

**IEEE C95.1
KDB 447498 D03
47 C.F.R. Part 1, Subpart I, Section 1.1310
47 C.F.R. Part 2, Subpart J, Section 2.1091**

RF EXPOSURE REPORT

For

IEEE802.11b/g/n AP

Model: IAP-W42X, IAP-W420, IAP-W422

Trade Name: ORing

Issued to

**ORing Industrial Networking Corp.
3F., No.542-2, Zhongzheng Rd., Sindian District,
New Taipei City 23148, Taiwan (R.O.C.)**

Issued by

Compliance Certification Services Inc.

**No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)**

<http://www.ccsrf.com>

service@ccsrf.com

Issued Date: August 3, 2015

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	2015/08/05	Initial Issue	ALL	Angel Cheng

TABLE OF CONTENTS

1. LIMIT	4
2. EUT SPECIFICATION.....	4
3. TEST RESULTS	5
4. MAXIMUM PERMISSIBLE EXPOSURE.....	6

1. LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

2. EUT SPECIFICATION

EUT	AP Router
Model Number	IAP-W42X, IAP-W420, IAP-W422
Trade Name	ORing
Frequency band (Operating)	<input checked="" type="checkbox"/> 802.11b/g/n HT20: 2.412GHz ~ 2.462GHz 802.11n HT40: 2.422GHz ~ 2.452GHz <input type="checkbox"/> Others
Device category	<input type="checkbox"/> Portable (<20cm separation) <input checked="" type="checkbox"/> Mobile (>20cm separation) <input type="checkbox"/> Others
Exposure classification	<input type="checkbox"/> Occupational/Controlled exposure ($S = 5\text{mW/cm}^2$) <input checked="" type="checkbox"/> General Population/Uncontrolled exposure ($S=1\text{mW/cm}^2$)
Antenna Specification	1. LanReady / Dipole Antenna Gain: 9.12492 dBi (Reverse polarity SMA) 2. WHA YU / Omni Antenna Gain: 4.55 dBi 3. LanReady / DipoleAntenna Gain: 5 dBi (Reverse polarity SMA)
Max. output power	IEEE 802.11b : 11.43 dBm (13.900mW) IEEE 802.11g : 8.13 dBm (6.501mW) IEEE 802.11n HT20 : 10.46 dBm (11.117mW) IEEE 802.11n HT40 : 10.04 dBm (10.093mW)
Evaluation applied	<input checked="" type="checkbox"/> MPE Evaluation* <input type="checkbox"/> SAR Evaluation <input type="checkbox"/> N/A
Remark:	
The maximum output power is <u>11.43dBm (13.900mW) at 2437MHz (with 9.12492 numeric antenna gain.)</u>	

3. TEST RESULTS

No non-compliance noted.

Calculation

Given $E = \frac{\sqrt{30 \times P \times G}}{d}$ & $S = \frac{E^2}{377}$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{377d^2}$$

Changing to units of mW and cm, using:

P (mW) = P (W) / 1000 and

d (cm) = d (m) / 100

Yields

$$S = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2} \quad \text{Equation 1}$$

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm^2

4. MAXIMUM PERMISSIBLE EXPOSURE

Substituting the MPE safe distance using $d = 20$ cm into Equation 1:

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

IEEE 802.11b mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
6	2437	13.900	9.125	20	0.0252	1

IEEE 802.11g mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
6	2437	6.501	9.125	20	0.0118	1

IEEE 802.11n HT20 mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
1	2412	11.117	9.125	20	0.0202	1

IEEE 802.11n HT40 mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
9	2452	10.093	9.125	20	0.0183	1