Product Safety Engineering, Inc

12955 Bellamy Brothers Blvd. Dade City, FL 33525 352-588-2209

TEST REPORT

08F265B 07/21/08

Applicant:

The Nielsen Company 501 Brooker Creek Blvd. Oldsmar, FL 34677

Product:

Models - 1771, 1772, 1773 In Store Tracking System

Test dates:

06/19/2008 - 06/25/2008

Receive Date:

06/19/2008

Prepared by: Steven E. Hoke - EMC Site Manager

Stum & Hohe

This report may only be reproduced in full without written permission from Product Safety Engineering, Inc.

The Nielsen Company

FCC ID: WHR001

Page 1 of 18

Table of Contents

Page 2	Table of contents
Page 3-4	Test procedures
Page 5	Equipment Calibration
Page 6-8	Minimum Bandwidth Test Data
Page 9-11	Peak Power Spectral Density Test Data
Page 12	Output Power Test Data
Page 13	Radiated Spurious Emissions Test Data / Bandedge
Page 14-17	AC Powerline Conducted Emissions Test Data

Page 18 RF Exposure - Power Density Compliance Calculation

Test Results Summary

Test	Requirement	Measured	Pass/Fail
Minimum 6 dB Bandwidth	> 500 kHz	1.6 MHz	Pass
Power Spectral Density	< 8 dBm / 3 kHz	-5.4 dBm	Pass
Output Power	< 1 watt	0.0027 watts	Pass
Spurious Emissions	=>20 dB down	> 30 down	Pass
Powerline Conducted	Limit Table	20.0 dB margin	Pass
RF Exposure	1.0 mW / cm^2	$0.00054 \text{ mW} \ / \ \text{cm}^2$	Pass
Bandedge	=>20 dB down	> 20 down	Pass

Test Procedures

Product description: The system under test provides consumer data to a store operator regarding the movement of each shopping cart within the retail outlet. The received data is achieved with internal direct sequence spread spectrum transceivers operating in the 2.4 GHz frequency band.

Powerline conducted interference: 15.207 (a) The AC powerline conducted emissions measurements were made in accordance with ANSI C64.3 2003.

Power Output: 15.247 (b)(3) The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at its maximum output power. The measurements were made using the alternate field strength method described in FCC publication "Measurements of Digital Transmissions Systems Operating Under Section 15.247, issued March 23, 2005".

If antenna conducted tests cannot be performed on this device, radiated tests to show compliance with the various conducted requirements of Section 15.247 are acceptable. As stated previously, a pre-amp must be used in making the following measurements.

1. Calculate the transmitter's peak power using the following equation: Where: E = the measured maximum field strength in V/m.

Set the RBW > 6dB bandwidth of the emission or use a peak power meter.

P = (E x d) squared / (30 x G)

G = the numeric gain of the transmitting antenna over an isotropic radiator.

d = the distance in meters from which the field strength was measured.

P = the power in watts for which you are solving:

Power Spectral Density: 15.247 (e) The peak power spectral density measurements were measured with the EUT set to low, medium and high transmit frequencies. The data rate of the radio was varied to determine the level that produced the worst case. The measurements were made using the alternate field strength method described in FCC publication "Measurements of Digital Transmissions Systems Operating Under Section 15.247, issued March 23, 2005".

The power spectral density was measured as follows:

A. Tune the analyzer to the highest point of the maximized fundamental emission. Reset the analyzer to a RBW = 3 kHz, VBW > RBW, span = 300 kHz, sweep =

B. From the peak level obtained in (A), derive the field strength, E, by applying the appropriate antenna factor, cable loss, pre-amp gain, etc. Using the equation listed in (1), calculate a power level for comparison to the + 8 dBm limit.

Minimum Bandwidth: 15.247 (a)(2) The minimum 6 dB bandwidth shall be at least 500 kHz. The RBW was set to (100) kHz and the VBW was set to (300) kHz. The (6) dB down points were then measured.

Radiated Spurious Emissions: 15.247 (d) The radiated spurious emissions measurements were measured with the EUT set to low, medium and high transmit frequencies. The measurements were made using our open area test site. All emissions up to 25 Ghz were investigated and those falling into restricted bands were measured for compliance.

Band Edge: The Spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The data rate of the radio was (250) kbps. The measurements were made using our open area test site. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 25 MHz below the band edge to 25 MHz above the band edge.

TEST EQUIPMENT CALIBRATION INFORMATION

Manufacturer	Model	Description	Serial Number	Cal Due
Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard	8566B 85662A 85650A 8447D 8568B 85662A 85662A 85650A	Spectrum Analyzer Display Quasi-Peak Adapter Preamp 0.1 - 1,000 MHz Spectrum Analyzer Display Quasi-Peak Adapter	2421A00526 2403A07352 2043A00209 2944A06832 2407A03213 2340A05806 2043A00358	07/13/08 07/13/08 07/13/08 12/18/08
Hewlett Packard Hewlett Packard Hewlett Packard Hewlett Packard Eaton Electro-Metrics Electro-Metrics Electro-Metrics	8447D 8449B 8648B 8672A 96005 LPA 30 BIA 30 BIA 25	Preamp 0.1 - 1,000 MHz Preamp 0.1 - 1,000 MHz Preamp 1 - 26.5 GHz Signal Generator Signal Generator Log Periodic Antenna Biconical Antenna Biconical Antenna	2944A06901 1937A03247 3008A00320 3443U00312 2211A02426 1099 2280 3852 4283	08/09/08
Electro-Mechanics Electro-Metrics Solar	3115 ALR30M 8012	Double Ridge Guide Ant. Magnetic Loop Antenna LISN	3810 824 924840	01/16/10
Solar Solar Agilent Leader	8028 8028 E7402A EMC-30	LISN LISN Absorbing Clamp Function Generator	829012/809022 903725/903726 US39150137 8060233	05/02/09
Electro-Metrics Antenna Research Radio Shack Radio Shack	ALA-130/A 63-867 63-867A	EMI Receiver Loop Antenna Temp/Hygrometer Temp/Hygrometer	191 106 N/A N/A	06/01/09

Test: Minimum Bandwidth per 15.247(a)(2) Date: 06/25/08 Requirement: The (6) dB bandwidth must be at least (500) kHz RBW: (100) kHz VBW: (300) kHz Channel: 1

Test: Minimum Bandwidth per 15.247(a)(2)

Date: 06/25/08 Requirement: The (6) dB bandwidth must be at least (500) kHz RBW: (100) kHz VBW: (300) kHz Channel: 6

Test: Minimum Bandwidth per 15.247(a)(2)

Date: 06/25/08 Requirement: The (6) dB bandwidth must be at least (500) kHz RBW: (100) kHz VBW: (300) kHz Channel: 11

1 **Test: Power Spectral Density per 15.247(e)** Date: 06/25/08 Requirement: The peak power spectral density conducted from the antenna port of a direct sequence transmitter must not be greater than (+8) dBm in any (3) kHz band during any time interval of continuous transmission. RBW: (3) kHz VBW: (10) kHz Channel: 1

Peak Power Spectral Density = (82.5 dBuV = 89.2 dBuV/m) = 28,840 uV/m = 0.029 E/mP= $(E^*d)^2 / (30 * \text{G})$ P = $(0.029 * 3)^2 / (30)$ P = 0.25 mWP = 0.25 mW = -6.02 dBm / 3 kHz

The Nielsen Company

Test: Power Spectral Density per 15.247(e)

Date: 06/25/08 Requirement: The peak power spectral density conducted from the antenna port of a direct sequencer transmitter must not be greater than (+8) dBm in any (3) kHz band during any time interval of continuous transmission. RBW: (3) kHz VBW: (10) kHz Channel: 6

Peak Power Spectral Density = (81.4 dBuv + 2 dB cable loss - 107) = -23.6 dBm / 3 kHzPeak Power Spectral Density = (81.4 dBuV = 88.1 dBuV/m) = 25,409 uV/m = 0.025 E/m $P=(E^*d)^2 / (30 *G)$ $P = (0.025 *3)^2 / (30)$ P = 0.19 mWP = 0.19 mW = -7.2 dBm / 3 kHz

The Nielsen Company

Test: Power Spectral Density per 15.247(e)

Date: 06/25/08 Requirement: The peak power spectral density conducted from the antenna port of a direct sequencer transmitter must not be greater than (+8) dBm in any (3) kHz band during any time interval of continuous transmission. RBW: (3) kHz VBW: (10) kHz Channel: 11

Peak Power Spectral Density = (83.0 dBuV + 2 dB cable loss -107) = -22.0 dBm / 3 kHzPeak Power Spectral Density = (83.0 dBuV = 89.7 dBuV/m) = 30,550 uV/m = 0.031 E/mP= $(E^*d)^2 / (30 *G)$ P = $(0.031 *3)^2 / (30)$ P = 0.29 mWP = 0.29 mW = -5.37 dBm / 3 kHz

The Nielsen Company

Test: Output Power per 15.247(b)(3)

Date: 06/24/08 Requirement: The maximum peak output power must not exceed 1 watt. RBW: (1) MHz VBW: (3) MHz Channel: See Table Peak Output Power = (2.7) mW

Channel	Level dBuV	ACF	Cable Loss	Preamp Gain	Adj. Level dBuV/m	E/m	Watts mW
1	92.9	28.6	2.1	24.0	99.6	0.095	2.7
6	91.8	28.6	2.1	24.0	98.5	0.084	2.1
11	90.9	28.6	2.1	24.0	97.6	0.076	1.7

P=(E*D)^2 / (30 * G)

P = watts E = volts per meter D = distance in meters G = transmit antenna numeric gain

P=(0.095 * 3)² / (30 *1) P=(0.285)² / 30 P=(0.0812) / 30 P= 0.002708 watts

Test: Radiated Spurious Emissions per 15.247(d)

Date: 06/24/08 Requirement: In any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20 dB down from the highest emissions level within the authorized band.

RBW: (100) kHz VBW: (300) kHz Channel: 1, 6, & 11

Maximum Conducted Spurious Emissions = Greater than (30) dB down

Test: Bandedge Emissions

The Nielsen Company

Test: AC powerline Conducted Emissions per15.207 Date: 10/19/2005 Requirement: If the EUT is connected to the AC power, it must meet the limits set forth from (150) kHz to (30) MHz. RBW: (9) kHz VBW: (10) kHz Channel: 1,6,11 (worst case shown below) Detector: Quasi-Peak Line Side: QP Margin = Greater than (20) dB throughout frequency range

Test: AC powerline Conducted Emissions per15.207

Date: 06/25/08Requirement: If the EUT is connected to the AC power, it must meet the limits set forth from (150) kHz to (30) MHz.

RBW: (9) kHz VBW: (10) kHz Channel: 1,6,11 (worst case shown) Detector: Quasi-Peak Neutral Side: QP Margin is greater than (20) dB throughout frequency range

RF Exposure - Power Density Compliance Calculation

15.247(I) - Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.

Compliance is based upon section CFR 47 section 1.1310, Table (1) Limits for Maximum Permissible Exposure (MPE), (b) Limits for General Population/Uncontrolled Exposure. The stated limit is (1.0) mW/cm2 and compliance was calculated using the following formula:

```
S=(P G) / (4 \pi r^2)
```

Where:

S = Power density in mW/cm2 P = Power in mW G = Numerical antenna gainr = Distance in cm

Maximum output power = (2.7) mW Antenna gain (numeric) = 1.0 dB Distance = 20 cm

 $\begin{array}{l} S = (2.7 * 1.0) / (12.57 * 400) \\ S = (2.7) / (5,028) \end{array}$

 $S = (0.00054) \text{ mW} / \text{cm}^2$

Limit = (1.0) mW / cm²