

FCC Test Report

Report No.: RFBBGM-WTW-P21120093-8

FCC ID: WIYS1F2MOB001

Model: SATURN1000

Received Date: Dec. 24, 2021

Test Date: Feb. 26 ~ Mar. 02, 2022

Issued Date: Mar. 17, 2022

Applicant: CASTLES TECHNOLOGY CO., LTD.

- Address: 6F, NO. 207-5, SEC. 3, BEIXIN RD., XINDIAN DISTRICT, NEW TAIPEI CITY 23143, TAIWAN (R. O. C.)
- **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
- Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
- **Test Location:** No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan

FCC Registration /

Designation Number: 788550 / TW0003

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Rele	eas	e Control Record	3
1	C	Certificate of Conformity	4
2	S	Summary of Test Results	5
2.		Measurement Uncertainty	
2.		Modification Record	
3	C	General Information	6
3.		General Description of EUT	
3.		Description of Test Modes	7
	2.1	······································	
3.		Description of Support Units	
	3.1		
3.		General Description of Applied Standards	
4	٦	est Types and Results	.11
4.		Radiated Emission Measurement	
		Limits of Radiated Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Set Up	
		EUT Operating Conditions Test Results	
4.		Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
4.	2.7	Test Results	27
4.	-	Frequency Stability	
		Limits of Frequency Stability Measurement	
		Test Setup	
		Test Instruments	
		Deviation from Test Standard	
		EUT Operating Conditions	
4.		Test Result	
		Limits of 20dB Bandwidth Measurement	
		Test Setup	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		EUT Operating Conditions	
		Test Results	
5	F	Pictures of Test Arrangements	36
-		lix – Information of the Testing Laboratories	
Ahb		an - mormation of the resulty Laboratones	51

		BUREAU VERITAS
	Release Control Record	
Issue No.	Description	Date Issued
RFBBGM-WTW-P21120093-8	Original release	Mar. 17, 2022

			VERITAS
1	Certificate of Co	onformity	
	Product:	POS Terminal	
	Brand:	CASTLES TECHNOLOGY	
	Model:	SATURN1000	
	Sample Status:	Identical Prototype	
	Applicant:	CASTLES TECHNOLOGY CO., LTD.	
	Test Date:	Feb. 26 ~ Mar. 02, 2022	
	Standards:	47 CFR FCC Part 15, Subpart C (Section 15.225)	
		47 CFR FCC Part 15, Subpart C (Section 15.215)	
		ANSI C63.10:2013	

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Pettie Chen

Pettie Chen / Senior Specialist

Date:

Mar. 17, 2022

Approved by :

Jeremy Lin , Date:

Mar. 17, 2022

Jeremy Lin / Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Subpa	rt C (Section	15.225, 15.215)
FCC Clause	Test Item	Result	Remarks
15.207	Conducted emission test	Pass	Meet the requirement of limit. Minimum passing margin is -10.96dB at 13.56200MHz.
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	Pass	Meet the requirement of limit. Minimum passing margin is -40.58dB at 13.56MHz.
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	Pass	Meet the requirement of limit.
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	Pass	Meet the requirement of limit.
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	Pass	Meet the requirement of limit. Minimum passing margin is -8.32dB at 195.90MHz.
15.225 (e)	The frequency tolerance	Pass	Meet the requirement of limit.
15.215 (c)	20dB Bandwidth	Pass	Meet the requirement of limit.

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.79 dB
	9kHz ~ 30MHz	3.04 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	3.63 dB
	200MHz ~1000MHz	3.64 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	POS Terminal
Brand	CASTLES TECHNOLOGY
Model	SATURN1000
Sample Status	Identical Prototype
Dower Supply Peting	5Vdc (Adapter)
Power Supply Rating	3.65 or 3.70Vdc (Battery)
Modulation Type	ASK
Operating Frequency	13.56MHz
Data Rate	Type A: 106 kbit/s Type B: 106 kbit/s Type F: 212/424 kbit/s
Field Strength	43.42dBuV/m (QP) (30m)
Antenna Type	Loop antenna
Antenna Connector	NA
Accessory Device	Refer to note
Cable Supplied	USB Cable (Brand: HOMESHUN INTERNATIONAL CO., LTD., Model: FB02725QAB042206, 0.95m shielded)

Note:

1. The battery and adapter information of EUT is listed as below.

Battery 1 (Support unit)	
Brand	CASTLES TECHNOLOGY
Model	SATURN1000
Rating	3.65Vdc, 5840mAh

Battery 2 (Support unit)	
Brand	CASTLES TECHNOLOGY
Model	SATURN1000
Rating	3.7Vdc, 5840mAh

Adapter 1 (Support unit)	
Brand	LUCENT TRANS
Model	1A52-UB52A
Input Power	100-240 Vac; 50/60 Hz; 0.3 A
Output Power	5Vdc; 2A

Adapter 2 (Support unit)	
Brand	LUCENT TRANS
Model	1A52-SR52A
Input Power	100-240 Vac; 50/60 Hz; 0.3 A
Output Power	5Vdc; 2A
Power Cord	1.5m

- 2. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.
- 3. The EUT contains certified smart module with FCC ID: WIYSLM500QA.

3.2 Description of Test Modes

1 channel is provided to this EUT

Channel	Freq. (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure			able to			Description
Mode	RE	PLC	FS	EB		Description
A	√	√	√	√	Power from adapter	1
В	\checkmark		_	-	Power from adapter	
/here RE: R	Radiated Emissio	on		PLC:	Power Line Conducted B	
FS: F	requency Stabil	ity		EB: 20	0dB Bandwidth measure	ement
. The EUT had b final test. . "-": Means no e	een pre-tested	on Type A, Type			ase was found when pos e was found when data	sitioned on Z-plane. rate was Type A and chosen fo
adiated Emis	sion below 3	<u>80MHz Test:</u>				
between a	available mo	dulations, da	ita rates and a	antenna po		ssible combinations enna diversity architectur
EUT Config	. ,	l í	ole Channel		ested Channel	Modulation Type
A		, wandb	1		1	ASK
		•				
between a	available mo	dulations, da	ita rates and a	antenna po		ssible combinations enna diversity architectur
	••••••(•)					
EUT Config	. ,	1 <u>, , , , , , , , , , , , , , , , , , ,</u>	ole Channel		ested Channel	Modulation Type
A, I ower Line Co	ure Mode B onducted Em has been co	Availab ission Test: onducted to c	ble Channel 1 determine the	worst-cas	e mode from all pos	ASK ssible combinations
A, I ower Line Co Pre-Scan between a	ure Mode B onducted Em has been co available moo channel(s) v	Availab ission Test: onducted to c dulations, da vas (were) so	ble Channel 1 determine the ata rates and a	worst-cas antenna pc e final test	e mode from all pos	ASK
A, I ower Line Co Pre-Scan between a Following	ure Mode B onducted Em has been co available moo channel(s) v ure Mode	Availab ission Test: onducted to c dulations, da vas (were) so	determine the ata rates and a elected for the	worst-cas antenna pc e final test	e mode from all pos orts (if EUT with ante as listed below.	ASK ssible combinations enna diversity architectur
A, I ower Line Co Pre-Scan between a Following EUT Config A, I requency Sta Pre-Scan between a	ure Mode B onducted Em has been co available mod channel(s) v ure Mode B bility: has been co available mod channel(s) v ure Mode	Availab	determine the ata rates and a elected for the ble Channel 1 determine the ata rates and a	worst-cas antenna po e final test worst-cas antenna po e final test	e mode from all pos orts (if EUT with ante as listed below. <u>rested Channel</u> 1	ASK Ssible combinations enna diversity architectur Modulation Type
A, I ower Line Co Pre-Scan between a Following EUT Config A, I requency Sta Pre-Scan between a Following EUT Config A	ure Mode B onducted Em has been co available mod channel(s) v ure Mode bility: has been co available mod channel(s) v ure Mode	Availab	determine the ta rates and a elected for the ble Channel 1 determine the ta rates and a elected for the ble Channel	worst-cas antenna po e final test worst-cas antenna po e final test	e mode from all pos orts (if EUT with ante as listed below. <u>rested Channel</u> 1 e mode from all pos orts (if EUT with ante as listed below. <u>rested Channel</u>	ASK ASK ASK ASK Modulation Type ASK ASK ASK ASK ASK ASK
A, I ower Line Co Pre-Scan between a Following <u>EUT Config</u> A, I requency Sta Pre-Scan between a Following <u>EUT Config</u> A OdB Bandwid Pre-Scan between a	ure Mode B onducted Em has been co available mode channel(s) v ure Mode bility: has been co available mode th: has been co available mode	Availab	determine the ata rates and a elected for the ble Channel 1 determine the ata rates and a elected for the ble Channel 1 determine the ata rates and a	worst-cas antenna po e final test worst-cas antenna po e final test final test	e mode from all pos orts (if EUT with ante as listed below. <u>The sted Channel</u> 1 e mode from all pos orts (if EUT with ante as listed below. <u>The sted Channel</u> 1 e mode from all pos	ASK ASK ASK ASK Modulation Type ASK ASK ASK ASK ASK ASK
A, I ower Line Co Detween a Following EUT Config A, I requency Sta Pre-Scan between a Following EUT Config A OdB Bandwid Pre-Scan between a	ure Mode B nducted Em has been co available mod channel(s) v ure Mode B ability: has been co available mod channel(s) v ure Mode	Availab	determine the ata rates and a elected for the ble Channel 1 determine the ata rates and a elected for the ble Channel 1 determine the ata rates and a	worst-case antenna po e final test worst-case antenna po e final test T worst-case antenna po e final test	e mode from all pos orts (if EUT with ante as listed below. <u>ested Channel</u> 1 e mode from all pos orts (if EUT with ante as listed below. <u>ested Channel</u> 1 e mode from all pos orts (if EUT with ante	ASK ASK ASK ASK ASK ASK ASK ASK ASK ASK

Test Condition:

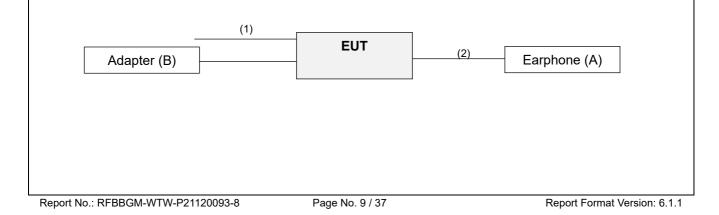
Applicable to	Environmental Conditions	Input Power	Tested by
RE	23 deg. C, 68% RH	120Vac, 60Hz	Edison Lee
PLC	25 deg. C, 75% RH	120Vac, 60Hz	Rex Wang
FS	23 deg. C, 66% RH	120Vac, 60Hz	Edison Lee
BW	23 deg. C, 68% RH	120Vac, 60Hz	Edison Lee

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Earphone	APPLE	MB77PFEB	NA	NA	-
P	B. Adapter	LUCENT TRANS	1A52-UB52A	NA	NA	For Test Mode A
D.		LUCENT TRANS	1A52-SR52A	NA	NA	For Test Mode B

Note:


1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB cable	1	0.95	Y	0	Provided by client
2.	Audio cable	1	1.5	Y	0	-

3.3.1 Configuration of System under Test

Test Mode A

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225) FCC Part 15, Subpart C (15.215) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in \S 15.209.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver KEYSIGHT	N9038A	MY55420137	Apr. 09, 2021	Apr. 08, 2022
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100039	Jun. 10, 2021	Jun. 09, 2022
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	Oct. 28, 2021	Oct. 27, 2022
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-1169	Nov. 14, 2021	Nov. 13, 2022
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Oct. 26, 2021	Oct. 25, 2022
Preamplifier Agilent (Below 1GHz)	8447D	2944A10638	Jun. 05, 2021	Jun. 04, 2022
Preamplifier Agilent (Above 1GHz)	8449B	3008A01963	Jul. 24, 2021	Jul. 23, 2022
RF signal cable HUBER+SUHNER&EMCI	SUCOFLEX 104 & EMC104-SM-SM80 00	CABLE-CH9-02 (248780+171006)	Jan. 15, 2022	Jan. 14, 2023
RF signal cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(250795/4)	Jan. 15, 2022	Jan. 14, 2023
RF signal cable Woken	8D-FB	Cable-CH9-01	Jun. 05, 2021	Jun. 04, 2022
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower &Turn BV ADT	AT100	AT93021705	NA	NA
Turn Table BV ADT	TT100	TT93021705	NA	NA
Turn Table Controller BV ADT	SC100	SC93021705	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 9.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

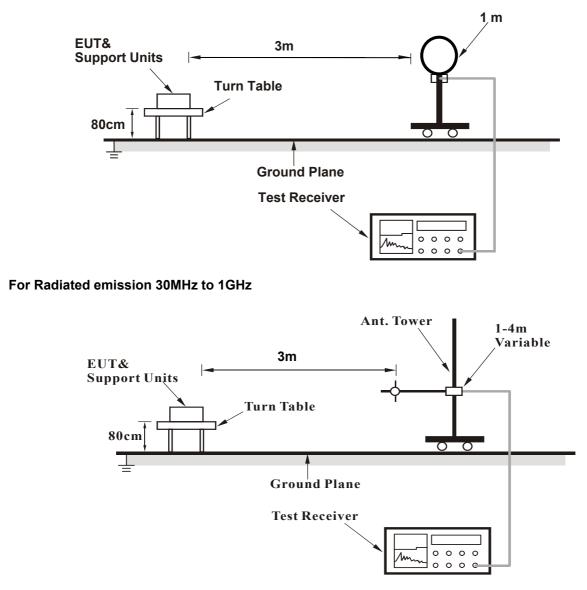
Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Set Up

For Radiated emission below 30MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

a. The EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Туре А

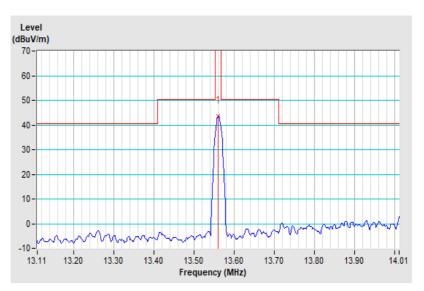
EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 68% RH	Tested By	Edison Lee	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)(30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)(3m)	Correction Factor (dB/m)	
1	*13.560	43.42 QP	84.00	-40.58	1.00	173	61.41	-17.99	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) +Distance Factor

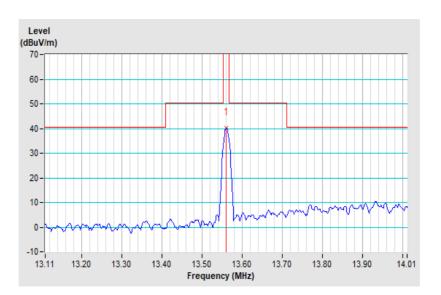

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. "*": Fundamental frequency

6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

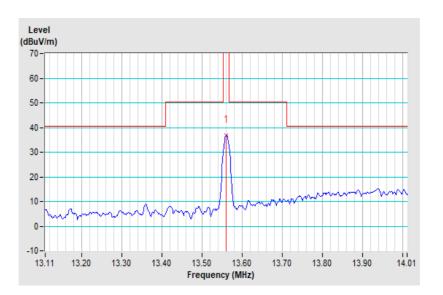


EUT Test Condition		Measurement Detail			
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz		
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak		
Environmental Conditions	23 deg. C, 68% RH	Tested By	Edison Lee		

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)(30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)(3m)	Correction Factor (dB/m)	
1	*13.560	40.06 QP	84.00	-43.94	1.00	96	58.05	-17.99	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * " : Fundamental frequency
- 6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

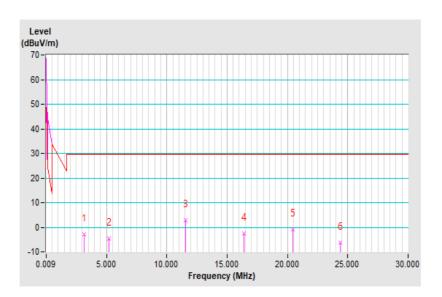


EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 68% RH	Tested By	Edison Lee	

	Antenna Polarity & Test Distance: Loop Antenna Ground-parallel at 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)(30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)(3m)	Correction Factor (dB/m)	
1	*13.560	36.92 QP	84.00	-47.08	1.00	175	54.91	-17.99	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. "*": Fundamental frequency
- 6. Above limits have been translated by the formula

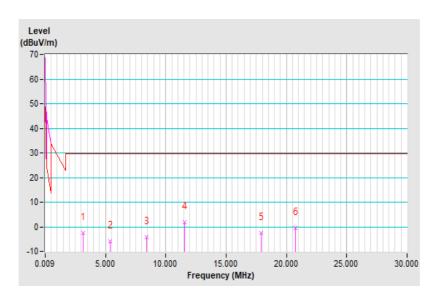
The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 68% RH	Tested By	Edison Lee	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m)(30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)(3m)	Correction Factor (dB/m)
1	3.140	-2.94 PK	29.54	-32.48	1.00	346	17.05	-19.99
2	5.180	-4.53 PK	29.54	-34.07	1.00	345	15.21	-19.74
3	11.570	2.91 PK	29.54	-26.63	1.00	39	20.96	-18.05
4	16.400	-2.53 PK	29.54	-32.07	1.00	300	15.38	-17.91
5	20.440	-0.93 PK	29.54	-30.47	1.00	224	16.88	-17.81
6	24.350	-6.28 PK	29.54	-35.82	1.00	99	11.61	-17.89

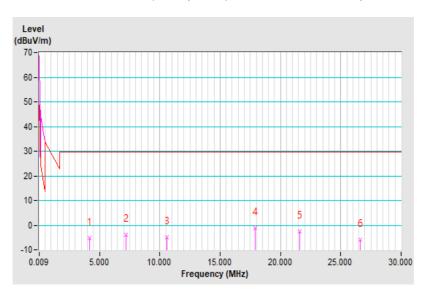
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)



EUT Test Condition		Measurement Detail		
Channel Channel 1		Frequency Range	Below 30MHz	
Input Power	put Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 68% RH	Tested By	Edison Lee	

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m)(30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)(3m)	Correction Factor (dB/m)
1	3.140	-2.41 PK	29.54	-31.95	1.00	200	17.58	-19.99
2	5.400	-6.08 PK	29.54	-35.62	1.00	230	13.58	-19.66
3	8.400	-4.37 PK	29.54	-33.91	1.00	288	14.27	-18.64
4	11.570	1.73 PK	29.54	-27.81	1.00	240	19.78	-18.05
5	17.920	-2.55 PK	29.54	-32.09	1.00	109	15.31	-17.86
6	20.740	-0.42 PK	29.54	-29.96	1.00	161	17.39	-17.81

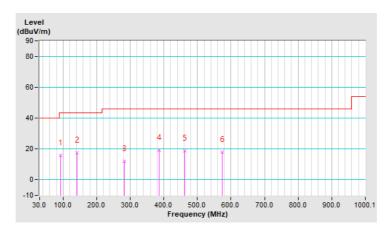
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)



EUT Test Condition		Measurement Detail		
Channel Channel 1		Frequency Range	Below 30MHz	
Input Power	put Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 68% RH	Tested By	Edison Lee	

	Antenna Polarity & Test Distance: Loop Antenna Ground-parallel at 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m)(30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)(3m)	Correction Factor (dB/m)
1	4.180	-5.13 PK	29.54	-34.67	1.00	215	14.75	-19.88
2	7.180	-3.87 PK	29.54	-33.41	1.00	281	15.19	-19.06
3	10.570	-4.82 PK	29.54	-34.36	1.00	2	13.26	-18.08
4	17.920	-1.26 PK	29.54	-30.80	1.00	18	16.60	-17.86
5	21.610	-2.40 PK	29.54	-31.94	1.00	180	15.43	-17.83
6	26.610	-6.06 PK	29.54	-35.60	1.00	2	11.87	-17.93

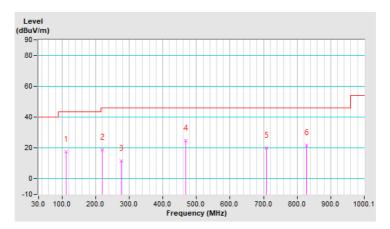
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 1000MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	Environmental Conditions 23 deg. C, 68% RH		Edison Lee	
Test Mode	A			

	Antenna Polarity & Test Distance: Horizontal At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	91.86	15.86 QP	43.50	-27.64	1.50 H	2	39.65	-23.79
2	141.07	17.45 QP	43.50	-26.05	1.00 H	259	36.00	-18.55
3	281.66	11.97 QP	46.00	-34.03	2.00 H	123	29.97	-18.00
4	385.70	19.03 QP	46.00	-26.97	2.00 H	2	34.49	-15.46
5	461.62	18.91 QP	46.00	-27.09	1.00 H	290	32.32	-13.41
6	574.10	18.01 QP	46.00	-27.99	1.50 H	29	29.23	-11.22

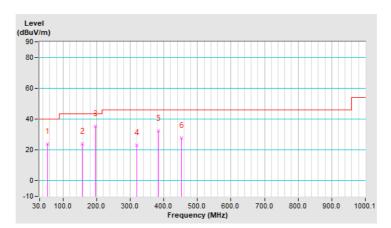
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 1000MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	Environmental Conditions 23 deg. C, 68% RH		Edison Lee	
Test Mode	A			

	Antenna Polarity & Test Distance: Vertical At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	111.54	17.52 QP	43.50	-25.98	1.50 V	225	38.72	-21.20
2	219.80	18.91 QP	46.00	-27.09	1.00 V	125	40.53	-21.62
3	276.04	11.65 QP	46.00	-34.35	2.00 V	69	29.84	-18.19
4	468.65	24.78 QP	46.00	-21.22	2.00 V	36	38.08	-13.30
5	709.07	20.24 QP	46.00	-25.76	1.00 V	335	29.24	-9.00
6	827.17	21.85 QP	46.00	-24.15	1.50 V	254	28.90	-7.05

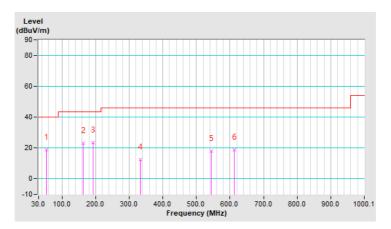
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 1000MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions 23 deg. C, 68% RH		Tested By	Edison Lee	
Test Mode	В			

		A	ntenna Polari	ty & Test Dist	tance: Horizo	ntal At 3m		
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	53.90	24.04 QP	40.00	-15.96	1.50 H	155	42.36	-18.32
2	156.53	24.02 QP	43.50	-19.48	1.00 H	20	42.04	-18.02
3	195.90	35.18 QP	43.50	-8.32	1.00 H	7	56.75	-21.57
4	319.62	22.84 QP	46.00	-23.16	1.00 H	66	39.86	-17.02
5	384.30	32.37 QP	46.00	-13.63	2.00 H	325	47.87	-15.50
6	453.19	27.82 QP	46.00	-18.18	1.00 H	273	41.33	-13.51

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 1000MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	Environmental Conditions 23 deg. C, 68% RH		Edison Lee	
Test Mode	В			

	Antenna Polarity & Test Distance: Vertical At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	52.50	18.74 QP	40.00	-21.26	1.00 V	262	36.93	-18.19		
2	162.16	23.21 QP	43.50	-20.29	1.50 V	182	41.33	-18.12		
3	191.68	23.41 QP	43.50	-20.09	1.00 V	45	44.55	-21.14		
4	332.28	12.43 QP	46.00	-33.57	2.00 V	33	29.02	-16.59		
5	544.57	17.84 QP	46.00	-28.16	1.00 V	256	29.89	-12.05		
6	613.47	18.66 QP	46.00	-27.34	1.00 V	62	28.70	-10.04		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted	Limit (dBuV)		
Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

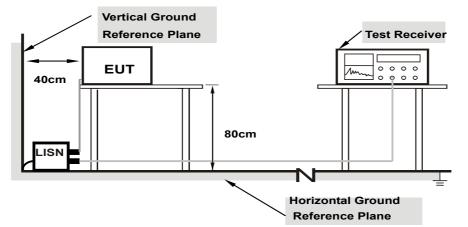
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 03, 2021	Dec. 02, 2022
RF signal cable Woken	5D-FB	Cable-cond1-01	Jan. 15, 2022	Jan. 14, 2023
LISN/AMN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Feb. 17, 2022	Feb. 16, 2023
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Sep. 07, 2021	Sep. 06, 2022
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1 (Conduction 1).

3. The VCCI Site Registration No. is C-12040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30mHz was searched. Emission levels under (Limit 20dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30mHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.


4.2.7 Test Results

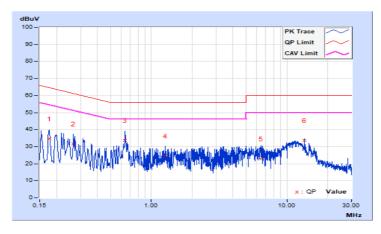
Type A

Phase	Line (L)	Liperector Flinction	Quasi-Peak (QP) / Average (AV)
Test Mode	А		

	From	Corr.	Readin	g Value	Emissic	on Level	Limit		Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16600	9.78	25.57	11.92	35.35	21.70	65.16	55.16	-29.81	-33.46
2	0.21000	9.80	23.09	11.00	32.89	20.80	63.21	53.21	-30.32	-32.41
3	0.25800	9.82	22.21	12.84	32.03	22.66	61.50	51.50	-29.47	-28.84
4	0.63800	9.89	28.64	23.86	38.53	33.75	56.00	46.00	-17.47	-12.25
5	4.51400	10.02	18.06	12.63	28.08	22.65	56.00	46.00	-27.92	-23.35
6	13.56200	10.13	29.06	24.93	39.19	35.06	60.00	50.00	-20.81	-14.94

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Neutral (N)	LIPETECTOL FUNCTION	Quasi-Peak (QP) / Average (AV)
Test Mode	А		


Erea		Corr.	Reading Value		Emissic	on Level	Lir	nit	Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17800	9.84	24.92	9.15	34.76	18.99	64.58	54.58	-29.82	-35.59
2	0.26600	9.89	21.62	9.82	31.51	19.71	61.24	51.24	-29.73	-31.53
3	0.64200	9.96	23.70	15.12	33.66	25.08	56.00	46.00	-22.34	-20.92
4	1.26200	10.00	14.73	4.69	24.73	14.69	56.00	46.00	-31.27	-31.31
5	6.41400	10.13	12.67	2.99	22.80	13.12	60.00	50.00	-37.20	-36.88
6	13.55800	10.24	23.57	22.37	33.81	32.61	60.00	50.00	-26.19	-17.39

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Line (L)		Quasi-Peak (QP) /
Fliase		Detector Function Average	
Test Mode	В		

Erog		Corr.	Reading Value		Emissic	on Level	Limit		Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16190	9.78	24.38	11.62	34.16	21.40	65.37	55.37	-31.21	-33.97
2	0.67000	9.89	31.00	24.78	40.89	34.67	56.00	46.00	-15.11	-11.33
3	1.09000	9.92	22.96	14.87	32.88	24.79	56.00	46.00	-23.12	-21.21
4	4.73800	10.02	16.37	8.84	26.39	18.86	56.00	46.00	-29.61	-27.14
5	6.21000	10.05	17.54	10.08	27.59	20.13	60.00	50.00	-32.41	-29.87
6	13.56200	10.13	32.69	28.91	42.82	39.04	60.00	50.00	-17.18	-10.96

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

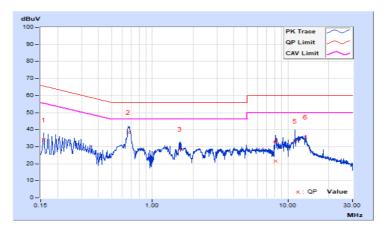
2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value.

Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	В		

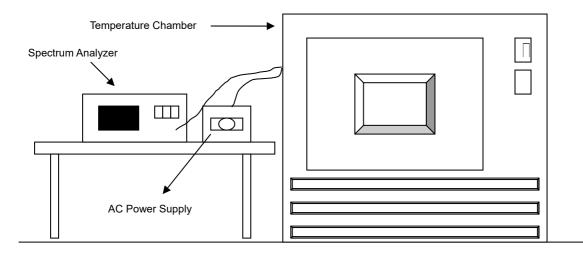

	Frag	Corr.	Reading Value		Emissic	n Level	Lir	nit	Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ([uV)]	[dB ([uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15800	9.83	24.17	11.76	34.00	21.59	65.57	55.57	-31.57	-33.98
2	0.66600	9.96	28.37	24.98	38.33	34.94	56.00	46.00	-17.67	-11.06
3	1.58535	10.02	18.51	11.83	28.53	21.85	56.00	46.00	-27.47	-24.15
4	8.06200	10.16	11.43	5.40	21.59	15.56	60.00	50.00	-38.41	-34.44
5	11.27800	10.21	23.22	9.30	33.43	19.51	60.00	50.00	-26.57	-30.49
6	13.55800	10.24	25.58	24.55	35.82	34.79	60.00	50.00	-24.18	-15.21

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

Tested date: Mar.	01,	2022	

	Toolog date. Mail 01, 2022						
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due			
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100040	Sep. 15, 2021	Sep. 14, 2022			
WIT Standard Temperature And Humidity Chamber	TH-4S-C	W981030	Jun. 01, 2021	May 31, 2022			
Three-phase coupling / decoupling network TESEQ	CDN 3063	4006	Mar. 10, 2021	Mar. 09, 2022			
AC Power Supply Extech	CFW-105	E000603	NA	NA			

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turn the EUT on and couple its output to a spectrum analyzer.
- c. Turn the EUT off and set the chamber to the highest temperature specified.
- d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- e. Repeat step (d) with the temperature chamber set to the next desired temperature until measurements down to the lowest specified temperature have been completed.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Result

Туре А

Frequency Stability Versus Temp.									
		0 Mi	nute	2 Minute		5 Minute		10 Minute	
TEMP. (℃)	Power Supply (Vac)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
50	120	13.56006	0.00044	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037
40	120	13.55998	-0.00015	13.55998	-0.00015	13.55999	-0.00007	13.55997	-0.00022
30	120	13.56	0.00000	13.56	0.00000	13.56	0.00000	13.56001	0.00007
20	120	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037
10	120	13.55994	-0.00044	13.55994	-0.00044	13.55993	-0.00052	13.55995	-0.00037
0	120	13.56001	0.00007	13.56	0.00000	13.56001	0.00007	13.56001	0.00007
-10	120	13.56004	0.00029	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037
-20	120	13.56004	0.00029	13.56004	0.00029	13.56005	0.00037	13.56004	0.00029

Frequency Stability Versus Voltage									
	0 Minute		2 Minute		5 Minute		10 Minute		
TEMP. (℃)	Power Supply (Vdc)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
	138	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037
20	120	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037
	102	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037

4.4 20dB Bandwidth

4.4.1 Limits of 20dB Bandwidth Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1kHz RBW and 3kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

Туре А

20dBc point (Low)	20dBc point (High)	Operating frequency band (MHz)	Pass / Fail		
13.558921	13.561518	13.553~13.567	Pass		
	Spectrun	n Plot Of Value			
	·				
MultiView - Spectrum 🔶 🗙		🗙 Spectrum 4 🛛 🔶 🗙			
Ref Level 97.00 dBµV/m Att 0 dB SWT 10 TDF "123" 1000 dB (1000 dB (10000 dB (1000 dB (1000 dB (1000 dB (1000 dB (1000 dB	● RBW 1 kHz) ms ● VBW 3 kHz Mode Sweep				
l Frequency Sweep			01Sa Avg D1[1] -0.18 dB		
00 dBµV/m			2.5970 kH M1[1] 23.14 dBµV/n		
30 dBµ∨/m			13,558 921 0 MH		
′0 dBµ∨/m					
0 dBµV/m					
50 dBµV/mн1 48.420 dBµV/m					
Ю dBµV/m					
10 dBµV/m		D1			
о dBµV/mМ2					
	~~~~		V2		
F 13.56 MHz Marker Table	1001 pts	2.0 kHz/	Span 20.0 kHz		
Type Ref Trc X   M1 1 13.55	(-Value Y-Value 8 921 MHz 23.14 dBμV	Function	Function Result		
D1 M1 1 M2 1 <b>1</b> M3 1 <b>1</b>	2.597 kHz -0.18 3.553 MHz 5.99 dBµV 3.567 MHz 5.48 dBµV	//m			
		.⊤ Aborte	d 02.03.2022 15:07:20		
5:07:20 02.03.2022					



# 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).



#### Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---