

Partial FCC Test Report

Report No.: RFBBGM-WTW-P22090842

FCC ID: WIYSLM758A

Test Model: SLM758

Received Date: Sep. 26, 2022

Test Date: Oct. 03, 2022 ~ Oct. 24, 2022

788550 / TW0003

Issued Date: Nov. 18, 2022

Applicant: CASTLES TECHNOLOGY CO., LTD.

- Address: 6F, NO. 207-5, SEC. 3, BEIXIN RD., XINDIAN DISTRICT, NEW TAIPEI CITY 23143, TAIWAN (R. O. C.)
- Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
- Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
- Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan

FCC Registration /

Designation Number:

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report to notify.

Table of Contents

Re	eleas	e Control Record	3
1	Cer	tificate of Conformity	4
2	Sun	nmary of Test Results	5
		Measurement Uncertainty Modification Record	
3	Ger	neral Information	6
	3.2 3.3 3.4	General Description of EUT Description of Test Modes 3.2.1 Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units 3.4.1 Configuration of System under Test General Description of Applied Standards and References	7 8 9 10 10
4	Tes	t Types and Results	.11
		Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments 4.1.3 Test Procedures 4.1.4 Deviation from Test Standard 4.1.5 Test Set Up 4.1.6 EUT Operating Conditions 4.1.7 Test Results Conducted Emission Measurement 4.2.1 Limits of Conducted Emission Measurement 4.2.2 Test Instruments	.11 12 13 14 14 15 16 24 24
	4.3	 4.2.3 Test Procedures	25 25 25 25 25 26
		 4.3.1 Limits of Maximum Output Power Measurement	28 28 28 28 28 28 28
5	Pict	tures of Test Arrangements	30
		A- Band Edge Measurement	
Ap	open	dix – Information of the Testing Laboratories	32

Release Control Record

Issue No.	Description	Date Issued
RFBBGM-WTW-P22090842	Original Release	Nov. 18, 2022

1 Certificate of Conformity

Product:	Smart module
Brand:	CASTLES TECHNOLOGY
Test Model:	SLM758
Sample Status:	Identical Prototype
Applicant:	CASTLES TECHNOLOGY CO., LTD.
Test Date:	Oct. 03, 2022 ~ Oct. 24, 2022
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10-2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Vera Huang

Vera Huang / Specialist

Date: Nov. 18, 2022

Approved by :

Jeremy Lin

, Date: Nov. 18, 2022

Jeremy Lin / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)								
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -8.56 dB at 0.66200 MHz.					
15.247(a)(1) (iii)			Refer to note					
15.247(a)(1) (iii)			Refer to note					
15.247(a)(1)	1. Hopping Channel Separation 2. Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System		Refer to note					
15.247(b) (1)	Maximum Peak Output Power	Pass	Meet the requirement of limit.					
	Occupied Bandwidth Measurement	N/A	Refer to note					
15.205 & 209	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -5.9 dB at 2390.00 MHz.					
15.247(d)	Band Edge Measurement	N/A	Refer to note					
15.247(d)	Antenna Port Emission	N/A	Refer to note					
15.203	Antenna Requirement	N/A	Refer to note					

Note:

- 1. This report is a partial report, and only test items of AC Power Conducted Emission, Maximum Peak Output Power and Radiated Emissions tests were verified and recorded in this report. Other testing data please refer to Sporton lab report no.: FR970101A.
- 2. For 2.4G band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.
- 3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.79 dB
Padiated Emissions up to 1 CHz	30MHz ~ 200MHz	3.86 dB
Radiated Emissions up to 1 GHz	200MHz ~1000MHz	3.87 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
Radiated Emissions above 1 GHZ	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Smart module
Brand	CASTLES TECHNOLOGY
Test Model	SLM758
Status of EUT	Identical Prototype
Power Supply Rating	5.0 Vdc (host equipment)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Transfer Rate	1/2/3 Mbps
Operating Frequency	2402 ~ 2480 MHz
Number of Channel	79
Output Power	6.039 mW
Antenna Type	Dipole antenna with 0.611 dBi gain
Antenna Connector	N/A
Accessory Device	Refer to Note as below
Data Cable Supplied	Refer to Note as below

Note:

- This report is prepared for FCC class II permissive change. This report is issued as a supplementary report of Sporton lab report no.: FR970101A. The differences from the original report are adding an Endproduct (POS Terminal (Brand: CASTLES, Model: S1E2)), changing antenna type & gain, and disable BLE, UNII-2A, UNII-2C function via software. Therefore, only AC Power Conducted Emission, Maximum Peak Output Power, and radiated emissions were verified and recorded in this report. Other testing data please refer to the original Sporton lab report no.: FR970101A.
- 2. The EUT was installed in POS Terminal (Brand: CASTLES, Model: S1E2).
- 3. The POS Terminal contains following accessory devices.

Product	Product Brand		Description
Adapter	CASTLES TECHNOLOGY	1A52-UB52A	I/P: 100-240 Vac, 50-60 Hz, 0.3 A O/P: 5 Vdc, 2 A
Battery	CASTLES TECHNOLOGY	S1E	3.75 Vdc
USB Cable	N/A	N/A	2m shielded cable w/o core

4. Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

5. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or User's Manual.

- 6. BT & WWAN & NFC (FCC ID: WIYS1E2001) technology can transmit at same time.
- 7. WLAN 2.4G & WWAN & NFC (FCC ID: WIYS1E2001) technology can transmit at same time.
- 8. WLAN 5G & WWAN & NFC (FCC ID: WIYS1E2001) technology can transmit at same time.

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configur	е	Applic	able To		Description
Mode	RE≥1G	RE<1G	PLC	Power	Description
-	\checkmark	\checkmark	\checkmark	\checkmark	-
Where	RE≥1G: Radiated	d Emission abo	ve 1 GHz	RE<1G: Ra	adiated Emission below 1 GHz
I	PLC: Power Line	Conducted En	nission	Power: Ma	iximum Output Power
Note:					

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane.

2. For radiated emission (below 1GHz) and power line conducted emission test items chosen the worst maximum power.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

\boxtimes	Following	channel(s) was	(were)	selected for the final test as listed below.
-------------	-----------	----------	--------	--------	--

EUT Configure Mode	EUT Configure Mode Available Channel		Modulation Technology	Modulation Type	Packet Type
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5
	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Radiated Emission Test (Below 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	39	FHSS	8DPSK	3DH5

Power Line Conducted Emission Test:

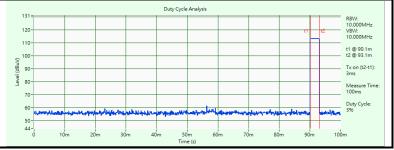
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- \boxtimes Following channel(s) was (were) selected for the final test as listed below.

EUT Configur Mode	e Available Channel	Tested Channel	Modulation Technology	Modulation Type	
-	0 to 78	39	FHSS	8DPSK	3DH5

Maximum Output Power:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.


EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5
-	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

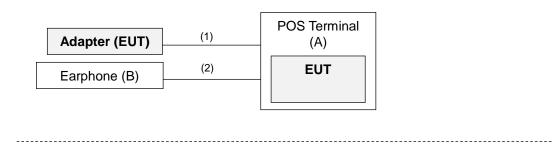
Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G	23 deg. C, 66 % RH	120 Vac, 60 Hz	Titan Hsu
RE<1G	23 deg. C, 66 % RH	120 Vac, 60 Hz	Titan Hsu
PLC	23 deg. C, 66 % RH	120 Vac, 60 Hz	Titan Hsu
Power	25 deg. C, 65 % RH	120 Vac, 60 Hz	Noah Chang

3.3 Duty Cycle of Test Signal

Duty cycle = 3/100 = 0.03, Duty factor = $20 * \log(0.03) = -30.5$

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
А	POS Terminal	CASTLES TECHNOLOGY	S1E2	N/A	N/A
В	Earphone	APPLE	MB77PFEB	N/A	N/A
С	Bluetooth Tester	R&S	СВТ	100980	N/A

Note: Items C acted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	2	Y	0	Provided by client
2.	Audio Cable	1	1.2	N	0	Provided by Lab

3.4.1 Configuration of System under Test

Remote site

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Bluetooth Tester (C)

Test Standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- a. The lower limit shall apply at the transition frequencies.
- b. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- c. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESR3	102579	2022/07/01	2023/06/30
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	2022/04/11	2023/04/10
BILOG Antenna SCHWARZBECK	VULB9168	9168-171	2021/10/29	2022/10/28
HORN Antenna SCHWARZBECK	9120D	209	2021/11/14	2022/11/13
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	2021/11/14	2022/11/13
Loop Antenna TESEQ	HLA 6121	45745	2022/07/27	2023/07/26
Preamplifier Agilent (Below 1GHz)	8447D	2944A10738	2022/07/09	2023/07/08
Preamplifier Agilent (Above 1GHz)	8449B	3008A02465	2022/03/19	2023/03/18
RF Coaxial Cable WOKEN With 5dB PAD	8D-FB	Cable-CH3-01	2022/05/14	2023/05/13
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH3-03 (223653/4)	2022/07/09	2023/07/08
RF signal cable HUBER+SUHNER& EMCI	SUCOFLEX 104&EMC104- SM-SM-8000	Cable-CH3-03 (309224+170907)	2022/07/09	2023/07/08
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
Turn Table Controller BV ADT	SC100	SC93021702	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

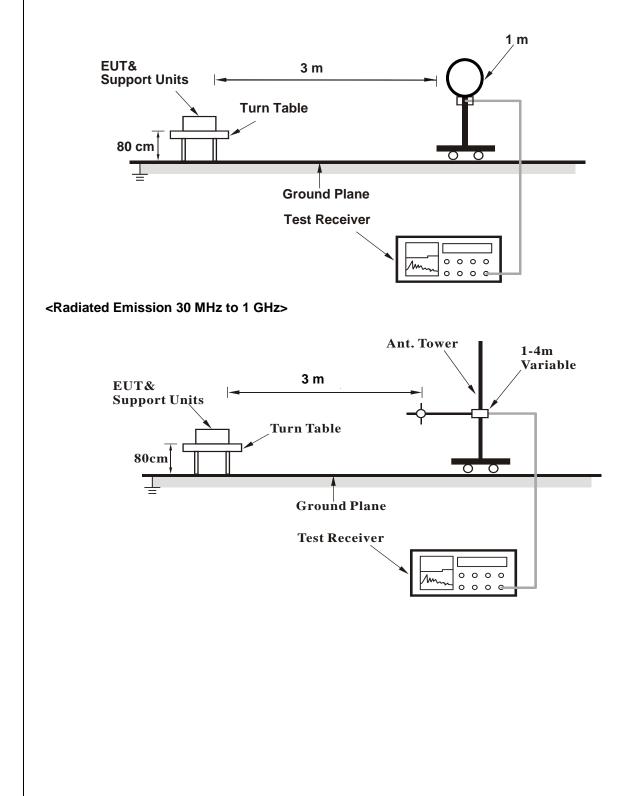
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

For Radiated Emission above 30 MHz

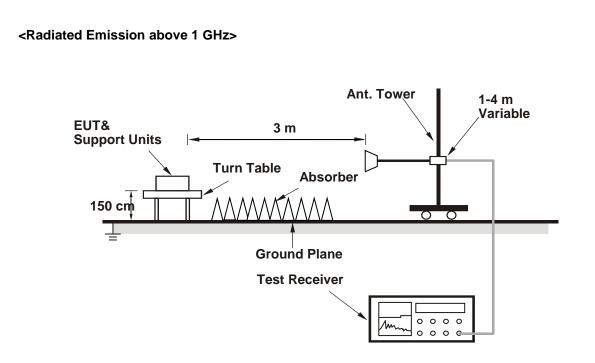
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasipeak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and at frequency above 1 GHz.
- For Fundamental frequency and band edge & harmonic: The average value of fundamental frequency is :average value = peak value + 20*log(Duty cycle) where the duty cycle correction factor is calculated from following formula: 20*Log(Duty cycle) = 20*log (3 ms/100) = -30.5 dB, please refer to the plotted duty (see section 3.3)
- 4. All modes of operation were investigated and the worst-case emissions are reported.



4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Set Up

<Radiated Emission below 30 MHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1 GHz Data:

RF Mode	TX BT_GFSK	Channel	CH 0:2402 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	60.1 PK	74.0	-13.9	1.30 H	161	25.2	34.9
2	2390.00	47.9 AV	54.0	-6.1	1.30 H	161	13.0	34.9
3	*2402.00	101.2 PK			1.30 H	161	66.2	35.0
4	*2402.00	70.7 AV			1.30 H	161	35.7	35.0
5	4804.00	52.2 PK	74.0	-21.8	2.25 H	185	38.5	13.7
6	4804.00	21.7 AV	54.0	-32.3	2.25 H	185	8.0	13.7
	Antenna Polarity & Test Distance : Vertical at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	59.9 PK	74.0	-14.1	1.16 V	285	25.0	34.9
2	2390.00	47.6 AV	54.0	-6.4	1.16 V	285	12.7	34.9
3	*2402.00	97.4 PK			1.16 V	285	62.4	35.0
4	*2402.00	66.9 AV			1.16 V	285	31.9	35.0
5	4804.00	51.4 PK	74.0	-22.6	2.48 V	187	37.7	13.7
6	4804.00	20.9 AV	54.0	-33.1	2.48 V	187	7.2	13.7

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX BT_GFSK	Channel	CH 39:2441 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
	10112 ~ 230112		Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2441.00	103.6 PK			1.24 H	166	68.7	34.9
2	*2441.00	73.1 AV			1.24 H	166	38.2	34.9
3	4882.00	52.3 PK	74.0	-21.7	2.27 H	186	38.7	13.6
4	4882.00	21.8 AV	54.0	-32.2	2.27 H	186	8.2	13.6
	Antenna Polarity & Test Distance : Vertical at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2441.00	98.5 PK			1.12 V	286	63.6	34.9
2	*2441.00	68.0 AV			1.12 V	286	33.1	34.9
3	4882.00	51.7 PK	74.0	-22.3	2.48 V	185	38.1	13.6
4	4882.00	21.2 AV	54.0	-32.8	2.48 V	185	7.6	13.6

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX BT_GFSK	Channel	CH 78:2480 MHz
	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Range			Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2480.00	99.8 PK			1.33 H	165	65.0	34.8		
2	*2480.00	69.3 AV			1.33 H	165	34.5	34.8		
3	2483.50	44.9 PK	74.0	-29.1	1.33 H	165	41.6	3.3		
4	2483.50	14.4 AV	54.0	-39.6	1.33 H	165	11.1	3.3		
5	4960.00	51.7 PK	74.0	-22.3	2.27 H	186	38.6	13.1		
6	4960.00	21.2 AV	54.0	-32.8	2.27 H	186	8.1	13.1		
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2480.00	92.7 PK			1.05 V	284	57.9	34.8		
2	*2480.00	62.2 AV			1.05 V	284	27.4	34.8		
3	2483.50	44.1 PK	74.0	-29.9	1.05 V	284	40.8	3.3		
4	2483.50	13.6 AV	54.0	-40.4	1.05 V	284	10.3	3.3		
5	4960.00	51.1 PK	74.0	-22.9	2.49 V	187	38.0	13.1		
6	4960.00	20.6 AV	54.0	-33.4	2.49 V	187	7.5	13.1		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX BT_8DPSK	Channel	CH 0:2402 MHz
	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Range	19112 ~ 239112		Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	60.3 PK	74.0	-13.7	1.34 H	147	25.4	34.9		
2	2390.00	48.1 AV	54.0	-5.9	1.34 H	147	13.2	34.9		
3	*2402.00	101.1 PK			1.34 H	147	66.1	35.0		
4	*2402.00	70.6 AV			1.34 H	147	35.6	35.0		
5	4804.00	52.2 PK	74.0	-21.8	2.18 H	189	38.5	13.7		
6	4804.00	21.7 AV	54.0	-32.3	2.18 H	189	8.0	13.7		
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	59.9 PK	74.0	-14.1	1.17 V	285	25.0	34.9		
2	2390.00	47.7 AV	54.0	-6.3	1.17 V	285	12.8	34.9		
3	*2402.00	96.6 PK			1.17 V	285	61.6	35.0		
4	*2402.00	66.1 AV			1.17 V	285	31.1	35.0		
5	4804.00	51.5 PK	74.0	-22.5	2.58 V	192	37.8	13.7		
6	4804.00	21.0 AV	54.0	-33.0	2.58 V	192	7.3	13.7		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX BT_8DPSK	Channel	CH 39:2441 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
	10112 ~ 230112		Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2441.00	103.7 PK			1.38 H	167	68.8	34.9		
2	*2441.00	73.2 AV			1.38 H	167	38.3	34.9		
3	4882.00	52.4 PK	74.0	-21.6	2.21 H	182	38.8	13.6		
4	4882.00	21.9 AV	54.0	-32.1	2.21 H	182	8.3	13.6		
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2441.00	98.2 PK			1.25 V	282	63.3	34.9		
2	*2441.00	67.7 AV			1.25 V	282	32.8	34.9		
3	4882.00	51.6 PK	74.0	-22.4	2.49 V	189	38.0	13.6		
4	4882.00	21.1 AV	54.0	-32.9	2.49 V	189	7.5	13.6		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

RF Mode	TX BT_8DPSK	Channel	CH 78:2480 MHz
	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Range	19112 ~ 239112		Average (AV)

Antenna Polarity & Test Distance : Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
*2480.00	99.1 PK			1.32 H	151	64.3	34.8		
*2480.00	68.6 AV			1.32 H	151	33.8	34.8		
2483.50	45.2 PK	74.0	-28.8	1.32 H	151	41.9	3.3		
2483.50	14.7 AV	54.0	-39.3	1.32 H	151	11.4	3.3		
4960.00	51.7 PK	74.0	-22.3	2.25 H	186	38.6	13.1		
4960.00	21.2 AV	54.0	-32.8	2.25 H	186	8.1	13.1		
	An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m				
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
*2480.00	91.5 PK			1.16 V	282	56.7	34.8		
*2480.00	61.0 AV			1.16 V	282	26.2	34.8		
2483.50	44.5 PK	74.0	-29.5	1.16 V	282	41.2	3.3		
2483.50	14.0 AV	54.0	-40.0	1.16 V	282	10.7	3.3		
4960.00	51.0 PK	74.0	-23.0	2.55 V	187	37.9	13.1		
4960.00	20.5 AV	54.0	-33.5	2.55 V	187	7.4	13.1		
	(MHz) *2480.00 2483.50 2483.50 4960.00 4960.00 Frequency (MHz) *2480.00 2483.50 2483.50 4960.00	Frequency (MHz) Emission Level (dBuV/m) *2480.00 99.1 PK *2480.00 68.6 AV 2483.50 45.2 PK 2483.50 14.7 AV 4960.00 51.7 PK 4960.00 21.2 AV An Frequency (MHz) *2480.00 91.5 PK *2480.00 61.0 AV 2483.50 14.0 AV 2483.50 14.0 AV	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) *2480.00 99.1 PK	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) *2480.00 99.1 PK	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (m) *2480.00 99.1 PK 1.32 H *2480.00 68.6 AV 1.32 H *2480.00 68.6 AV 1.32 H 2483.50 45.2 PK 74.0 -28.8 2483.50 14.7 AV 54.0 -39.3 1.32 H 4960.00 51.7 PK 74.0 -22.3 2.25 H 4960.00 21.2 AV 54.0 -32.8 2.25 H 4960.00 21.2 AV 54.0 -32.8 2.25 H Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (m) *2480.00 91.5 PK 1.16 V 1.16 V *2480.00 61.0 AV 1.16 V 1.16 V *2483.50 14.0 AV 54.0 -40.0 1.16 V 2483.50 14.0 AV 54.0 -40.0 1.16 V 2483.50 14.0 AV 54.0 -40.0 1.16 V 4960.00 51.0 PK	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) Table Angle (m) *2480.00 99.1 PK 1.32 H 151 *2480.00 68.6 AV 1.32 H 151 2483.50 45.2 PK 74.0 -28.8 1.32 H 151 2483.50 14.7 AV 54.0 -39.3 1.32 H 151 4960.00 51.7 PK 74.0 -22.3 2.25 H 186 4960.00 21.2 AV 54.0 -32.8 2.25 H 186 Antenna Polarity & Test Distance : Vertical at 3 m Frequency (MHz) Emission Level (dBuV/m) Margin (dB) Antenna Height (dB) Table (m) *2480.00 91.5 PK I.16 V 282 *2480.00 61.0 AV I.16 V 282 *2483.50 14.0 AV 54.0 -29.5 1.16 V 282 2483.50 14.0 AV 54.0 -29.5 1.16 V 282 2483.50 14.0 AV 54.0 -23.0	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) Table Angle (m) Raw Value (Degree) *2480.00 99.1 PK 1.32 H 151 64.3 *2480.00 68.6 AV 1.32 H 151 64.3 *2483.50 45.2 PK 74.0 -28.8 1.32 H 151 41.9 2483.50 14.7 AV 54.0 -39.3 1.32 H 151 11.4 4960.00 51.7 PK 74.0 -22.3 2.25 H 186 38.6 4960.00 21.2 AV 54.0 -32.8 2.25 H 186 8.1 Frequency (MHz) Emission Level (dBuV/m) Margin (dB) Antenna Height (dB) Table Raw Value *2480.00 91.5 PK Imit (dBuV/m) Margin (dB) Antenna Height (dB) Table Raw Value *2483.50 44.5 PK 74.0 -29.5 1.16 V 282 26.7 *2480.00 61.0 AV 54.0 -40.0 1.16 V 282 26.7		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

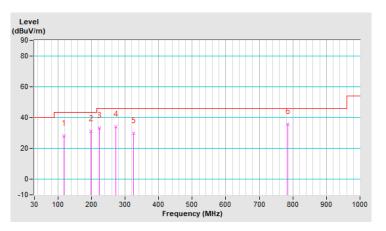
3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

Below 1	GHz	Worst-Case	Data:

RF Mode	TX BT_8DPSK	Channel	CH 39:2441 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	117.30	28.0 QP	43.5	-15.5	1.00 H	16	39.1	-11.1			
2	198.78	31.0 QP	43.5	-12.5	1.50 H	118	42.5	-11.5			
3	224.00	33.3 QP	46.0	-12.7	1.50 H	94	44.5	-11.2			
4	272.50	33.9 QP	46.0	-12.1	1.00 H	157	42.1	-8.2			
5	324.88	29.8 QP	46.0	-16.2	1.00 H	250	36.6	-6.8			
6	784.66	35.9 QP	46.0	-10.1	1.50 H	288	33.5	2.4			


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

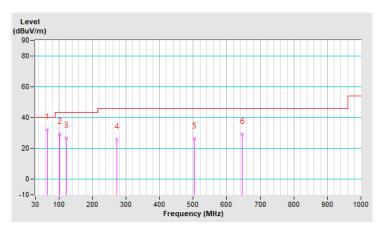
3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	TX BT_8DPSK	Channel	CH 39:2441 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	64.92	32.4 QP	40.0	-7.6	1.49 V	49	42.5	-10.1		
2	101.78	29.4 QP	43.5	-14.1	1.49 V	5	42.4	-13.0		
3	121.18	26.8 QP	43.5	-16.7	1.00 V	297	37.6	-10.8		
4	272.50	25.9 QP	46.0	-20.1	1.49 V	136	34.1	-8.2		
5	503.36	26.3 QP	46.0	-19.7	1.00 V	187	30.4	-4.1		
6	646.92	29.5 QP	46.0	-16.5	1.00 V	183	30.3	-0.8		


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)						
Frequency (MHz)	Quasi-Peak	Average					
0.15 - 0.5	66 - 56	56 - 46					
0.50 - 5.0	56	46					
5.0 - 30.0	60	50					

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

4.2.2 Test Instruments

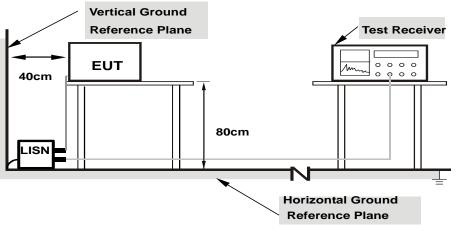
Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 03, 2021	Dec. 02, 2022
RF signal cable Woken	5D-FB	Cable-cond1-01	Jan. 15, 2022	Jan. 14, 2023
LISN/AMN ROHDE & SCHWARZ (EUT)	ENV216	101826	Mar. 14, 2022	Mar. 13, 2023
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Sep. 12, 2022	Sep. 11, 2023
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1 (Conduction 1).

3. The VCCI Site Registration No. is C-12040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz.

4.2.4 Deviation from Test Standard

No deviation.

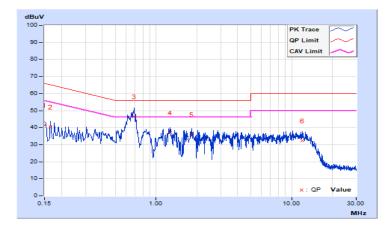
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Set the EUT under transmission condition continuously at specific channel frequency.

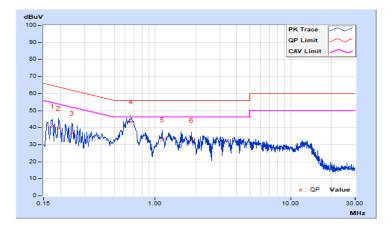

4.2.7 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	23 °C, 66% RH
Tested by	Titan Hsu		

	Phase Of Power : Line (L)											
	Frequency	Correction	Readin	Reading Value		Emission Level		Limit		rgin		
No		Factor	(dB	uV)	(dBuV)		(dBuV)		(dB)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.15000	9.68	31.66	17.17	41.34	26.85	66.00	56.00	-24.66	-29.15		
2	0.16600	9.69	30.70	17.09	40.39	26.78	65.16	55.16	-24.77	-28.38		
3	0.68595	9.82	36.54	26.93	46.36	36.75	56.00	46.00	-9.64	-9.25		
4	1.26200	9.86	27.25	17.65	37.11	27.51	56.00	46.00	-18.89	-18.49		
5	1.82200	9.89	26.29	16.36	36.18	26.25	56.00	46.00	-19.82	-19.75		
6	12.09000	10.08	22.10	12.12	32.18	22.20	60.00	50.00	-27.82	-27.80		

Remarks:

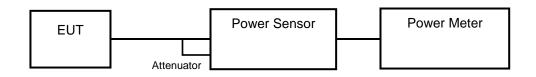
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range		Detector Function &	Quasi-Peak (QP) / Average
	150kHz ~ 30MHz	Resolution Bandwidth	(AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	23 °C, 66% RH
Tested by	Titan Hsu		

	Phase Of Power : Neutral (N)											
	Frequency	Correction	Readin	Reading Value		Emission Level		Limit		rgin		
No		Factor	(dB	(dBuV)		(dBuV)		(dBuV)		(dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.17400	9.70	31.03	18.02	40.73	27.72	64.77	54.77	-24.04	-27.05		
2	0.19400	9.72	29.91	17.97	39.63	27.69	63.86	53.86	-24.23	-26.17		
3	0.24200	9.74	27.12	16.63	36.86	26.37	62.03	52.03	-25.17	-25.66		
4	0.66200	9.83	33.58	27.61	43.41	37.44	56.00	46.00	-12.59	-8.56		
5	1.12600	9.87	23.10	17.07	32.97	26.94	56.00	46.00	-23.03	-19.06		
6	1.85000	9.91	22.87	16.79	32.78	26.70	56.00	46.00	-23.22	-19.30		

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value


4.3 Maximum Output Power

4.3.1 Limits of Maximum Output Power Measurement

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels: 1 watt.

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

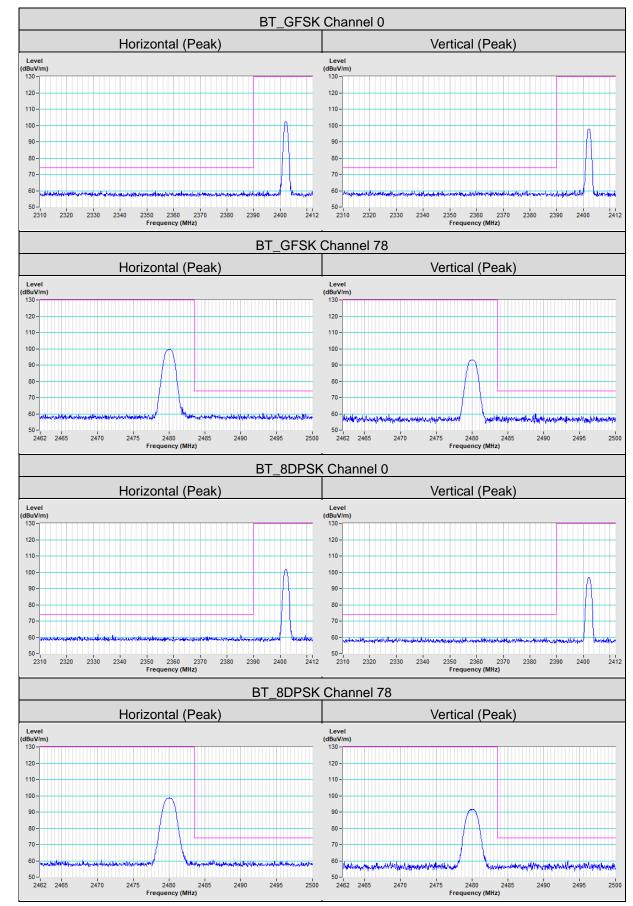
4.3.7 Test Results

<GFSK>

Channel		Peak Power		Average Power		Power Limit	Pass / Fail	
Channel	Freq. (MHz)	(mW)	(dBm)	(mW)	(dBm)	(mW)	rass/rall	
0	2402	5.047	7.03	4.831	6.84	125 / 1000 Note	Pass	
39	2441	5.534	7.43	5.383	7.31	125 / 1000 Note	Pass	
78	2480	4.198	6.23	4.036	6.06	125 / 1000 Note	Pass	

Note: RF Output Power limit depends on the operating channel numbers, please refer to section 4.3 of the results.

<8DPSK>


Channel		Peak	Power	Average Power		Power Limit	Deco / Foil	
Channel	Freq. (MHz)	(mW)	(dBm)	(mW)	(dBm)	(mW)	Pass / Fail	
0	2402	5.433	7.35	2.723	4.35	125 / 1000 Note	Pass	
39	2441	6.039	7.81	2.992	4.76	125 / 1000 Note	Pass	
78	2480	5.346	7.28	2.698	4.31	125 / 1000 Note	Pass	

Note: RF Output Power limit depends on the operating channel numbers, please refer to section 4.3 of the results.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Annex A- Band Edge Measurement

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---