

CERTIFICATE OF COMPLIANCE FCC PART 15C Certification

Applicant Name:		Date of Testing		
		October 17, 2014 to December 12, 2014		
Mobile Appliance, Inc.		Test Site/Location		
		#23, 480 Beongil Gokhyeon-ro, Mohyeon-Myeon,		
Address:		Cheoin-Gu, Yongin-City, Gyeonggi-Do 449-853, Korea		
#701 Kranz Techno, Sangdaewon-1Dong, Jungwon-Gu,		Test Report No.: BWS-14-RF-0001		
Seongnam- City, Gyeonggi-Do, KORE	ΞA	BWS FRN: 0009936881		
FCC ID:	WHBBMWH	US		
APPLICANT:	Mobile App	liance, Inc.		

Model(s):	BMW Head-Up Screen
EUT Type:	Head-Up Screen
Frequency Range:	2412-2462 MHz
Modulation Type	DSSS(802.11b), OFDM(802.11g/n)
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	FCC Part 15 Subpart C

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated. And the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

BWS TECH Inc. Certifies that no party to this application has been denied FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S C.862

(Date) 12/12/2014

Tested by Cheol-Ho, Lee

(Date)12/12/2014

Reviewed by Bang-Hyeon, Nam

TABLE OF CONTENTS

- **1. General Information**
- 2. Description of Test Facility
- 3. Product Information
- 4. Summary of Test Results
- 5. Test Data
 - 5.1 Radiated Band Edges and Spurious Emission
 - 5.2 6dB Bandwidth
 - 5.3 Maximum Peak Conducted Output Power
 - 5.4 Conducted Band Edges and Spurious Emission
 - 5.5 Power Spectral Density
 - 5.6 Antenna Application

Appendix 1. Test Setup Photos

Appendix 2. FCC ID Label and location

- Appendix 3. External Photos of EUT
- Appendix 4. Internal Photos of EUT
- Appendix 5. Block Diagram
- **Appendix 6. Schematics**

Appendix 7. Operational Description

- Appendix 8. User Manual
- Appendix 9. Antenna Specification
- Appendix 10. Part List
- Appendix 11. PCB Layout

FCC TEST REPORT

Scope – Measurement and determination of electromagnetic emission(EME) of radio frequency devices including intentional radiators and/or unintentional radiators for compliance with the technical rules and regulations of the U.S Federal Communications Commission(FCC)

1. General Information

Applicant

N

Company Name	: Mobile Appliance, Inc.
Company Address	: #701 Kranz Techno, Sangdaewon-1Dong, Jungwon-Gu, Seongnam- City, Gyeonggi-Do, KOREA
Phone/Fax	: Tel No. : +82-31-777-8071 Fax No. : +82-31-777-8076
Manufacturer	
Company Name	: Mobile Appliance, Inc.
Company Address	: #701 Kranz Techno, Sangdaewon-1Dong, Jungwon-Gu, Seongnam- City, Gyeonggi-Do, KOREA
Phone/Fax	: Tel No. : +82-31-777-8071 Fax No. : +82-31-777-8076
• EUT Type	: Head-Up Screen
Model Name	: BMW Head-Up Screen
• FCC ID	: WHBBMWHUS
● S/N	: Prototype
Freq. Range	: 2412-2462 MHz
• Number of Channels	: 11 Channel
Modulation Method	: DSSS(802.11b), OFDM(802.11g/n)
 FCC Rule Part(s) 	: Part 15 Subpart C
• Test Procedure	: ANSI C63.4-2009 KDB_558074 D01 DTS Meas Guidance v03r02
• Dates of Tests	:October 17, 2014 to December 09, 2014
• Place of Tests	: BWS TECH Inc.(FCC Registration Number : 287786) #23, 480 Beongil Gokhyeon-ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-City, Gyeonggi-Do 449-853, Korea TEL: +82 31 333 5997 FAX: +82 31 333 0017
• Test Report No.	: BWS-14-RF-0001

2. Description of Test Facility

Site Description Test Lab.	:	Accredited by Industry Canada, February 27, 2012 The Certificate Registration Number is 4963A-2.
		Accredited by FCC, September 03, 2013 The Certificate Registration Number is 287786.
		Accredited by TUV SUD, January 24, 2014 The Certificate Registration Number is CARAT 14 01 87242 001
		Accredited by VCCI, July 10, 2012 The Certificate Registration Number is C-4326
		Accredited by NRRA(EMC,RF, SAR), November 27, 2014 The Certificate Registration Number is KR0017
		Accredited by KOLAS(KS Q ISO/IEC 17025), October 7, 2014 The Certificate Registration Number is KT174
		Accredited by IEC(IECEE CB-SCHEME), March 25, 2014 The Certificate Registration Number is TL508
Name of Firm Site Location	: :	BWS TECH Inc. #23, 480 Beongil Gokhyeon-ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-City, Gyeonggi-Do 449-853, Korea

3. Product Information

3.1 Equipment Description

The Equipment Under Test (EUT) is RF transmitter by the Mobile Appliance Inc. Model : BMW Head-Up Screen. (FCC ID : WHBBMWHUS).

3.2 General Specification

The system specifications are subject to change without notice. For detailed system specifications, refer to the product catalog.

Frequency Range	2412-2462 MHz
Number of Channels	11 Channel
Modulation Method	DSSS(802.11b) OFDM(802.11g/n)
Transparent	OLED Display
Screen Dimensions	125 mm x 42 mm
Luminance	Approximately 800 cd / m ² (max 1,100 cd / m ² .)
Transparency	About 55% (65% max.)
Operating temperature	-25 ° C ~ + 70 ° C
Humidity	up to 90%

4. Summary of Test Results

TEST Description	Standard Section	Requirements	Result
AC Power Conducted Emission	§15.207	§15.207	N/A(Note1)
Radiated Band Edges and Spurious Emission	§15.247(d), §15.209	§15.209, §15.247(d)	Pass
6dB Bandwidth	§15.247(a)(2)	≥500kHz	Pass
Maximum Peak Conducted Output Power	§15.247(b)(3)	15.247(b)(3) ≤30dBm	
Conducted Band Edges and Spurious Emission	§15.247(d)	≥20dB/100kHz	Pass
Power Spectral Density	§15.247(e)	≤8dBm/3kHz	Pass
Antenna Application	§15.247(b), §15.203	§15.247(b), §15.203	Pass

Note1: Input power source is supplied by battery

5. Test Data

5.1 Radiated Band Edges and Spurious Emission

5.1.1 Test Equipment

EQUIPMENT	MODEL	MANUFACTURE	SERIAL NUMBER	Calibration Due date
Receiver	ESVN30	Rohde & Schwarz	832854/010	15/01/16
Spectrum analyzer	FSP13SE	Rohde & Schwarz	100760	15/02/04
Spectrum analyzer	N9020A	Agilent	US46220101	15/09/11
Power supply	UDP-6015	UNICORN TECH	1301006	15/09/11
AMPLIFIER	8447F	H.P	2805A02893	15/01/13
Bilog Antenna	VULB9161	Schwarzbeck	VULB9161-4068	14/11/14
Open Site Cable_0.5m	RG 214/U	SHUNER SWITZERLAND	509794	15/01/14
Open Site Cable_35m	SUCOTEST 18A	Hubersunhner	8400/18A	15/01/14
Antenna Master	JAC-3	DAE IL EMC	N/A	15/05/07
Antenna Turntable Controller	JAC-2	JAEMC	N/A	15/05/07
RF Cable_2m	Test No.1	Hubersunhner	N/A	15/01/14
RF Cable_10m	Test No.2	Hubersunhner	N/A	15/01/14
Loop Antenna	HFH2-Z2	Rohde & Schwarz	881056/6	14/12/11
Horn Antenna	BBHA 9120 D	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D 234	15/09/15
RF Amplifier	PAM-118A	COM-POWER	551019	15/07/21
Antenna Master	N/A	AUDIX	N/A	15/09/17
Antenna Turntable Controller	ACT	AUDIX	N/A	15/09/17
RE_Above 1 GHz CHAMBER	N/A	SeoYoungEMC	N/A	15/09/17

5.1.2 Test Limit

Frequency (MHz)	Limit(dBµV/m)	Measurement distance (meters)
0.009-0.490	48.5~13.8	300
0.490-1.705	33.8~29.2	30
1.705-30.0	29.5	30
30-88	40.0	3
No: BWS-14-RF-0001		Page Number : 7 of

Report No: BWS-14-RF-0001 BWS TECH Inc.

FCC Test Report

Data of Issue :

7 of 62 December 12, 2014

IECEE CBTL, KOLAS

88-	216	43.5	3
216	-960	46.0	3
960-1000		54.0	3
	Average	54.0	3
Above 1GHz	Peak	74.0	3

5.1.3 Test Procedure

The EUT has been operated and followed in the IEEE 802.11b/g/n mode, and could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The EUT was placed on a turn table which is 0.8m above ground plane.
- 3. Measurements were performed on the six highest emissions to ensure EUT compliance.
- 4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Repeat above procedures until all frequency measured was complete.

When spectrum scanned from 0.009 MHz to 30 MHz setting resolution bandwidth 120 kHz and video bandwidth 300kHz.

EMI Test Receiver Setting (Attenuation: Auto, RBW: 200 Hz, VBW 1 kHz, Detector: QP, Trace: Max hold)

When spectrum scanned from 30 MHz to 1GHz setting resolution bandwidth 120 kHz and video bandwidth 300kHz.

EMI Test Receiver Setting (Attenuation: Auto, RBW: 120 kHz, VBW 300 kHz, Detector: QP, Trace: Max hold)

When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz.

EMI Test Receiver Setting (Attenuation: Auto, RBW: 1 MHz, VBW 3 MHz, Detector: Peak, Trace: Max hold)

For average measurement:

- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

6. Measure and record the results in the test report.

5.1.4 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

5.1.5 Test Result

5.1.5.1 0.009 - 30 MHz

Frequency [MHz]	Reading [dB µV]	Polarization [*H/**V]	Ant. Factor [dB]	Cable Loss [dB]	AMP Gain [dB]	Limit [dB µV/m]	Emission Level [dB µV/m]	Margin [dB]
-	_	_	-	-	-	-	_	-

Note: §15.31(o)_The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

5.1.5.2 30 – 1000 MHz

210.25 35.30 H 10.36 4.65 25.20 43.52 25.10 18.4 240.50 31.90 H 11.73 4.95 24.97 46.02 23.60 22.4 280.02 29.73 V 13.31 5.32 25.46 46.02 22.90 23.1 349.89 28.42 H 14.67 5.91 25.00 46.02 24.00 22.0 420.20 34.59 V 15.66 6.46 26.31 46.02 30.40 15.6 625.40 33.74 V 19.02 7.85 27.00 46.02 33.60 12.4 60 Vertical Horizontal Horizonta Horizonta Hor	Frequency [MHz]	Reading [dBµV]	Polarization [*H/**V]	Ant. Factor [dB]	Cable Loss [dB]	AMP Gain [dB]	Limit [dB <i>µ</i> V/m]	Emission Level [dBµV/m]	Margin [dB]
240.50 31.90 H 11.73 4.95 24.97 46.02 23.60 22.4 280.02 29.73 V 13.31 5.32 25.46 46.02 22.90 23.1 349.89 28.42 H 14.67 5.91 25.00 46.02 24.00 22.0 420.20 34.59 V 15.66 6.46 26.31 46.02 30.40 15.6 625.40 33.74 V 19.02 7.85 27.00 46.02 33.60 12.4 60 Vertical V 19.02 7.85 27.00 46.02 33.60 12.4 60 Vertical V 19.02 7.85 27.00 46.02 33.60 12.4 60 Vertical Ve	210.25	35.30	Н	10.36	4.65	25.20	43.52	25.10	18.42
280.02 29.73 V 13.31 5.32 25.46 46.02 22.90 23.1 349.89 28.42 H 14.67 5.91 25.00 46.02 24.00 22.0 420.20 34.59 V 15.66 6.46 26.31 46.02 30.40 15.6 625.40 33.74 V 19.02 7.85 27.00 46.02 33.60 12.4 60 Vertical Image: Constraint of the co	240.50	31.90	н	11.73	4.95	24.97	46.02	23.60	22.42
349.89 28.42 H 14.67 5.91 25.00 46.02 24.00 22.0 420.20 34.59 V 15.66 6.46 26.31 46.02 30.40 15.6 625.40 33.74 V 19.02 7.85 27.00 46.02 33.60 12.4 60 Vertical	280.02	29.73	V	13.31	5.32	25.46	46.02	22.90	23.12
420.20 34.59 V 15.66 6.46 26.31 46.02 30.40 15.6 625.40 33.74 V 19.02 7.85 27.00 46.02 33.60 12.4 60 Vertical Vertica	349.89	28.42	н	14.67	5.91	25.00	46.02	24.00	22.02
625.40 33.74 V 19.02 7.85 27.00 46.02 33.60 12.4 60 Vertical	420.20	34.59	V	15.66	6.46	26.31	46.02	30.40	15.62
60 Vertical Image: Constraint of the cons	625.40	33.74	V	19.02	7.85	27.00	46.02	33.60	12.42
20 10 30 100 Frequency [MHz]	60 50 [m/\/40 level [dBh/ 40 20 20 10 10		Vertica Horizontal Limit (FCC Part	15 Subpart C)					

802.11b_2412MHz

Frequency [MHz]	Reading [dBµV]	Polarization [*H/**V]	Ant. Factor [dB]	Cable Loss [dB]	AMP Gain [dB]	Limit [dBµV/m]	Emission Level [dBµV/m]	Margin [dB]
210.10	34.90	V	10.35	4.65	25.21	43.52	24.70	18.82
245.71	32.68	Н	11.94	5.00	25.02	46.02	24.60	21.42
260.53	31.01	V	12.41	5.14	24.36	46.02	24.20	21.82
349.89	28.32	Н	14.67	5.91	25.00	46.02	23.90	22.12
420.19	34.69	V	15.65	6.46	26.31	46.02	30.50	15.52
625.40	33.74	V	19.02	7.85	27.00	46.02	33.60	12.42

802.11b_2437MHz

FCC ID: WHBBMWHUS Mobile Appliance, Inc. Head-Up Screen / BMW Head-Up Screen

Frequency [MHz]	Reading [dBµV]	Polarization [*H/**V]	Ant. Factor [dB]	Cable Loss [dB]	AMP Gain [dB]	Limit [dBµV/m]	Emission Level [dBµV/m]	Margin [dB]
225.00	32.30	Н	10.99	4.80	25.19	46.02	22.90	23.12
245.71	32.58	Н	11.94	5.00	25.02	46.02	24.50	21.52
260.49	30.82	V	12.41	5.14	24.36	46.02	24.00	22.02
305.60	28.38	V	13.91	5.55	24.54	46.02	23.30	22.72
420.19	34.69	V	15.65	6.46	26.31	46.02	30.50	15.52
625.40	34.34	V	19.02	7.85	27.00	46.02	34.20	11.82
60 50 [μ//μ 40 30 30 20 10 10 3		Vertica Horizontal Limit (FCC Part	15 Subpart C)					
	Fr		equency [M	Hz]				

802.11b_2462MHz

Frequency [MHz]	Reading [dBµV]	Polarization [*H/**V]	Ant. Factor [dB]	Cable Loss [dB]	AMP Gain [dB]	Limit [dBµV/m]	Emission Level [dBµV/m]	Margin [dB]
225.01	32.10	Н	10.99	4.80	25.19	46.02	22.70	23.32
260.03	29.76	н	12.39	5.13	24.38	46.02	22.90	23.12
301.05	28.62	V	13.80	5.51	24.33	46.02	23.60	22.42
419.85	36.69	V	15.65	6.46	26.30	46.02	32.50	13.52
625.38	33.64	V	19.02	7.85	27.00	46.02	33.50	12.52
699.30	34.04	V	19.63	8.34	26.91	46.02	35.10	10.92

802.11g_2412MHz

FCC ID: WHBBMWHUS Mobile Appliance, Inc. Head-Up Screen / BMW Head-Up Screen

			0=					
Frequency [MHz]	Reading [dBµV]	Polarization [*H/**V]	Ant. Factor [dB]	Cable Loss [dB]	AMP Gain [dB]	Limit [dBµV/m]	Emission Level [dBµV/m]	Margin [dB]
225.00	32.00	Н	10.99	4.80	25.19	46.02	22.60	23.42
260.03	29.86	Н	12.39	5.13	24.38	46.02	23.00	23.02
301.02	28.42	V	13.80	5.51	24.33	46.02	23.40	22.62
419.85	36.69	V	15.65	6.46	26.30	46.02	32.50	13.52
625.38	33.74	V	19.02	7.85	27.00	46.02	33.60	12.42
699.30	33.94	V	19.63	8.34	26.91	46.02	35.00	11.02

802.11g_2437MHz

Frequency [MHz]	Reading [dBµV]	Polarization [*H/**V]	Ant. Factor [dB]	Cable Loss [dB]	AMP Gain [dB]	Limit [dBµV/m]	Emission Level [dBµV/m]	Margin [dB]
225.02	32.30	Н	10.99	4.80	25.19	46.02	22.90	23.12
260.05	29.66	Н	12.39	5.13	24.38	46.02	22.80	23.22
300.95	28.51	~	13.80	5.51	24.32	46.02	23.50	22.52
419.85	36.29	V	15.65	6.46	26.30	46.02	32.10	13.92
625.40	33.94	V	19.02	7.85	27.00	46.02	33.80	12.22
699.33	33.84	V	19.63	8.34	26.91	46.02	34.90	11.12

802.11g_2462MHz

Frequency [MHz]	Reading [dBµV]	Polarization [*H/**V]	Ant. Factor [dB]	Cable Loss [dB]	AMP Gain [dB]	Limit [dBµV/m]	Emission Level [dBµV/m]	Margin [dB]
211.50	35.03	Н	10.40	4.66	25.19	43.52	24.90	18.62
280.02	30.63	н	13.31	5.32	25.46	46.02	23.80	22.22
300.05	28.50	н	13.78	5.50	24.28	46.02	23.50	22.52
349.99	29.52	Н	14.67	5.91	25.00	46.02	25.10	20.92
420.00	36.19	V	15.65	6.46	26.30	46.02	32.00	14.02
550.56	32.18	V	18.09	7.35	27.03	46.02	30.60	15.42

802.11n(20MHz)_2412MHz

Frequency [MHz]	Reading [dBµV]	Polarization [*H/**V]	Ant. Factor [dB]	Cable Loss [dB]	AMP Gain [dB]	Limit [dBµV/m]	Emission Level [dBµV/m]	Margin [dB]
211.52	34.93	Н	10.40	4.66	25.19	43.52	24.80	18.72
280.01	30.73	Н	13.31	5.32	25.46	46.02	23.90	22.12
300.05	28.60	н	13.78	5.50	24.28	46.02	23.60	22.42
350.00	29.72	н	14.67	5.91	25.00	46.02	25.30	20.72
419.95	35.99	V	15.65	6.46	26.30	46.02	31.80	14.22
550.50	31.88	V	18.09	7.35	27.03	46.02	30.30	15.72

802.11n(20MHz)_2437MHz

Frequency [MHz]	Reading [dBµV]	Polarization [*H/**V]	Ant. Factor [dB]	Cable Loss [dB]	AMP Gain [dB]	Limit [dBµV/m]	Emission Level [dBµV/m]	Margin [dB]
211.51	35.03	Н	10.40	4.66	25.19	43.52	24.90	18.62
280.00	30.93	н	13.31	5.32	25.46	46.02	24.10	21.92
300.02	28.90	н	13.78	5.50	24.28	46.02	23.90	22.12
349.96	29.72	н	14.67	5.91	25.00	46.02	25.30	20.72
419.98	36.09	V	15.65	6.46	26.30	46.02	31.90	14.12
550.32	32.19	V	18.09	7.35	27.03	46.02	30.60	15.42

802.11n(20MHz)_2462MHz

5.1.5.3 Above 1GHz

802.11b_2437MHz

802.11b_2462MHz Horizontal

Site : SVSWR Chamber Condition: FCC ~13.5G 3m BBHA9120D234_14G HORIZONTAL eut : mode : memo :

		Read/	Antenna	Preamp	Cable		Limit	0ver	A/Pos	T/Pos	
	Freq	Level	Factor	Factor	Loss	Level	Line	Limit			Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	CM	deg	
1	1874.00	27.45	25.72	40.68	4.02	16.51	53.97	-37.46	100	160	Average
2	3415.00	27.14	28.41	41.61	5.47	19.41	53.97	-34.56	100	20	Average
3	4818.00	34.50	31.10	41.28	6.47	30.79	53.97	-23.18	100	320	Average
4	7244.50	26.13	35.16	40.52	7.91	28.68	53.97	-25.29	100	190	Average
5	9855.00	26.06	38.59	40.98	9.48	33.15	53.97	-20.82	100	60	Average
6	11097.00	24.66	39.85	40.30	10.75	34.96	53.97	-19.01	100	210	Average

Vertical

Site : SVSWR Chamber Condition: FCC ~13.5G 3m BBHA9120D234_14G VERTICAL

out	
euc	
mode	
momo	

mode memo

	Freq	Read/ Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit Line	Over Limit	A/Pos	T/Pos	Remark	
-	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg		
1	1966.00	22.98	25.76	40.74	4.11	12.11	53.97	-41.86	100	300	Average	
2	3139.00	27.38	28.27	41.48	5.14	19.31	53.97	-34.66	100	250	Average	
3	4818.00	27.09	31.10	41.28	6.47	23.38	53.97	-30.59	100	130	Average	
4	6485.50	24.87	33.44	40.30	7.57	25.58	53.97	-28.39	100	50	Average	
5	7785.00	25.29	36.37	40.68	8.38	29.36	53.97	-24.61	100	40	Average	
6	9349.00	25.35	37.48	40.93	9.66	31.56	53.97	-22.41	100	190	Average	

802.11g_2412MHz

802.11g_2437MHz Horizontal

1	1920.00	27.24	25.74	40.71	4.06	16.33	53.97 -37.64	100	70 Average
2	2794.00	29.75	27.92	41.26	4.79	21.20	53.97 -32.77	100	90 Average
3	4864.00	30.74	31.19	41.24	6.48	27.17	53.97 -26.80	100	90 Average
4	7325.00	29.17	35.34	40.56	7.99	31.94	53.97 -22.03	100	250 Average
5	9924.00	26.49	38.74	40.94	9.43	33.72	53.97 -20.25	100	190 Average
6	11879.00	25.86	39.04	40.36	11.51	36.05	53.97 -17.92	100	140 Average

Site : SVSWR Chamber Condition: FCC ~13.5G 3m BBHA9120D234_14G VERTICAL eut : mode : memo :

:										
	Read/	Antenna	Preamp	Cable		Limit	0ver	A/Pos	T/Pos	
Freq	Level	Factor	Factor	Loss	Level	Line	Limit			Remark
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	CM	deg	
3633.50	27.26	28.68	41.68	5.65	19.91	53.97	-34.06	100	80	Peak
5531.00	26.02	31.72	40.68	6.74	23.80	53.97	-30.17	100	60	Peak
6842.00	25.90	34.25	40.38	7.65	27.42	53.97	-26.55	100	150	Peak
8291.00	25.85	36.81	40.53	8.66	30.79	53.97	-23.18	100	260	Peak
9786.00	26.53	38.44	41.02	9.53	33.48	53.97	-20.49	100	90	Average
11097.00	25.08	39.85	40.30	10.75	35.38	53.97	-18.59	100	60	Average
	: Freq MHz 3633.50 5531.00 6842.00 8291.00 9786.00 11097.00	: Freq Read/ Level MHz dBuV 3633.50 27.26 5531.00 26.02 6842.00 25.90 8291.00 25.85 9786.00 26.53 11097.00 25.08	: Freq ReadAntenna Level Factor MHz dBuV dB/m 3633.50 27.26 28.68 5531.00 26.02 31.72 6842.00 25.90 34.25 8291.00 25.85 36.81 9786.00 26.53 38.44 11097.00 25.08 39.85	: ReadAntenna Preamp Level Factor Factor MHz dBuV dB/m dB 3633.50 27.26 28.68 41.68 5531.00 26.02 31.72 40.68 6842.00 25.90 34.25 40.38 8291.00 25.85 36.81 40.53 9786.00 26.53 38.44 41.02 11097.00 25.08 39.85 40.30	: ReadAntenna Preamp Level Factor Factor MHz dBuV dB/m dB dB 3633.50 27.26 28.68 41.68 5.65 5531.00 26.02 31.72 40.68 6.74 6842.00 25.90 34.25 40.38 7.65 8291.00 25.85 36.81 40.53 8.66 9786.00 26.53 38.44 41.02 9.53 11097.00 25.08 39.85 40.30 10.75	: ReadAntenna Preamp Freq Level Factor Factor MHz dBuV dB/m dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dD dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB	: Freq ReadAntenna Preamp Cable Loss Limit Level Factor Factor Loss Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 3633.50 27.26 28.68 41.68 5.65 19.91 53.97 5531.00 26.02 31.72 40.68 6.74 23.80 53.97 6842.00 25.90 34.25 40.38 7.65 27.42 53.97 8291.00 25.85 36.81 40.53 8.66 30.79 53.97 9786.00 26.53 38.44 41.02 9.53 33.48 53.97 11097.00 25.08 39.85 40.30 10.75 35.38 53.97	: Freq ReadAntenna Preamp Cable Loss Level Limit Over Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 3633.50 27.26 28.68 41.68 5.65 19.91 53.97 -34.06 5531.00 26.02 31.72 40.68 6.74 23.80 53.97 -30.17 6842.00 25.90 34.25 40.38 7.65 27.42 53.97 -26.55 8291.00 25.85 36.81 40.53 8.66 30.79 53.97 -23.18 9786.00 26.53 38.44 41.02 9.53 33.48 53.97 -20.49 11097.00 25.08 39.85 40.30 10.75 35.38 53.97 -18.59	: Freq Level Factor Factor Cable Loss Level Limit Over Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB cm 3633.50 27.26 28.68 41.68 5.65 19.91 53.97 -34.06 100 5531.00 26.02 31.72 40.68 6.74 23.80 53.97 -30.17 100 6842.00 25.90 34.25 40.38 7.65 27.42 53.97 -26.55 100 8291.00 25.85 36.81 40.53 8.66 30.79 53.97 -23.18 100 9786.00 26.53 38.44 41.02 9.53 33.48 53.97 -20.49 100 11097.00 25.08 39.85 40.30 10.75 35.38 53.97 -18.59 100	: Freq Level Factor Factor MHz dBuV dB/m dB dB dBuV/m dBuV/m dB cm deg 3633.50 27.26 28.68 41.68 5.65 19.91 53.97 -34.06 100 80 5531.00 26.02 31.72 40.68 6.74 23.80 53.97 -30.17 100 60 6842.00 25.90 34.25 40.38 7.65 27.42 53.97 -26.55 100 150 8291.00 25.85 36.81 40.53 8.66 30.79 53.97 -23.18 100 260 9786.00 26.53 38.44 41.02 9.53 33.48 53.97 -20.49 100 90 11097.00 25.08 39.85 40.30 10.75 35.38 53.97 -18.59 100 60

802.11g_2462MHz Horizontal

Site : SVSWR Chamber Condition: FCC ~13.5G 3m BBHA9120D234_14G HORIZONTAL eut mode : memo :

	Freq	Read/ Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit Line	Over Limit	A/Pos	T/Pos	Remark	
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg		
1	1943.00	29.52	25.75	40.73	4.09	18.63	53.97	-35.34	100	90	Average	
2	2886.00	34.73	28.04	41.33	4.88	26.32	53.97	-27.65	100	10	Average	
3	4910.00	33.92	31.28	41.20	6.49	30.49	53.97	-23.48	100	340	Average	
4	7394.00	28.57	35.49	40.59	8.06	31.53	53.97	-22.44	100	180	Average	
5	9556.00	26.95	37.94	41.15	9.68	33.42	53.97	-20.55	100	100	Average	
6	11166.00	25.76	39.78	40.31	10.86	36.09	53.97	-17.88	100	60	Average	

: SVSWR Chamber Site

Condition: FCC ~13.5G 3m BBHA9120D234_14G VERTICAL eut \$

mc

	Freq	Read/ Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit Line	Over Limit	A/Pos	T/Pos	Remark	
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	CM	deg		
1	1828.00	22.91	25.70	40.66	3.98	11.93	53.97	-42.04	100	10	Average	
2	3967.00	27.39	29.24	41.70	5.84	20.77	53.97	-33.20	100	120	Average	
3	7164.00	25.82	34.98	40.49	7.84	28.15	53.97	-25.82	100	250	Average	
4	8498.00	25.87	36.79	40.40	8.74	31.00	53.97	-22.97	100	120	Average	
5	9809.00	26.53	38.49	41.01	9.51	33.52	53.97	-20.45	100	30	Average	
5	11028.00	24.73	39.92	40.29	10.65	35.01	53.97	-18.96	100	20	Average	

802.11n(20MHz)_2412MHz Horizontal

Site : SVSWR Chamber Condition: FCC ~13.5G 3m BBHA9120D234_14G HORIZONTAL eut : mode : memo :

		Read/	Antenna	Preamp	Cable		Limit	0ver	A/Pos	T/Pos	
	Freq	Level	Factor	Factor	Loss	Level	Line	Limit			Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	CM	deg	
1	1874.00	29.13	25.72	40.68	4.02	18.19	53.97	-35.78	100	60	Average
2	2679.00	29.28	27.77	41.19	4.68	20.54	53.97	-33.43	100	200	Average
3	4818.00	34.80	31.10	41.28	6.47	31.09	53.97	-22.88	100	90	Average
4	7233.00	28.94	35.13	40.52	7.90	31.45	53.97	-22.52	100	160	Average
5	9418.00	26.10	37.64	41.04	9.69	32.39	53.97	-21.58	100	240	Average
6	11212.00	25.37	39.73	40.32	10.92	35.70	53.97	-18.27	100	50	Average

Site : SVSWR Chamber Condition: FCC ~13.5G 3m BBHA9120D234_14G VERTICAL eut : mode :

m	oa	e
m	em	0

mo	:			_				_			
		Read/	Antenna	Preamp	Cable		Limit	Over	A/Pos	T/Pos	
	Freq	Level	Factor	Factor	Loss	Level	Line	Limit			Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg	
1	3093.00	27.36	28.24	41.46	5.09	19.23	53.97	-34.74	100	110	Average
2	4818.00	27.74	31.10	41.28	6.47	24.03	53.97	-29.94	100	350	Average
3	6669.50	25.40	33.86	40.34	7.61	26.53	53.97	-27.44	100	90	Average
4	8739.50	25.20	36.75	40.37	9.11	30.69	53.97	-23.28	100	170	Average
5	9579.00	26.60	37.99	41.14	9.67	33.12	53.97	-20.85	100	250	Average
6	10085.00	26.97	39.00	40.85	9.49	34.61	53.97	-19.36	100	260	Average

802.11n(20MHz)_2437MHz Horizontal

Site : SVSWR Chamber Condition: FCC ~13.5G 3m BBHA9120D234_14G VERTICAL eut : mode : memo :

		Read/	Antenna	Preamp	Cable		Limit	0ver	A/Pos	T/Pos	
	Freq	Level	Factor	Factor	Loss	Level	Line	Limit			Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg	
1	3139.00	27.50	28.27	41.48	5.14	19.43	53.97	-34.54	100	80	Average
2	5002.00	26.41	31.46	41.13	6.52	23.26	53.97	-30.71	100	150	Average
3	6531.50	25.22	33.55	40.31	7.59	26.05	53.97	-27.92	100	240	Average
4	7601.00	25.96	35.96	40.65	8.24	29.51	53.97	-24.46	100	300	Average
5	8935.00	25.53	36.73	40.35	9.41	31.32	53.97	-22.65	100	50	Average
6	10085.00	26.72	39.00	40.85	9.49	34.36	53.97	-19.61	100	120	Average

Site : SVSWR Chamber

Condition: FCC ~13.5G 3m BBHA9120D234_14G VERTICAL eut :

mode

:

memo

mo	: Freq	Read/ Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit Line	Over Limit	A/Pos	T/Pos	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg	
1	3139.00	27.50	28.27	41.48	5.14	19.43	53.97	-34.54	100	80	Average
2	5002.00	26.41	31.46	41.13	6.52	23.26	53.97	-30.71	100	150	Average
3	6531.50	25.22	33.55	40.31	7.59	26.05	53.97	-27.92	100	240	Average
4	7601.00	25.96	35.96	40.65	8.24	29.51	53.97	-24.46	100	300	Average
5	8935.00	25.53	36.73	40.35	9.41	31.32	53.97	-22.65	100	50	Average
6	10085.00	26.72	39.00	40.85	9.49	34.36	53.97	-19.61	100	120	Average

802.11n(20MHz)_2462MHz Horizontal

Note: For above 12.5GHz, noise level is below the noise flow.

5.1.5.4 Radiated Band Edges

							Verti	cal						
٩N	Level (dBi	uV/m)												
30 80												Junio	non	74
70												/`	\rightarrow	-368
60											- 1	/		-54
50														-308
40											and the			Wy work have
30	Auguna		and an and the	www.man.ghterner	et an	-	a have been a service of the service		an an an de prodestant de la	dimment i				
20														
10														
0	2310	2320			23	50	1	1						2430
							Frequenc	cy (MHz)						

802.11b_Lowest

No	Frequency [MHz]	Read Level [dBµV]	Antenna Factor [dB/m]	Preamp Factor [dB]	Cable Loss	Level [dBµV/m]	Limit [dBµV/m]	Over Limit [dB]	Remark
1	2399.79	37.45	26.75	41.01	4.44	27.63	54	-26.37	Average
2	2399.79	52.61	26.75	41.01	4.44	42.79	74	-31.21	Peak
3	2413.20	85.06	26.77	41.02	4.45	75.26	-	-	Average
4	2413.20	95.03	26.77	41.02	4.45	85.23	-	-	Peak

No	Frequency [MHz]	Read Level [dBµV]	Antenna Factor [dB/m]	Preamp Factor [dB]	Cable Loss	Level [dBµV/m]	Limit [dBµV/m]	Over Limit [dB]	Remark
1	2398.46	37.46	26.75	41.01	4.44	27.64	54	-26.36	Average
2	2398.46	49.54	26.75	41.01	4.44	39.72	74	-34.28	Peak
3	2413.08	86.12	26.77	41.02	4.45	76.32	-	-	Average
4	2413.08	94.62	26.77	41.02	4.45	84.82	-	-	Peak

802.11b_Highest Vertical

00	Level	(dBuV/m)							
90 80		January		mund					274
70		/			<u>.</u>				-108-
60		/			\				.354
50 40	and a walk				Martin martine		1		
30						manna	mm	warman warmer warme	where the construction of
20							8		
10									
0	2450		1	1	1	1		25	00 2550
								Frequence	:y (MHz)

No	Frequency [MHz]	Read Level [dBµV]	Antenna Factor [dB/m]	Preamp Factor [dB]	Cable Loss	Level [dBµV/m]	Limit [dBµV/m]	Over Limit [dB]	Remark
1	2461.99	86.91	26.83	41.06	4.49	77.17	-	-	Average
2	2461.99	95.88	26.83	41.06	4.49	86.14	-	-	Peak
3	2485.64	30.28	30.28	41.07	4.51	20.58	54	-33.42	Average
4	2485.64	45.04	45.04	41.07	4.51	35.34	74	-38.42	Peak

	Horizontal													
90 Level (dl	BuV/m)	-												
80	and the second	manument -								374				
70	/													
50			<u>t</u>							-358				
40			Junear	Num et al.	t									
30					s and the second s	and the second	and the second	an a	long the second s	enter and a second s				
10														
02450						2500				255				
2430					Frequer	ncy (MHz)				200				
	Ero	auonov	Read	Antenna	Preamp	Cabla		Lingit	Over					
No	rie r	quency M⊔⊸i	Level	Factor	Factor				Limit	Remark				
	L	IVITIZJ	[dBµV]	[dB/m]	[dB]	LUSS	[ubμv/iii]	[ubμv/iii]	[dB]					
1	24	61.69	82.19	26.83	41.06	4.49	72.45	-	-	Average				
2	24	61.69	95.30	26.83	41.06	4.49	85.56	-	-	Peak				
3	24	88.33	29.11	26.87	41.07	4.51	19.42	54	-34.58	Average				
4	24	88.33	44.28	26.87	41.07	4.51	34.59	74	-39.41	Peak				

802.11g_Lowest Vertical

00	Level (dBı	uV/m)											
80												- Andrew Street of the	+ professional and a second	- 74
70												-	-	
60							1					{		- 54
50											2	•		
40										With and North March 197	1.44V.144			mannam
30		m	moundance	and the second	herester		an and the second	an and the second second	down the read the second					
20														
10														
0														
	2310	23	20		23	50	-							2430
							Frequenc	X (MHZ)						

			110	squency (miliz)				
Frequency [MHz]	Read Level [dBµV]	Antenna Factor [dB/m]	Preamp Factor [dB]	Cable Loss	Level [dBµV/m]	Limit [dBµV/m]	Over Limit [dB]	Remark
2397.00	43.78	26.75	41.01	4.44	33.96	54	-20.04	Average
2397.00	56.59	26.75	41.01	4.44	46.77	74	-27.23	Peak
2410.76	84.41	26.77	41.02	4.45	74.61	-	-	Average
2410.76	93.35	26.77	41.02	4.45	83.55	-	-	Peak

								Horizo	ontal							
90	Level (dE	3uV/m)										,			
80													Mar Andrewson	mound	rt.a.	-74
70													/			-2018-
60											- 2	und			<u> </u>	354
50										dentships	which the state of					111 101 101
40 30	man	man		man	mun	an marine and a second		under month	mandana	man way the to the						
20																
10																
0	2310	310 2320 2350 2430														
		Frequency (MHz)														
				Read		∆ntenna	Pream	n					0	/er		

Frequency [MHz]	Read Level [dBµV]	Factor [dB/m]	Factor [dB]	Cable Loss	Level [dBµV/m]	Limit [dBµV/m]	Limit [dB]	Remark
2398.70	46.49	26.75	41.01	4.44	36.67	54	-17.33	Average
2398.70	65.99	26.75	41.01	4.44	56.17	74	-17.83	Peak
2410.76	80.84	26.77	41.02	4.45	71.04	-	-	Average
2410.76	94.01	26.77	41.02	4.45	84.21	-	-	Peak

802.11g_Highest Vertical

- L	evel (dBuV/m)								
90 80		pulntane	mj	and the second	5					
70 60	1				Ĺ					
50 40	Yand					h 4 mar have been been been been been been been be	limmental	4 Multimonth car		
30								3 1900	n www. www.	dagantarangkathunandapuntugunahanahanahanahantukhtehtekstattikungatarantaranahananahantunattaranturah
10-										
0 ^L 2	450		1		1				25 Frequence	00 255 x (MHz)

Frequency [MHz]	Read Level [dBµV]	Antenna Factor [dB/m]	Preamp Factor [dB]	Cable Loss	Level [dBµV/m]	Limit [dBµV/m]	Over Limit [dB]	Remark
2462.28	83.82	26.83	41.06	4.49	74.08	-	-	Average
2462.28	94.33	26.83	41.06	4.49	84.59	-	-	Peak
2484.25	36.33	26.86	41.07	4.51	26.63	54	-27.37	Average
2484.25	54.12	26.86	41.07	4.51	44.42	74	-29.58	Peak

FCC Test Report

802.11n(20MHz)_Lowest Vertical

00	Level (d	BuV/m	1)											
80												- marken white	where the second	-374
70														
60														-3.54
50										. mathematic	man	- Allah		mary Marth
40									to use work that	w.				CARLOW CO.
30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Marker	~~~~~~~~~~	an a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		****	1						
20														
10														
0	2310	23	20		23	50								2430

2310 2320		2000						240
			Fre	equency (MHz)				
Frequency [MHz]	Read Level [dBµV]	Antenna Factor [dB/m]	Preamp Factor [dB]	Cable Loss	Level [dBµV/m]	Limit [dBµV/m]	Over Limit [dB]	Remark
2369.15	43.39	26.75	41.01	4.44	33.57	54	-20.43	Average
2369.15	59.26	26.75	41.01	4.44	49.44	74	-24.56	Peak
2413.32	83.42	26.77	41.02	4.45	73.62	-	-	Average
2413.32	94.21	26.77	41.02	4.45	84.41	-	-	Peak

	ovel (dDu	Horizontal												
90 80	Level (ubu											-	4	374
70 60														354
50 40									UN	ANN AND	2 Marilina	/		My man of MA
30 20	harrow and the second	and the second	ww.k	alan da karan da kar Na karan da k	and the forest destruction of the second	alter an	han an a	human	and the second sec					
10														
	2310	0 2320 2350 2430 Frequency (MHz)												

Frequency [MHz]	Read Level [dBµV]	Antenna Factor [dB/m]	Preamp Factor [dB]	Cable Loss	Level [dBµV/m]	Limit [dBµV/m]	Over Limit [dB]	Remark
2395.79	34.65	26.75	41.01	4.44	24.83	54	-29.17	Average
2395.79	57.19	26.75	41.01	4.44	47.37	74	-26.63	Peak
2410.76	78.61	26.77	41.02	4.45	68.81	-	-	Average
2410.76	93.15	26.77	41.02	4.45	83.35	-	-	Peak

FCC ID: WHBBMWHUS Mobile Appliance, Inc. Head-Up Screen / BMW Head-Up Screen

802.11n(20MHz)_Highest Vertical

00	Level	l (dBuV/m)								
90 80		propriordenana	and and the second second	ീ					.374	
70 60	- /									
50 40	r d			many	ANT ANT ANT	4 Mathillion	4.		× 2002-	
30						-3	VINYKAN	Manurun	htternetheternetheternetheternetheternetheternetheternetheternetheternetheternetheternetheternetheternetheternet	
20										
0	2450							25	00 2550	
	Frequency (MHz)									

Frequency [MHz]	Read Level [dBµV]	Antenna Factor [dB/m]	Preamp Factor [dB]	Cable Loss	Level [dBµV/m]	Limit [dBµV/m]	Over Limit [dB]	Remark
2460.81	80.97	26.83	41.05	4.49	71.24	-	-	Average
2460.81	93.88	26.83	41.05	4.49	84.15	-	-	Peak
2483.95	34.84	26.86	41.08	4.51	25.14	54	-28.86	Average
2483.95	56.88	26.86	41.08	4.51	47.18	74	-26.82	Peak

[MHz]	[dBµV]	[dB/m]	[dB]	Loss	[dBµV/m]	[dBµV/m]	[dB]	Remark
2455.79	78.82	26.82	41.05	4.49	69.08	-	-	Average
2455.79	94.26	26.82	41.05	4.49	84.52	-	-	Peak
2483.95	34.00	26.86	41.07	4.51	24.30	54	-29.70	Average
2483.95	58.02	26.86	41.07	4.51	48.32	74	-25.68	Peak

5.2 6dB Bandwidth

5.2.1 Test Equipment

EQUIPMENT	MODEL MANUFACTURE		SERIAL NUMBER	Calibration Due date
Spectrum analyzer	N9020A	Agilent	US46220101	15/09/11
Power supply	UDP-6015	UNICORN TECH	1301006	15/09/11
RF Cable_2m	Test No.1	Hubersunhner	N/A	15/01/14

5.2.2 Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

5.2.3 Measurement Procedure

The EUT has been operated and followed in the IEEE 802.11b/g/n mode, and could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously
- 4. Set (RBW = 100 kHz, VBW = 300 kHz, Detector = Peak, Trace mode = Max Hold, Sweep = Auto)
- 5. Measure and record the results in the test report.

5.2.4 Test SET-UP (Block Diagram of Configuration)

5.2.5 Test Result

802.11b								
Frequency(MHz)	Transfer Rate	Test Result(MHz)	Limit(kHz)					
2412	11Mbps	7.88	≥500					
2437	11Mbps	8.20	≥500					
2462	11Mbps	8.25	≥500					
ļ	802.11g							
Frequency(MHz)	Transfer Rate	Test Result(MHz)	Limit(kHz)					
2412	54Mbps	16.31	≥500					
2437	54Mbps	16.05	≥500					
2462	54Mbps	16.03	≥500					
	802.1	ln(20MHz)						
Frequency(MHz)	Transfer Rate	Test Result(MHz)	Limit(kHz)					
2412	MCS7	17.15	≥500					
2437	MCS7	17.25	≥500					
2462	MCS7	17.20	≥500					

802.11b_2412MHz

802.11b_2437MHz

802.11b_2462MHz

802.11g_2412MHz

802.11g_2437MHz

802.11g_2462MHz

802.11n(20MHz)_2412MHz

802.11n(20MHz)_2437MHz

🖬 Agilent Spectrum Analyzer - Occupied BW 03:19:07 PMDec 03, 2014 Radio Std: None SENSE:INT Center Freq: 2.462000000 GHz Trig: Free Run Avg|Hold #Atten: 40 dB Ext Gain Trace/Detector Center Freq 2.462000000 GHz Avg|Hold:>10/10 Ext Gain: -1.00 dB Input: RF 9 Radio Device: BTS #IFGain:Low 10 dB/div Ref 10 dBm .og **Clear Write** -20 -30 Average -40 -50 -60 Max Hold -70 -80 Min Hold Center 2.462 GHz #Res BW 100 kHz Span 20 MHz #VBW 300 kHz Sweep 1.933 ms **Total Power** 11.39 dBm **Occupied Bandwidth** Detector Peak▶ 17.492 MHz Auto <u>Man</u> Transmit Freq Error -734 Hz **OBW Power** 99.00 % x dB Bandwidth 17.20 MHz -6.00 dB x dB STATUS MSG

802.11n(20MHz)_2462MHz

5.3 Maximum Peak Conducted Output Power

5.3.1 Test Equipment

EQUIPMENT	MODEL MANUFACTURE		SERIAL NUMBER	Calibration Due date
Power Meter	RPR3006W	D.A.R.E!! Insrtuments	14100048SNO09	15/04/29
Power supply	UDP-6015	UNICORN TECH	1301006	15/09/11
RF Cable_2m	Test No.1	Hubersunhner	N/A	15/01/14

5.3.2 Test Limit

The maximum peak power shall be less than 1 Watt (30dBm).

Note: If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the direction gain of the antenna exceeds 6dBi, In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

5.3.3 Measurement Procedure

The EUT has been operated and followed in the IEEE 802.11b/g/n mode, and could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum output power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the report.

5.3.4 Test SET-UP (Block Diagram of Configuration)

EUT		Power meter
-----	--	-------------

Frequency(MHz)	Transfer Rate	Test Result(dBm)	Limit(dBm)
2412	2412 11Mbps		≤30
2437	11Mbps	3.7	≤30
2462	11Mbps	3.0	≤30
	80	02.11g	
Frequency(MHz)	Transfer Rate	Test Result(dBm)	Limit(dBm)
2412	54Mbps	4.8	≤30
2437	54Mbps	3.8	≤30
2462	54Mbps	3.2	≤30
	802.11	n(20MHz)	
Frequency(MHz)	Transfer Rate	Test Result(dBm)	Limit(dBm)
2412	MCS7	4.5	≤30
2437	MCS7	3.7	≤30
2462	MCS7	3.0	≤30

802.11b

5.3.5 Test Result(Measurement value + Cable loss)

Note: Measurement has been performed with the Power Meter which is compliance with the 9.1.2 of KDB 558074 D01 DTS Meas. Guidance v03r02. (Power Meter Model : RPR 3006W)

5.4 Conducted Band Edges and Spurious Emission

EQUIPMENT	EQUIPMENT MODEL MANU		SERIAL NUMBER	Calibration Due date
Spectrum analyzer	N9020A	Agilent	US46220101	15/09/11
Power supply	UDP-6015	UNICORN TECH	1301006	15/09/11
RF Cable_2m	Test No.1	Hubersunhner	N/A	15/01/14

5.4.1 Test Equipment

5.4.2 Test Limit

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4.3 Test Procedures

The EUT has been operated and followed in the IEEE 802.11b/g/n mode, and could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set (RBW = 100 kHz, VBW = 300 kHz, Detector = Peak, Trace mode = Max Hold, Sweep = Auto).
- 5. Measure and record the results in the test report.

5.4.4 Block Diagram of Test setup.

5.4.5 Test Result

			802.11b				
Frequency (MHz)	Transfer Rate	Max PSD Level (dBm)	Max Band Edge (dBm)	Difference Value(dB)	Limit		
2412	11Mbps	-3.14	-43.81	40.67	Maximum Band Edge		
2437	11Mbps	-4.08	-42.95	38.87	Level shall be at least		
2462	11Mbps	-4.52	-41.50	36.98	PSD Level		

802.11g

Frequency (MHz)	Transfer Rate	PSD Reference (dBm)	Max Band Edge (dBm)	Difference Value(dB)	Limit	
2412	54Mbps	-6.34	-42.81	36.38	Maximum Band Edge	
2437	54Mbps	-7.01	-45.40	38.38	Level shall be at least	
2462	54Mbps	-7.46	-40.75	33.29	PSD Level	

802.11n(20MHz)

Frequency (MHz)	Transfer Rate	PSD Reference (dBm)	Max Band Edge (dBm)	Difference Value(dB)	Limit
2412	MCS7	-6.48	-43.24	36.76	Maximum Band Edge
2437	MCS7	-7.03	-39.89	32.86	Level shall be at least
2462	MCS7	-7.46	-46.42	39.33	PSD Level.

802.11b_2412MHz

802.11b_2437MHz

802.11b_2462MHz

Mkr-C

Next Pea

Next Le

Mkr-C

More 1 of 2

Mkr-RefL

•

Stop 25.000 GHz Sweep 1.72 s (1001 pts)

Low Channel Plot 100 kHz PSD Reference Level arker 1 2.413272000000 GHz Input RF PN0: Fast C Atten: 30 dB arker 1 2.399775000000 GHz Input: IF PND: Feat Trig: Free Run IFGain:Low Atten: 10 dB Peak Search Marker-Avg Type: Log-Pwr Avg[Hold>10/10 Avg Type: Log-Pwr Avg|Held>10/10 TRACE TYPE A THACE TYPE DET NextPe Mkr1 2.413 272 GH -6.335 dBr Mkr1 2.399 775 GH -44.502 dBr Ref 20.00 dE Ref 0.00 dF Next Righ Mkr--CF St • Next Le Mkr-Sta ٥ Marker De Mkr-Sto Mkr-C Mkr-RefL More 1 of 2 Mkr-RefLv Center 2.41200 GHz #Res BW 100 kHz Span 24.00 MHz Sweep 2.33 ms (1001 pts) Start 2.31000 GHz #Res BW 100 kHz Stop 2.44500 GHz Sweep 12.9 ms (1001 pts) #VBW 300 kHz #VBW 300 kHz **Spurious Emission 7-25 GHz** Spurious Emission 30-7000 MHz arker 1 880,340000000 MHz Input RF PHO: Fast C Trig: Free Run PGaint ow Atten: 30 dB arker 1 24.40600000000 GHz. Input II6 PND: Fast Trig: Free Run Attanc 30 dB Peak Search Peak Search Avg Type: Log-Pwr Avg[Hold: 10/10 Avg Type: Log-Pwr Avg/Held>10/10 THACE THE M TRACE TYPE N DET P NextPea 42.811 dBr Mkr1 24.406 GH: -48.310 dBn Ref 20.00 dB Ref 20.00 dB Next Righ Next Righ Next Le Marker De Marker Delt

Mkr--C

More 1 of 2

Start 7.000 GHz #Res BW 100 kHz

#VBW 300 kHz

Mkr-RefL

Stop 7.000 GHz Sweep 666 ms (1001 pts)

802.11g_2412MHz

Start 30 MHz #Res BW 100 kHz

#VBW 300 kHz

802.11g_2437MHz

Start 7.000 GHz #Res BW 100 kHz

#VBW 300 kHz

802.11g_2462MHz

Start 30 MHz #Res BW 100 kHz

#VBW 300 kHz

Stop 25.000 GHz Sweep 1.72 s (1001 pts)

802.11n(20MHz)_2412MHz

FCC ID: WHBBMWHUS Mobile Appliance, Inc. Head-Up Screen / BMW Head-Up Screen

802.11n(20MHz)_2437MHz

802.11n(20MHz)_2462MHz

5.5 Power Spectral Density

5.5.1 Test Equipment

EQUIPMENT	MODEL	MANUFACTURE	SERIAL NUMBER	Calibration Due date
Spectrum analyzer	N9020A	Agilent	US46220101	15/09/11
Power supply	UDP-6015	UNICORN TECH	1301006	15/09/11
RF Cable_2m	Test No.1	Hubersunhner	N/A	15/01/14

5.5.2 Test Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiated to the Antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

5.5.3 Test Procedures

The EUT has been operated and followed in the IEEE 802.11b/g/n mode, and could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously
- 4. Set (RBW = 3 kHz, VBW = 10 kHz, Detector = Peak, Span = 1.5 times DTS Channel Bandwidth, Trace mode = Max Hold, Sweep = Auto)
- 5. Measure and record the results in the test report.

5.5.4 Block Diagram of Test Setup

5.5.5 Test Result(Measurement value + Cable loss)

802.11b							
Frequency(MHz)	Transfer Rate	Test Result(dBm)	Limit(dBm)				
2412	11Mbps	-17.61	≤8				
2437	11Mbps	-15.84	≤8				
2462	11Mbps	-16.27	≤8				

802.11g

Frequency(MHz)	Transfer Rate	Test Result(dBm)	Limit(dBm)
2412	54Mbps	-18.05	≤8
2437	54Mbps	-17.78	≤8
2462	54Mbps	-18.81	≤8

802.11n(20MHz)

Frequency(MHz)	Transfer Rate	Test Result(dBm)	Limit(dBm)
2412	MCS7	-17.33	≤8
2437	MCS7	-18.24	≤8
2462	MCS7	-18.36	≤8

802.11b_2412MHz

802.11b_2437MHz

								r - Swept SA	ctrum Analyze	💴 Agilent Sp
Peak Search	MDec 09, 2014 CE 1 2 3 4 5 6	03:56:16 P	ALIGNAUTO	Avg Type		Tria: Ero	GHz	2000000	^{50 Ω} 2.43713	w Marker 1
NextPeak	32 GHz 35 dBm	2.437 1 -15.8	Mkr1	Avginoiu	0 dB	Atten: 20	PNO: Far 🍗 IFGain:Low	0 dBm	Ref 10.00	10 dB/div
Next Right										0.00
Next Lef		-	Mr. William Marking	MANNAM	1 1	uppennetwy	with the second s	ulal www.www.	Juhland	-10.0
Marker Delta	We they be want	a a li a li a li al							-	-30.0
Mkr→Cl										-50.0
Mkr→RefLv										-70.0
More 1 of 2	2.00 MHz 1001 pts)	Span 1 1.27 s (Sweep			10 kHz	#VBW	łz	37000 GH	-80.0 Center 2. #Res BW
L	,		STATUS							MSG

802.11b_2462MHz

802.11g_2412MHz

802.11g_2437MHz

802.11g_2462MHz

802.11n(20MHz)_2412MHz

802.11n(20MHz)_2437MHz

💴 Agilent Spe	ctrum Analyz	er - Swept SA								
Marker 1	^{50 Ω}	5200000) GHz	AC SE	NSE:INT	Avg Type	ALIGNAUTO	04:03:48 TRA	PMDec 09, 2014 CE 1 2 3 4 5 6	Peak Search
10 dB/div	Ref 10.0	Input: RF	PNO: Fast IFGain:Low	Atten: 20	dB	Avginoid	Mkr1	2.435 7 -18.2	752 GHz 38 dBm	NextPeak
0.00										Next Right
-10.0			AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ANNA ANA	MMrs	Nadalash	hand with			Next Left
-30.0		Abara aa ha	1.1.1.1.1.4.4.4.h.1) k.	Merrer (I KAAAAA HA	r vr ypody	VM H		Marker Delta
-50.0	A A A A A A A A A A A A A A A A A A A							h		Mkr→CF
-70.0									manan	Mkr→RefLvl
Center 2.4	13700 GH 3.0 kHz	Iz	#VBW	10 kHz			Sweep	Span 2 2.74 s	26.00 MHz (1001 pts)	More 1 of 2
MSG							STATUS		· · ·/	

802.11n(20MHz)_2462MHz

5.6 Antenna Application

5.6.1 Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Type	Frequency	Antenna Gain	Limit
Chip Antenna	2.4 GHz	3.5 dBi	≤6 dBi

5.6.2 Result

PASS