08:57:50 33 FEB 2022 08:57:50 33 FEB 2022 08:57:50 5 FL 20:0 0 dBm f Level 20.00 dBm 1 300/300 Wiw Bm M1 M1 M1 M1 M2 JBm	2.3590072 GHz	5_Ant1_H RBW 100 kHz VBW 300 kHz VBW 300 kHz 	Mode Auto F	Т 	2.4	1.09 dBm 80010 GHz 50.88 dBm 83500 GHz	