

**ORing Industrial Networking Corp.
3F., No.542-2, Zhongzheng Rd., Xindian Dist.,
New Taipei City 23148, Taiwan (R.O.C)**

Federal Communications Commission
Authorization and Evaluation Division
Equipment Authorization Branch
7435 Oakland Mills Road
Columbia, MD 21046

Applicant's declaration concerning RF Radiation Exposure

We hereby indicate that the product
Product description: MT7620 RF module
Model No: ORFM-WMT7620, ORFM-MT7620-XX (X = 0 ~ 9)

The equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. The integral antennas used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter within the host device.

A safety statement concerning minimum separation distances from enclosure of the
Product: MT7620 RF module
will be integrated in the user's manual to provide end-users with transmitter operating
conditions for satisfying RF exposure compliance.

The appropriate information can be drawn from the test report no: W6M21712-17696-C-1
and the accompanying calculations.

Company: ORing Industrial Networking Corp.

Address: 3F., No.542-2, Zhongzheng Rd., Xindian Dist., New Taipei City 23148,
Taiwan (R.O.C)

Date: 2018-01-04

Signature

A handwritten signature in blue ink that reads "Bme Chang". The signature is written in a cursive, flowing style with a prominent 'B' at the beginning.

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21712-17696-C-1

FCC ID: WHD-ORFM-WMT7620

3.2 Equivalent isotropic radiated power

FCC Rule: 15.247(b)(3)

Max. conducted output power is 17.97 dBm

Limit: EIRP = +36 dBm for Antenna gain <6dBi

Test equipment used: ETSTW-RE 055

3.3 RF Exposure Compliance Requirements

FCC OET Bulletin 65 Edition 97.01 determines the equations for predicting RF fields and applicable limits.

The prediction for power density in the far-field but will over-predict power density in the near field, where it could be used for walking a “worst case” or conservative prediction.

$$S = \frac{P G}{4 \pi R^2}$$

S – Power Density

P – Output power ERP

R – Distance

D – Cable Loss

AG – Antenna Gain

Item	Unit	Value	Remarks
P	mW	62.6614	Peak value
D	dB		
AG	dBi	6.01	
G		3.9902	Calculated Value
R	cm	20	Assumed value
S	mW/cm ²	0.0497	Calculated value

Limits:

Limit for General Population / Uncontrolled Exposure	
Frequency (MHz)	Power Density (mW/cm ²)
1500 – 100.000	1.0