

Report No.: RZA2010-1380SAR01R1

OET 65 TEST REPORT

Product Name

GSM mobile phone

IT385

FCC ID

WH7IT385

Client

Longcheer Technology (Shanghai) Co., Ltd.

TA Technology (Shanghai) Co., Ltd. 报告专用章

GENERAL SUMMARY

Product Name	GSM mobile phone	Model	IT385
FCC ID	WH7IT385	Report No.	RZA2010-1380SAR01R1
Client	Longcheer Technology (Shanghai) Co., Lt	d.	
Manufacturer	Longcheer Technology (Shanghai) Co., Lt	d.	
Reference Standard(s)	IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions. IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.		
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards. General Judgment: Pass (Stamp) Date of issue: November 25 th , 2010		
Comment	The test result only responds to the measured sample.		

Approved by Approved

Revised by_

凌敏宝

Performed by_

薛起峰

Yang Weizhong

Ling Minbao

Xue Chaofeng

TABLE OF CONTENT

Ί.	Ger	ierai information	C
	1.1.	Notes of the Test Report	5
	1.2.	Testing Laboratory	5
	1.3.	Applicant Information	6
	1.4.	Manufacturer Information	6
	1.5.	Information of EUT	7
	1.6.	The Maximum SAR _{1g} Values and Conducted Power of each tested band	g
	1.7.	Test Date	9
2.	Оре	erational Conditions during Test	. 10
	2.1.	General description of test procedures	
	2.2.	GSM Test Configuration	. 10
	2.3.	Test Positions	. 11
	2.3.	1. Against Phantom Head	. 11
	2.3.	2. Body Worn Configuration	. 11
3.	SAF	R Measurements System Configuration	. 12
	3.1.	SAR Measurement Set-up	
	3.2.	DASY5 E-field Probe System	
	3.2.	•	
	3.2.	·	
	3.3.	Other Test Equipment	. 14
	3.3.	·	
	3.3.	2. Phantom	. 15
	3.4.	Scanning Procedure	
	3.5.	Data Storage and Evaluation	
	3.5.	1. Data Storage	. 17
	3.5.	2. Data Evaluation by SEMCAD	. 17
	3.6.	System Check	. 20
	3.7.	Equivalent Tissues	. 21
4.	Lab	oratory Environment	. 22
		racteristics of the Test	
•	5.1.	Applicable Limit Regulations	
	5.2.	Applicable Measurement Standards	
6		ducted Output Power Measurement	
Ο.	6.1.	Summary	
	6.2.	Conducted Power Results	
7		t Results	
٠.	7.1.	Dielectric Performance	
	7.1. 7.2.	System Check Results	
	7.2. 7.3.	Summary of Measurement Results	
		1. GSM 850 (GPRS)	
	ı.J.	1. Out to	. ᠘

Re	oort No. RZA2010-1380SAR01R1	Page 4 of 109
7	.3.2. GSM 1900 (GPRS)	28
	.3.3. Bluetooth Function	
8. N	leasurement Uncertainty	31
9. N	lain Test Instruments	32
ANNE	X A: Test Layout	33
ANNE	X B: System Check Results	36
ANNE	X C: Graph Results	40
ANNE	X D: Probe Calibration Certificate	72
ANNE	X E: D835V2 Dipole Calibration Certificate	81
ANNE	X F: D1900V2 Dipole Calibration Certificate	90
ANNE	X G: DAE4 Calibration Certificate	99
ANNE	X H: The EUT Appearances and Test Configuration	104

Report No. RZA2010-1380SAR01R1

Page 5 of 109

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

1.3. Applicant Information

Company: Longcheer Technology (Shanghai) Co., Ltd.

Address: Building 1,No.401,Caobao Rd, Xuhui District, Shanghai, P.R. China

City: Shanghai

Postal Code: 201204

Country: P.R. China

Contact: Leo BAO

Telephone: 86-21-640888898-5108

Fax: 021-54970876

1.4. Manufacturer Information

Company: Longcheer Technology (Shanghai) Co., Ltd.

Address: Building 1,No.401,Caobao Rd, Xuhui District, Shanghai, P.R. China

City: Shanghai

Postal Code: 201204

Country: P.R. China

Telephone: 86-21-640888898-5108

Fax: 021-54970876

Page 7 of 109

1.5. Information of EUT

General Information

	Ī			
Device Type :	Portable Device			
Exposure Category:	Uncontrolled Environment / General Population			
Product Name:	GSM mobile phone			
IMEI:	358688000000158			
Hardware Version:	LB6M111A2-1			
Software Version:	LB6UN01.8.5.1.1T20G	0714_M111		
Antenna Type:	Internal Antenna			
Device Operating Configurations :				
Operating Mode(s):	GSM 850; (tested) GSM 1900; (tested)			
Device Class:	В			
Test Modulation:	GMSK			
	Max Number of Timeslots in Uplink		2	
GPRS Multislot Class (10):	Max Number of Timeslots in Downlink		4	
	Max Total Timeslot		5	
	Mode	Tx (MHz)	Rx (MHz)	
Operating Frequency Range(s):	GSM 850	824.2 ~ 848.8	869.2 ~ 893.8	
	GSM 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8	
Davies Olassi	GSM 850: 4, tested with power level 5			
Power Class:	GSM 1900: 1, tested with power level 0			
Test Channel:	128 - 190 - 251	(GSM850) (tes	sted)	
(Low - Middle - High)	512 - 661 - 810	(GSM1900) (tes	sted)	

Report No. RZA2010-1380SAR01R1 Page 8 of 109

Auxiliary Equipment Details

AE1	:Batter	ъ
-----	---------	---

Model: BL-5C

Manufacturer: /

SN:

Equipment Under Test (EUT) is a model of GSM mobile phone. The device has an internal antenna for GSM Tx/Rx and the other is BT antenna which can be used for Tx/Rx. The detail about Mobile phone and Lithium Battery is in chapter 1.5 in this report. SAR is tested for GSM 850 and GSM 1900.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum SAR_{1g} Values and Conducted Power of each tested band

Head Configuration

Mode	Channel	Position	SAR _{1g} (W/kg)
GSM 850	190	Right, Cheek	0.750
GSM 1900	512	Left, Cheek	0.848

Body Worn Configuration

Mode	Channel	Separation distance	SAR _{1g} (W/kg)
2-slots GPRS 850	190	15mm	0.964
2-slots GPRS 1900	512	15mm	0.532

Maximum Power

Band		Max Conducted Power	Max Average Power
		(dBm)	(dBm)
CSM 950	GSM	32.27	23.24
GSM 850	GPRS,2 time-slots	32.20	26.18
GSM 1900	GSM	29.98	20.95
G3W 1900	GPRS,2 time-slots	29.90	23.88

Note: The detail power refers to Table 5 (Power Measurement Results).

1.7. Test Date

The test is performed from September 4, 2010 to September 5, 2010.

2. Operational Conditions during Test

2.1. General description of test procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 in the case of GSM 850, allocated to 512, 661 and 810 in the case of GSM 1900. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

2.2. GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power lever is set to "5" in SAR of GSM 850, set to "0" in SAR of GSM 1900, the tests in the band of GSM 850 and GSM 1900 are performed in the mode of speech transfer function.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

Table 1: The allowed power reduction in the multi-slot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0

Report No. RZA2010-1380SAR01R1

Page 11 of 109

2.3. Test Positions

2.3.1. Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

2.3.2. Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. The distance between the device and the phantom was kept 15mm.

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

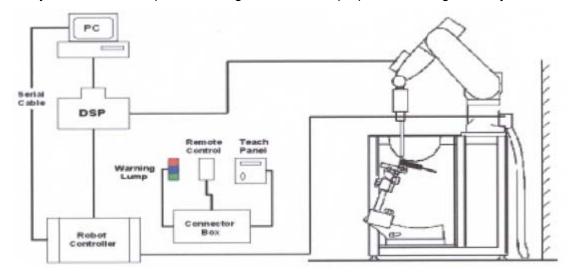


Figure 1. SAR Lab Test Measurement Set-up

3.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

3.2.1. EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure

scenario (e.g., very strong gradient

fields).

Only probe which enables compliance testing for frequencies up to 6 GHz

with precision of better 30%.

Figure 2.EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the

inference of the clamp on the test results could thus be lowered.

Figure 4.Device Holder

3.3.2. **Phantom**

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm
Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Aailable Special

Figure 5.Generic Twin Phantom

3.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values

Report No. RZA2010-1380SAR01R1

Page 16 of 109

before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- · peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

 A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, a_{i0} , a_{i1} , a_{i2}

Conversion factor
 Diode compression point
 Dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal,

the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot .) / (\cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

 $\boldsymbol{E_{tot}}$ = total field strength in V/m

- = conductivity in [mho/m] or [Siemens/m]
- = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{\text{tot}}^2 / 3770$$
 or $P_{\text{pwe}} = H_{\text{tot}}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3.6. System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 8 and table 9.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

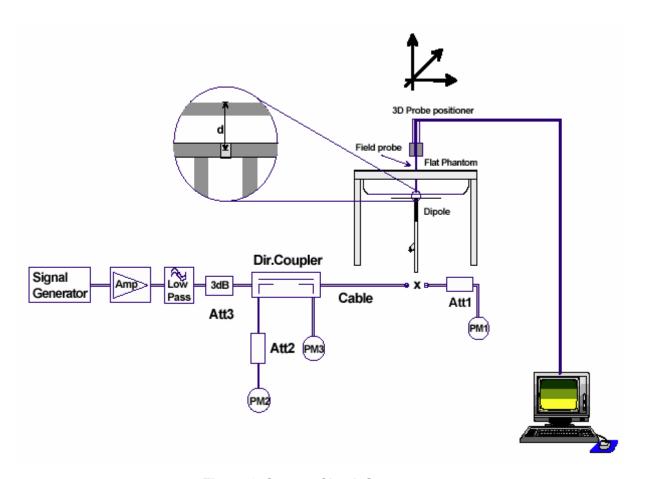


Figure 6. System Check Set-up

3.7. Equivalent Tissues

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 2 and Table 3 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 2: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz	
Water	41.45	
Sugar	56	
Salt	1.45	
Preventol	0.1	
Cellulose	1.0	
Dielectric Parameters Target Value	f=835MHz ε=41.5 σ=0.9	

MIXTURE%	FREQUENCY(Brain) 1900MHz	
Water	55.242	
Glycol monobutyl	44.452	
Salt	0.306	
Dielectric Parameters	f=1900MHz ε=40.0 σ=1.40	
Target Value	f=1900MHz ε=40.0 σ=1.40	

Table 3: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97

MIXTURE%	FREQUENCY (Body) 1900MHz		
Water	69.91		
Glycol monobutyl	29.96		
Salt	0.13		
Dielectric Parameters	f=1900MHz ε=53.3 σ=1.52		
	5115		

4. Laboratory Environment

Table 4: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C				
Relative humidity	Min. = 30%, Max. = 70%				
Ground system resistance	< 0.5 Ω				
Ambient noise is checked and found very low and in compliance with requirement of standards.					
Reflection of surrounding objects is minimize	ed and in compliance with requirement of standards.				

5. Characteristics of the Test

5.1. Applicable Limit Regulations

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

5.2. Applicable Measurement Standards

IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.

6. Conducted Output Power Measurement

6.1. Summary

The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted power.

Conducted output power was measured using an integrated RF connector and attached RF cable.

This result contains conducted output power for the EUT.

6.2. Conducted Power Results

Table 5: Conducted Power Measurement Results

			Conduc	ted Power(dBm)		Aver	age power(dBm)
	GSM 850		Channel	Channel	Channel		Channel	Channel	Channel
			128	190	251		128	190	251
GSM	Befo	ore	32.27	32.25	32.26	-9.03dB	23.24	23.22	23.23
GSIVI	Afte	er	32.26	32.23	32.25	-9.03dB	23.23	23.20	23.22
	1TXslot	Before	32.31	32.21	32.24	-9.03dB	23.28	23.18	23.21
GPRS	1175101	After	32.30	32.19	32.23	-9.03dB	23.27	23.16	23.20
(GMSK)	2TValete	Before	32.20	32.15	32.16	-6.02dB	26.18	26.13	26.14
	2TXslots	After	32.19	32.14	32.14	-6.02dB	26.17	26.12	26.12
			Conducted Power(dBm)				Average power(dBm)		
	GSM 1900		Channel	Channel	Channel		Channel	Channel	Channel
			512	661	810		512	661	810
GSM	Befo	ore	29.95	29.98	29.69	-9.03dB	20.92	20.95	20.66
GSIWI	Afte	er	29.93	29.97	29.68	-9.03dB	20.90	20.94	20.65
	1TXslot	Before	29.91	29.92	29.63	-9.03dB	20.88	20.89	20.60
GPRS	1178101	After	29.90	29.91	29.62	-9.03dB	20.87	20.88	20.59
(GMSK)	2TXslots	Before	29.89	29.90	29.60	-6.02dB	23.87	23.88	23.58
	21 ASIULS	After	29.88	29.89	29.59	-6.02dB	23.86	23.87	23.57

Note:

1) Division Factors

To average the power, the division factor is as follows:

1 TX- slot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2 TX- slot = 2 transmit time slots out of 8 time slots

=> conducted power divided by (8/2) => -6.02 dB

2) Average power numbers

The maximum power numbers are marks in bold.

3) For SAR testing the EUT was set to multislot class based on the maximum averaged conducted power.

7. Test Results

7.1. Dielectric Performance

Table 6: Dielectric Performance of Head Tissue Simulating Liquid

Frequency	Description	Dielectric Par	Temp	
Frequency	Description	ε _r	σ(s/m)	${\mathbb C}$
	Target value	41.5	0.90	,
835MHz	±5% window	39.43 — 43.58	0.86 — 0.95	,
(head)	Measurement value	42.02	0.87	21.9
	2010-9-5	42.02	0.07	21.9
	Target value	40.0	1.40	,
1900MHz	5% window	38.00 — 42.00	1.33 — 1.47	,
(head)	Measurement value	39.31	1.39	22.1
	2010-9-4	38.31	1.39	22.1

Table 7: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Pa	Temp	
rrequericy	Description	ε _r	σ(s/m)	${\mathfrak C}$
	Target value	55.20	0.97	,
835MHz	±5% window	52.44 — 57.96	0.92 — 1.02	/
(body)	Measurement value	55.38	1.00	21.8
	2010-9-5	33.30	1.00	
	Target value	53.3	1.52	,
1900MHz	±5% window	50.64 — 55.97	1.44 — 1.60	/
(body)	Measurement value	F2 01	1.53	21.0
	2010-9-4	2010-9-4 53.01		21.9

7.2. System Check Results

Table 8: System Check for Head Tissue Simulation Liquid

Frequency	Description	SAR(W/kg)		Dielectric Parameters		Temp
		10g	1g	٤r	σ(s/m)	$^{\circ}$
	Recommended result	1.56	2.39	41.2	0.90	,
835MHz	±10% window	1.40 — 1.72	2.15 — 2.63	41.2	0.89	/
OSSIVITIZ	Measurement value	1.59	2.44	42.02	0.87	21.9
	2010-9-5	1.59	2.44	42.02		21.9
	Recommended result	5.22	10	30.5	1 11	1
1900MHz	10% window	4.70 — 5.74	9.00 — 11.00	39.5	1.44	/
1900MHZ	Measurement value	5.40	10.50	20.24	1.39	22.1
	2010-9-4	5.40	10.50	39.31		

Note: 1. The graph results see ANNEX B.

2. Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

Table 9: System Check for Body Tissue Simulation Liquid

Frequency	Description	SAR(W/kg)		Description SAR(W/kg)		SAR(W/kg)		Dielectric Parameters		Temp
		10g	1g	ε _r	σ(s/m)	$^{\circ}$				
835MHz	Recommended result ±10% window	1.63 1.47 — 1.79	2.49 2.24 — 2.74	54.6	0.98	/				
OSSIVIFIZ	Measurement value 2010-9-5	1.68	2.56	55.38	1.00	21.8				
1900 MH-	Recommended result ±10% window	5.52 4.97 — 6.07	10.3 9.27 — 11.33	53.5	1.54	1				
1900 MHz	Measurement value 2010-9-4	5.51	10.49	53.01	1.53	21.9				

Note: 1. The graph results see ANNEX B.

2. Target Values used derive from the calibration certificate and 250 mW is used as feeding power to the Calibrated dipole.

7.3. Summary of Measurement Results

7.3.1. GSM 850 (GPRS)

Table 10: SAR Values [GSM 850 (GPRS)]

Limit of SAR		10g Average	1g Average	Power Drift		
		2.0 W/kg	1.6 W/kg	± 0.21 dB	Graph	
Test Case		Measuremen	t Result(W/kg)	Power Drift	Results	
Different Test Position	Channel	10g Average	1g Average	(dB)		
	Te	est position of Hea	ad (SIM1)			
Left hand, Touch cheek	Middle	0.517	0.716	-0.050	Figure 11	
Left hand, Tilt 15 Degree	Middle	0.275	0.375	-0.160	Figure 12	
	High	0.514	0.715	0.093	Figure 13	
Right hand, Touch cheek	Middle	0.543	0.750	-0.073	Figure 14	
	Low	0.495	0.681	-0.098	Figure 15	
Right hand, Tilt 15 Degree	Middle	0.272	0.370	-0.090	Figure 16	
	Worst Cas	e position of SIM1	with SIM2 (Head)			
Right hand, Touch cheek	Middle	0.511	0.708	0.055	Figure 17	
	Test posit	ion of Body (SIM1	, Distance 15mm)			
	High	0.358	0.497	0.015	Figure 18	
Towards Ground	Middle	0.379	0.527	-0.017	Figure 19	
	Low	0.366	0.507	-0.090	Figure 20	
Towards phantom	Middle	0.341	0.462	-0.057	Figure 21	
	Worst case	e position of SIM1	with SIM2 (Body)			
Towards Ground	Middle	0.377	0.522	-0.060	Figure 22	
Worst case position of Body with Earphone						
Towards Ground	Middle	0.248	0.349	-0.020	Figure 23	
Wo	rst case po	sition of Body wit	h GPRS (GMSK, 21	JP)		
Towards Ground	Middle	0.696	0.964	-0.094	Figure 24	

Note: 1. The value with blue color is the maximum SAR Value of test case of each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.
- 4. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

Report No. RZA2010-1380SAR01R1

Page 27 of 109

Table 11: Extrapolated SAR Values of highest measured SAR [GSM 850 (GPRS)]

Limit of SAR Test Case		Conducted	1g Average	Tune-up	1g Average			
		Power	1.6 W/kg	Procedures	1.6			
		Measurement	Measurement	maximum	Extrapolated			
Test Position	Channel	Result (dBm)	Result (W/kg)	Power(dBm)	Result (W/kg)			
	GSM							
Right hand, Touch cheek	Middle	32.25	0.750	32.5	0.794			
GPRS								
Towards Ground	Middle	32.15	0.964	32.5	1.045			

Report No. RZA2010-1380SAR01R1

Page 28 of 109

7.3.2. GSM 1900 (GPRS)

Table 12: SAR Values [GSM 1900 (GPRS)]

Limit of SAR		10g Average	1g Average	Power Drift				
		2.0 W/kg	1.6 W/kg	± 0.21 dB	Graph			
Test Case		Measurement	t Result(W/kg)	Power Drift	Results			
Different Test Position	Channel	10g Average	1g Average	(dB)				
	Test position of Head (SIM1)							
	High	0.283	0.489	0.014	Figure 25			
Left hand, Touch cheek	Middle	0.418	0.706	0.132	Figure 26			
	Low	0.503	0.848	-0.021	Figure 27			
Left hand, Tilt 15 Degree	Middle	0.093	0.151	0.041	Figure 28			
Right hand, Touch cheek	Middle	0.407	0.661	0.047	Figure 29			
Right hand, Tilt 15 Degree	Middle	0.088	0.145	-0.049	Figure 30			
	Worst Cas	e position of SIM1	with SIM2 (Head)					
Left hand, Touch cheek	Low	0.504	0.838	0.150	Figure 31			
	Test posit	ion of Body (SIM1	, Distance 15mm)					
	High	0.095	0.154	0.053	Figure 32			
Towards Ground	Middle	0.148	0.238	0.067	Figure 33			
	Low	0.177	0.282	-0.187	Figure 34			
Towards phantom	Middle	0.140	0.238	-0.113	Figure 35			
Worst case position of SIM1 with SIM2 (Body)								
Towards Ground	Low	0.185	0.295	-0.149	Figure 36			
Worst case position of Body with Earphone								
Towards Ground	Low	0.185	0.295	-0.037	Figure 37			
Wo	rst case po	sition of Body wit	h GPRS (GMSK, 2l	JP)				
Towards Ground	Low	0.335	0.532	-0.046	Figure 38			

Note: 1.The value with blue color is the maximum SAR Value of test case of each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.
- 4. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

Report No. RZA2010-1380SAR01R1

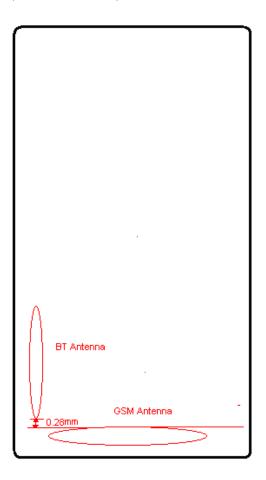

Page 29 of 109

Table 13: Extrapolated SAR Values of highest measured SAR [GSM 1900 (GPRS)]

Limit of SAR Test Case		Conducted 1g Average		Tune-up	1g Average	
		Power	1.6 W/kg	Procedures	1.6	
		Measurement	Measurement	maximum	Extrapolated	
Test Position	Channel	Result (dBm)	Result (W/kg)	Power(dBm)	Result (W/kg)	
		GSM				
Left hand, Touch cheek	Low	29.95	0.848	30.5	0.962	
GPRS						
Towards Ground	Low	29.89	0.532	30.5	0.612	

7.3.3. Bluetooth Function

The distance between BT antenna and main antenna is <2.5cm. The location of the antennas inside mobile phone is shown below (refer to Annex H):

The output power of BT antenna is as following:

Channel	Ch 0	Ch 39	Ch 78
Charmer	2402 MHz	2441 Mhz	2480 MHz
Conducted Output Power(dBm)	0.512	0.148	-0.041

Stand-alone SAR

According to the output power measurement result and the distance between BT antenna and main antenna we can draw the conclusion that:

stand-alone SAR are not required for BT, because the output power of BT transmitter is \leq P_{Ref} and its antenna is<2.5cm from other antenna.

Simultaneous SAR

About BT and GSM, the output power of BT transmitter is \leq P_{Ref} and its antenna is<2.5cm from other antenna., so Simultaneous SAR are not required for BT and GSM.

Report No. RZA2010-1380SAR01R1

Page 31 of 109

8. Measurement Uncertainty

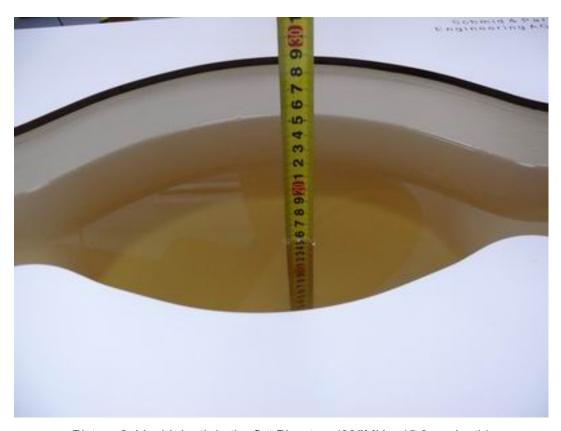
No.	source	Туре	Uncertaint y Value (%)	Probability Distributio n	k	Ci	Standard ncertainty $u_i^{'}(\%)$	Degree of freedom V _{eff} or v _i	
1	System repetivity	Α	0.5	N	1	1	0.5	9	
Measurement system									
2	probe calibration	В	5.9	N	1	1	5.9	∞	
3	axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞	
4	Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞	
6	boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞	
7	probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞	
8	System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞	
9	readout Electronics	В	1.0	Ν	1	1	1.0	∞	
10	response time	В	0	R	$\sqrt{3}$	1	0	∞	
11	integration time	В	4.32	R	$\sqrt{3}$	1	2.5	∞	
12	noise	В	0	R	$\sqrt{3}$	1	0	∞	
13	RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	∞	
14	Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	∞	
15	Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	∞	
16	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	∞	
Test sample Related									
17	-Test Sample Positioning	Α	2.9	N	1	1	2.9	5	
18	-Device Holder Uncertainty	Α	4.1	N	1	1	4.1	5	
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	∞	
Physical parameter									

Report No. RZA2010-1380SAR01R1

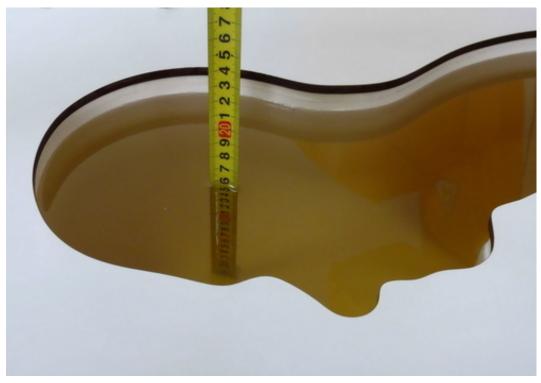
Page 32 of 109

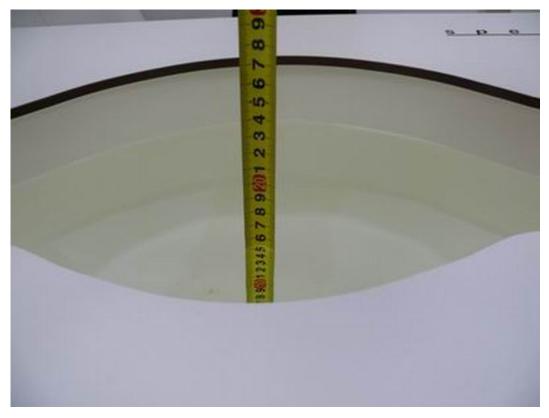
20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	80
21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6 4	1.8	∞
22	-liquid conductivity (measurement uncertainty)	В	5.0	N	1	0.6 4	3.2	∞
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	∞
24	-liquid permittivity (measurement uncertainty)	В	5.0	N	1	0.6	3.0	∞
Combined standard uncertainty		$u'_{c} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$					12.0	
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$		N	k=2		24.0	

9. Main Test Instruments


Table 14: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 13, 2009	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Req	uested
03	Power meter	Agilent E4417A	GB41291714	March 13, 2010	One year
04	Power sensor	Agilent 8481H	MY41091316	March 26, 2010	One year
05	Signal Generator	HP 8341B	2730A00804	September 13, 2009	One year
06	Amplifier	IXA-020	0401	No Calibration Req	uested
07	BTS	E5515C	MY48360988	December 4, 2009	One year
08	E-field Probe	EX3DV4	3677	September 23, 2009	One year
09	DAE	DAE4	871	November 11, 2009	One year
10	Validation Kit 835MHz	D835V2	4d092	January 14, 2010	One year
11	Validation Kit 1900MHz	D1900V2	5d018	June 15, 2010	One year


ANNEX A: Test Layout


Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid depth in the flat Phantom (835MHz, 15.3cm depth)

Picture 3: Liquid depth in the head Phantom (835MHz, 15.2cm depth)

Picture 4: Liquid depth in the flat Phantom (1900 MHz, 15.4cm depth)

Picture 5: liquid depth in the head Phantom (1900 MHz, 15.2cm depth)

ANNEX B: System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d092

Date/Time: 9/5/2010 10:50:02 AM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.87$ mho/m; $\varepsilon_r = 42.02$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.71 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 55.5 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 3.75 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.59 mW/g Maximum value of SAR (measured) = 2.67 mW/g

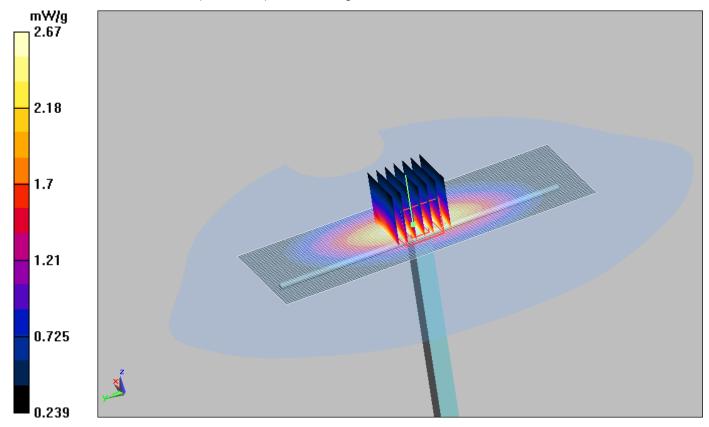


Figure 7 System Performance Check 835MHz 250mW

System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d092

Date/Time: 9/5/2010 1:37:20 PM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 1.00 \text{ mho/m}$; $\varepsilon_r = 55.38$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.77 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 50.9 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 3.68 W/kg

SAR(1 g) = 2.56 mW/g; SAR(10 g) = 1.68 mW/gMaximum value of SAR (measured) = 2.77 mW/g

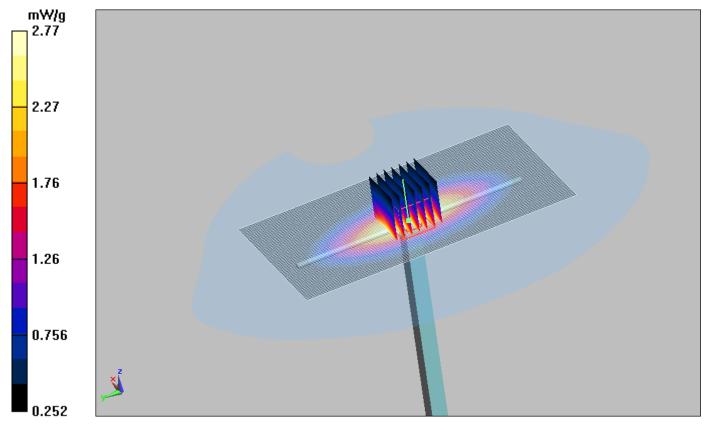


Figure 8 System Performance Check 835MHz 250mW

System Performance Check at 1900 MHz Head TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d018

Date/Time: 9/4/2010 10:16:04 AM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.39 mho/m; ε_r = 39.31; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 87.8 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 20.1 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.40 mW/gMaximum value of SAR (measured) = 11.9 mW/g

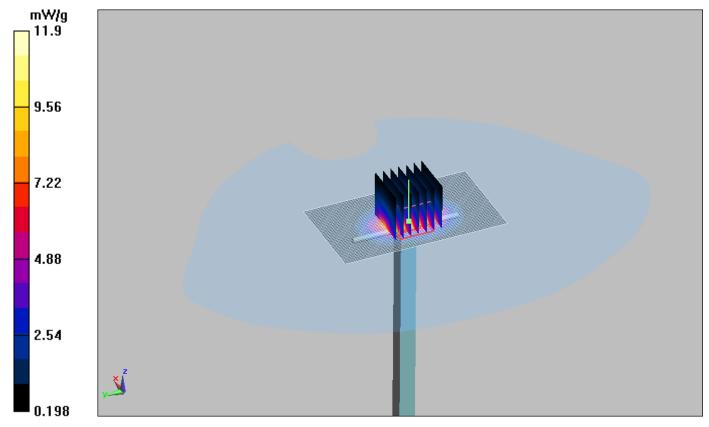


Figure 9 System Performance Check 1900MHz 250mW

System Performance Check at 1900 MHz Body TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d018

Date/Time: 9/4/2010 5:49:19 PM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.53 mho/m; ε_r = 53.01; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.5 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 75.9 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 10.49 mW/g; SAR(10 g) = 5.51 mW/g

Maximum value of SAR (measured) = 11 mW/g

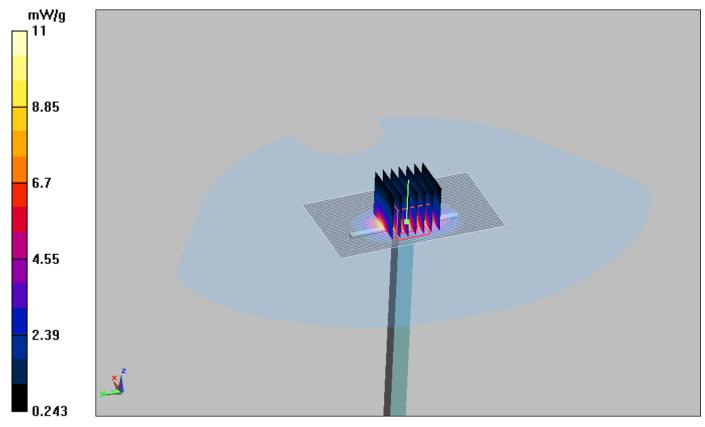


Figure 10 System Performance Check 1900MHz 250mW

ANNEX C: Graph Results

GSM 850 SIM1 Left Cheek Middle

Date/Time: 9/5/2010 11:02:17 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 0.875$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liqiud Temperature: 21.5 °C

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.754 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.8 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 0.943 W/kg

SAR(1 g) = 0.716 mW/g; SAR(10 g) = 0.517 mW/g

Maximum value of SAR (measured) = 0.761 mW/g

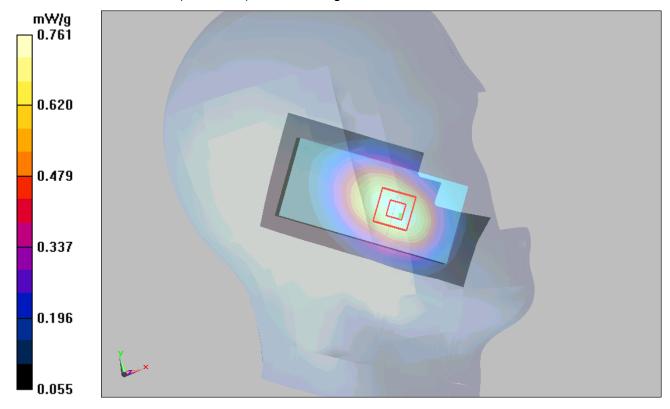


Figure 11 Left Hand Touch Cheek GSM 850 SIM1 Channel 190

GSM 850 SIM1 Left Tilt Middle

Date/Time: 9/5/2010 11:24:19 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 0.875$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

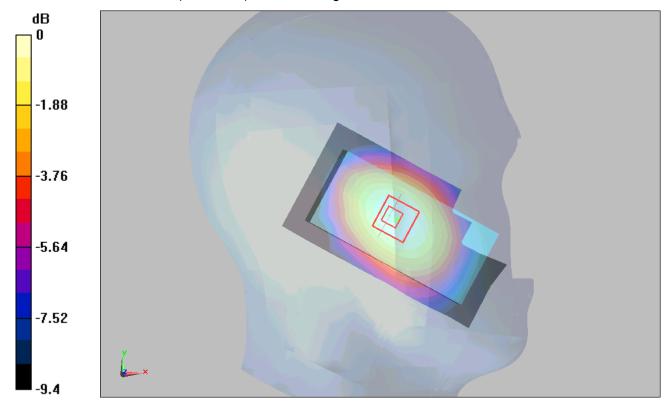
Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.397 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.7 V/m; Power Drift = -0.160 dB

Peak SAR (extrapolated) = 0.478 W/kg

SAR(1 g) = 0.375 mW/g; SAR(10 g) = 0.275 mW/g Maximum value of SAR (measured) = 0.398 mW/g

0 dB = 0.398 mW/g

Figure 12 Left Hand Tilt 15° GSM 850 SIM1 Channel 190

GSM 850 SIM1 Right Cheek High

Date/Time: 9/5/2010 12:11:07 PM

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 849 MHz; σ = 0.886 mho/m; ε_r = 41.8; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.776 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.2 V/m; Power Drift = 0.093 dB

Peak SAR (extrapolated) = 0.944 W/kg

SAR(1 g) = 0.715 mW/g; SAR(10 g) = 0.514 mW/g

Maximum value of SAR (measured) = 0.759 mW/g

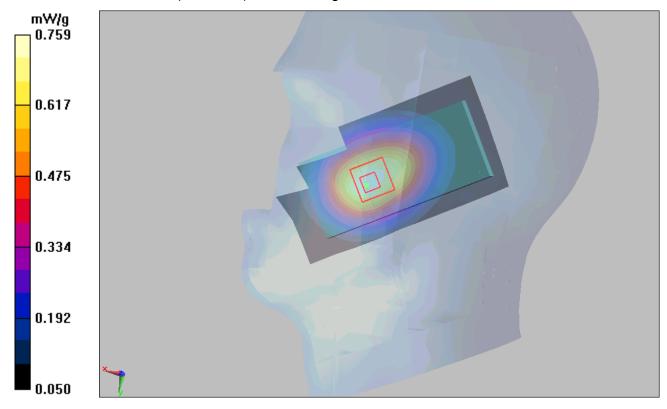


Figure 13 Right Hand Touch Cheek GSM 850 SIM1 Channel 251

GSM 850 SIM1 Right Cheek Middle

Date/Time: 9/5/2010 10:16:17 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 0.875$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

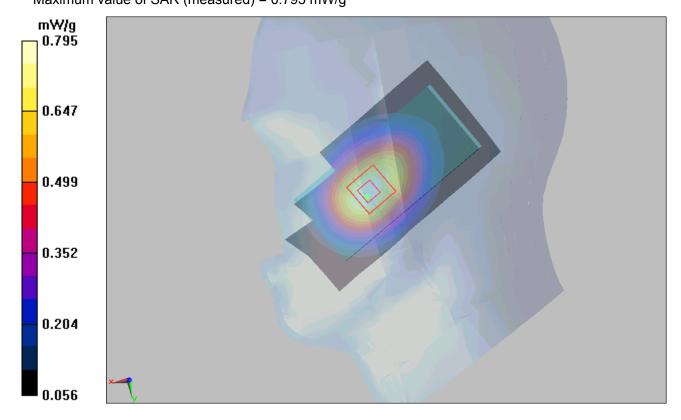
Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.804 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.71 V/m; Power Drift = -0.073 dB

Peak SAR (extrapolated) = 0.974 W/kg

SAR(1 g) = 0.750 mW/g; SAR(10 g) = 0.543 mW/g Maximum value of SAR (measured) = 0.795 mW/g

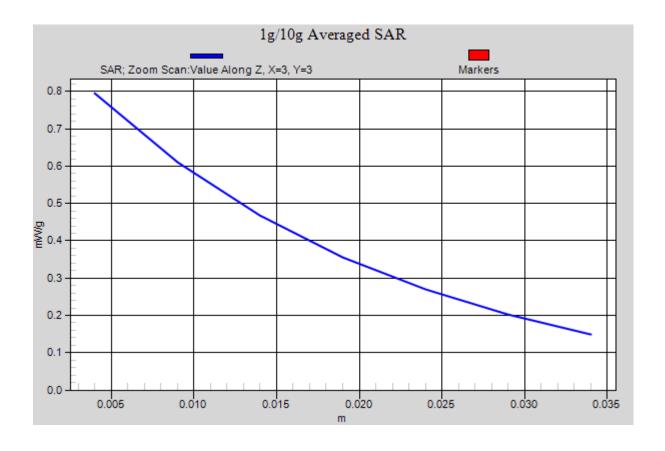


Figure 14 Right Hand Touch Cheek GSM 850 SIM1 Channel 190

GSM 850 SIM1 Right Cheek Low

Date/Time: 9/5/2010 11:49:21 PM

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.866 \text{ mho/m}$; $\varepsilon_r = 42.2$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.756 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.62 V/m; Power Drift = -0.098 dB

Peak SAR (extrapolated) = 0.879 W/kg

SAR(1 g) = 0.681 mW/g; SAR(10 g) = 0.495 mW/g

Maximum value of SAR (measured) = 0.722 mW/g

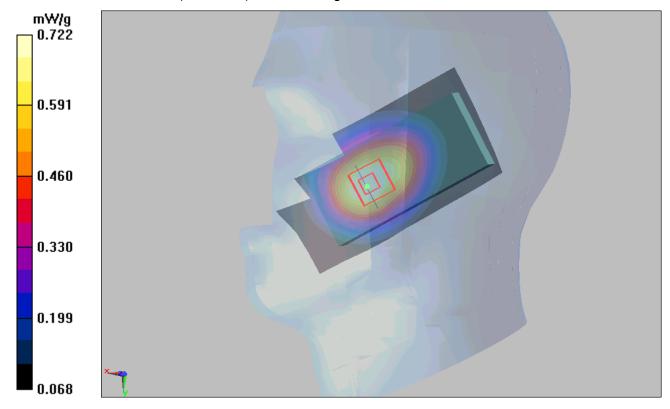


Figure 15 Right Hand Touch Cheek GSM 850 SIM1 Channel 128

GSM 850 SIM1 Right Tilt Middle

Date/Time: 9/5/2010 10:38:33 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 0.875$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.397 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.6 V/m; Power Drift = -0.090 dB

Peak SAR (extrapolated) = 0.469 W/kg

SAR(1 g) = 0.370 mW/g; SAR(10 g) = 0.272 mW/g Maximum value of SAR (measured) = 0.391 mW/g

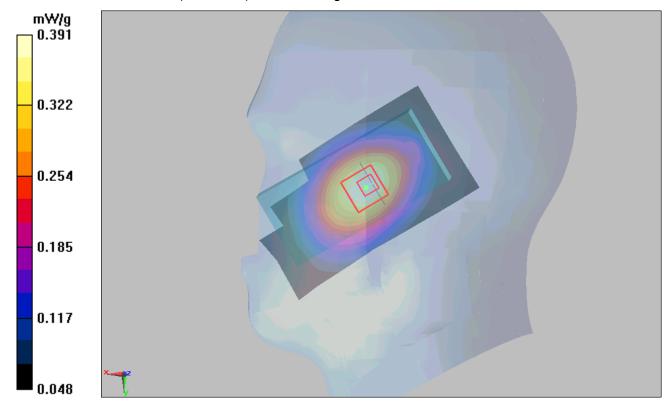


Figure 16 Right Hand Tilt 15° GSM 850 SIM1 Channel 190

GSM 850 SIM2 Right Cheek Middle

Date/Time: 9/5/2010 12:34:07 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 0.875$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

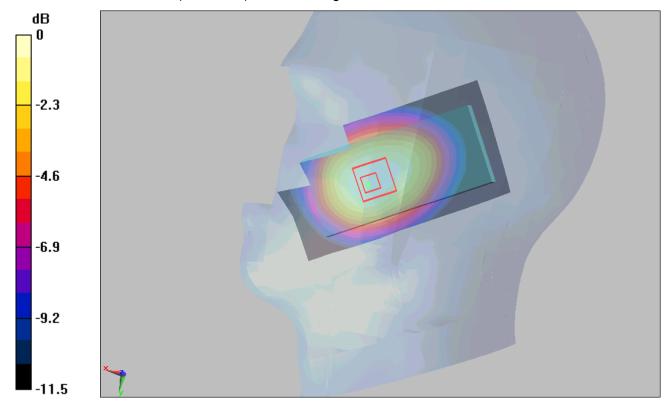
Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.774 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.21 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 0.925 W/kg

SAR(1 g) = 0.708 mW/g; SAR(10 g) = 0.511 mW/g Maximum value of SAR (measured) = 0.754 mW/g

0 dB = 0.754 mW/g

Figure 17 Right Hand Touch Cheek GSM 850 SIM2 Channel 190

GSM 850 SIM1 Towards Ground High

Date/Time: 9/5/2010 4:05:19 PM

Communication System: GSM 850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz; $\sigma = 1.02$ mho/m; $\epsilon_r = 55.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.535 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 7.81 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 0.640 W/kg

SAR(1 g) = 0.497 mW/g; SAR(10 g) = 0.358 mW/g

Maximum value of SAR (measured) = 0.538 mW/g

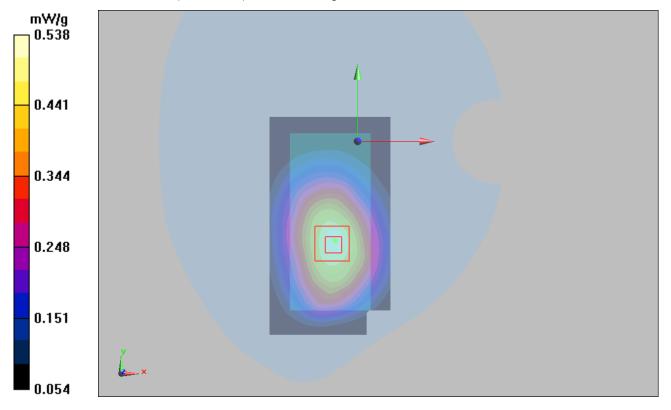


Figure 18 Body, Towards Ground, GSM 850 SIM1 Channel 251

GSM 850 SIM1 Towards Ground Middle

Date/Time: 9/5/2010 3:20:56 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liqiud Temperature: 21.5 °C

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.571 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 8.01 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 0.684 W/kg

SAR(1 g) = 0.527 mW/g; SAR(10 g) = 0.379 mW/g

Maximum value of SAR (measured) = 0.566 mW/g

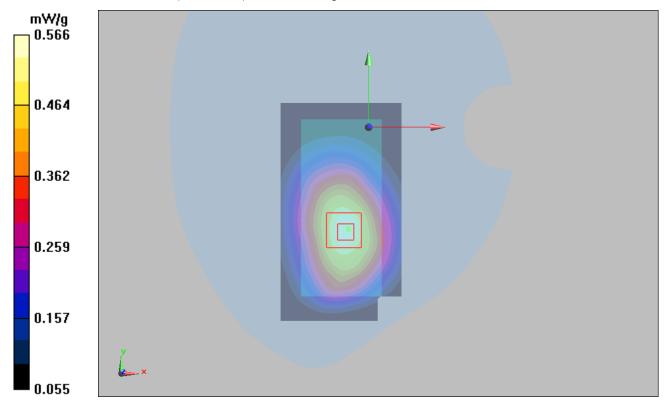


Figure 19 Body, Towards Ground, GSM 850 SIM1 Channel 190

GSM 850 SIM1 Towards Ground Low

Date/Time: 9/5/2010 3:42:58 PM

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.992 \text{ mho/m}$; $\epsilon_r = 55.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.552 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 7.8 V/m; Power Drift = -0.090 dB

Peak SAR (extrapolated) = 0.652 W/kg

SAR(1 g) = 0.507 mW/g; SAR(10 g) = 0.366 mW/g

Maximum value of SAR (measured) = 0.550 mW/g

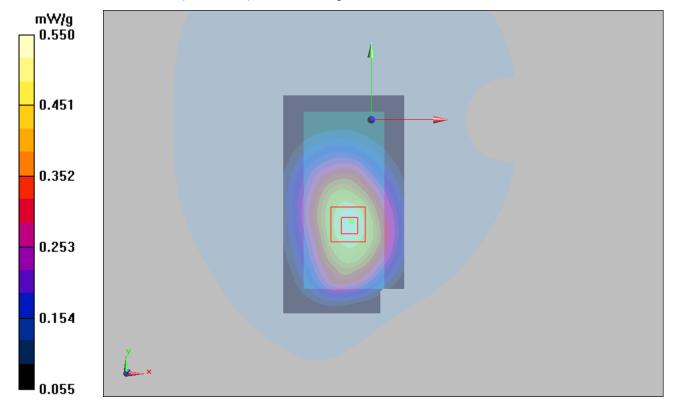


Figure 20 Body, Towards Ground, GSM 850 SIM1 Channel 128

GSM 850 SIM1 Towards Phantom Middle

Date/Time: 9/5/2010 2:57:55 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liqiud Temperature: 21.5 °C

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.508 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 6.69 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 0.576 W/kg

SAR(1 g) = 0.462 mW/g; SAR(10 g) = 0.341 mW/g

Maximum value of SAR (measured) = 0.500 mW/g

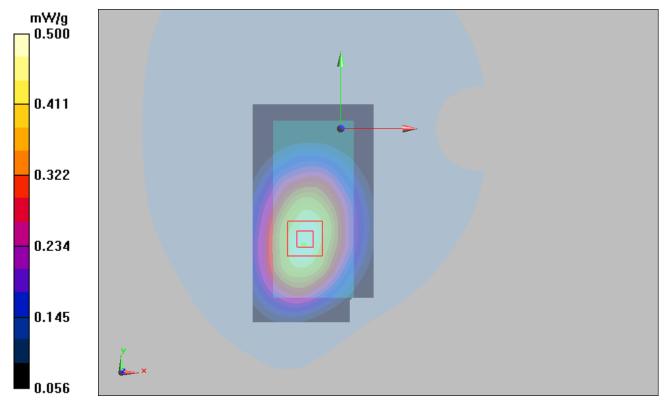


Figure 21 Body, Towards Phantom, GSM 850 SIM1 Channel 190

GSM 850 SIM2 Towards Ground Middle

Date/Time: 9/5/2010 6:37:56 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liqiud Temperature: 21.5 °C

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.566 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 8.09 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 0.663 W/kg

SAR(1 g) = 0.522 mW/g; SAR(10 g) = 0.377 mW/g

Maximum value of SAR (measured) = 0.564 mW/g

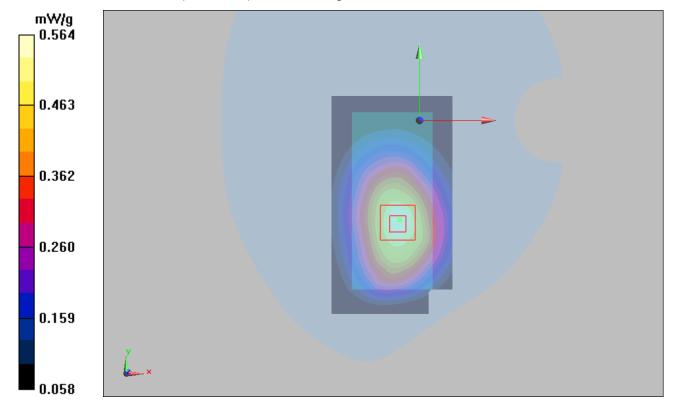


Figure 22 Body, Towards Ground, GSM 850 SIM2 Channel 190

GSM 850 SIM1 with Earphone Towards Ground Middle

Date/Time: 9/5/2010 5:02:47 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liqiud Temperature: 21.5 °C

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.373 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 5.79 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 0.461 W/kg

SAR(1 g) = 0.349 mW/g; SAR(10 g) = 0.248 mW/g

Maximum value of SAR (measured) = 0.379 mW/g

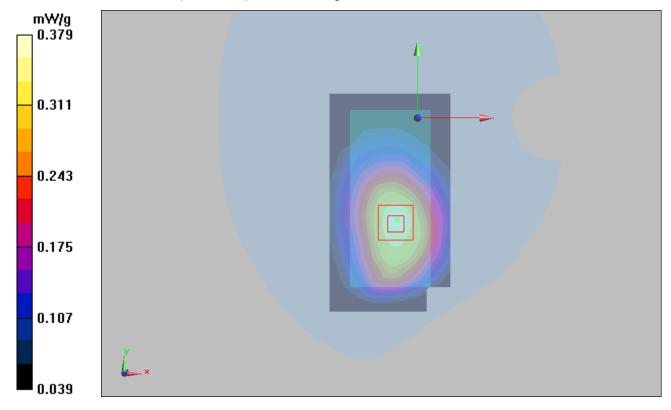


Figure 23 Body with Earphone, Towards Ground, GSM 850 SIM1 Channel 190

GSM 850 SIM1 GPRS (2Up) Towards Ground Middle

Date/Time: 9/5/2010 5:53:33 PM

Communication System: GSM850 + GPRS(2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4.15

Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

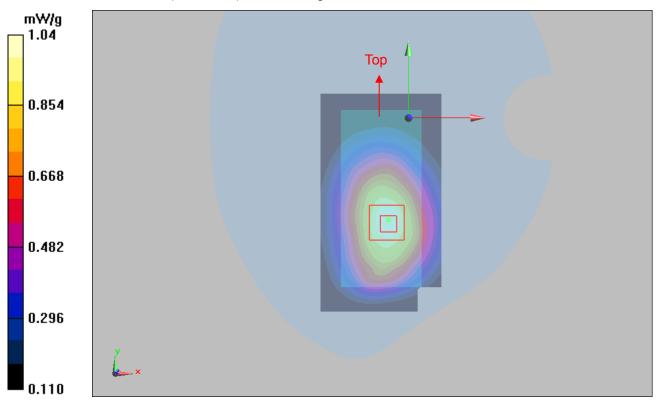
Phantom: SAM1; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.06 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 11 V/m; Power Drift = -0.094 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.964 mW/g; SAR(10 g) = 0.696 mW/g

Maximum value of SAR (measured) = 1.04 mW/g

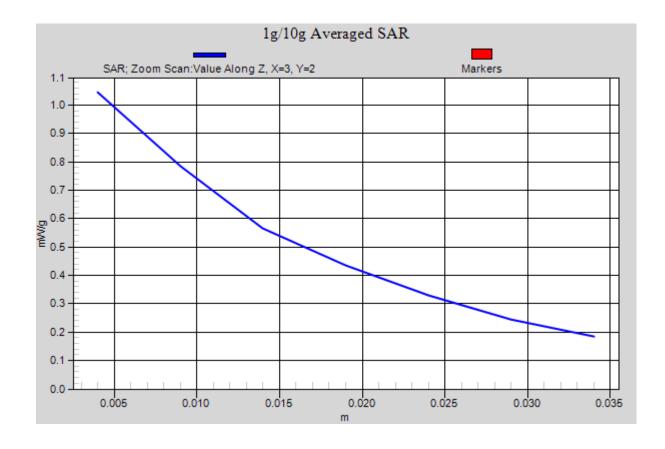


Figure 24 Body, Towards Ground, GSM 850 SIM1 GPRS (2Up) Channel 190

GSM 1900 SIM1 Left Cheek High

Date/Time: 9/4/2010 2:33:14 PM

Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.523 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.86 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 0.721 W/kg

SAR(1 g) = 0.489 mW/g; SAR(10 g) = 0.283 mW/g

Maximum value of SAR (measured) = 0.540 mW/g

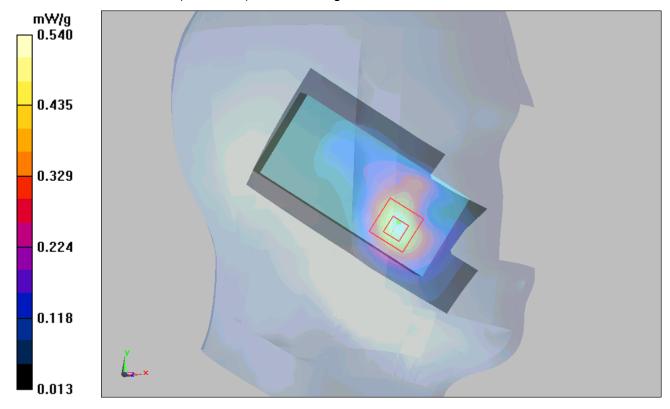


Figure 25 Left Hand Touch Cheek GSM 1900 SIM1 Channel 810

GSM 1900 SIM1 Left Cheek Middle

Date/Time: 9/4/2010 12:23:29 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.37 \text{ mho/m}$; $\epsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.787 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.11 V/m; Power Drift = 0.132 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.706 mW/g; SAR(10 g) = 0.418 mW/g

Maximum value of SAR (measured) = 0.762 mW/g

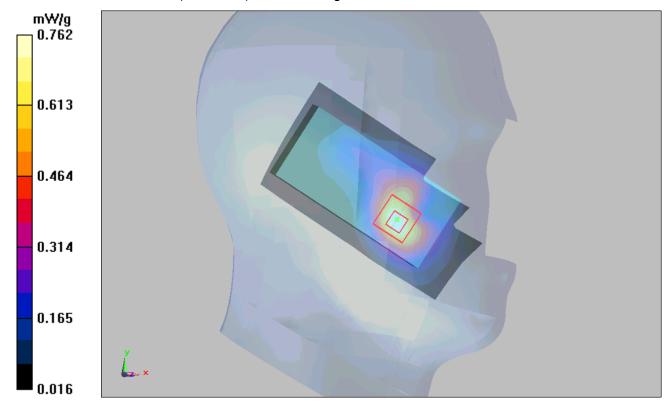


Figure 26 Left Hand Touch Cheek GSM 1900 SIM1 Channel 661

GSM 1900 SIM1 Left Cheek Low

Date/Time: 9/4/2010 12:45:35 PM

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.35 \text{ mho/m}$; $\epsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

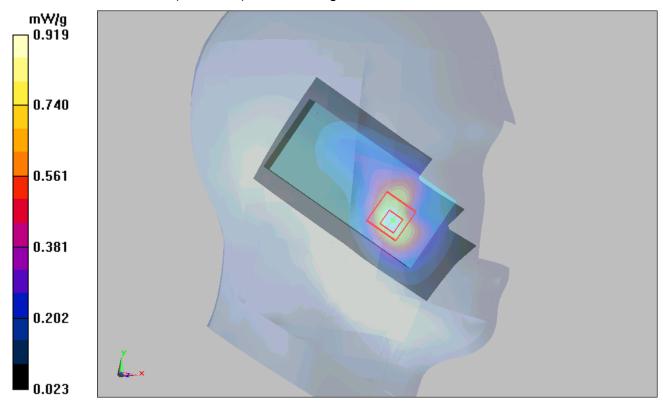
Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.939 mW/g


Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.53 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.848 mW/g; SAR(10 g) = 0.503 mW/g

Maximum value of SAR (measured) = 0.919 mW/g

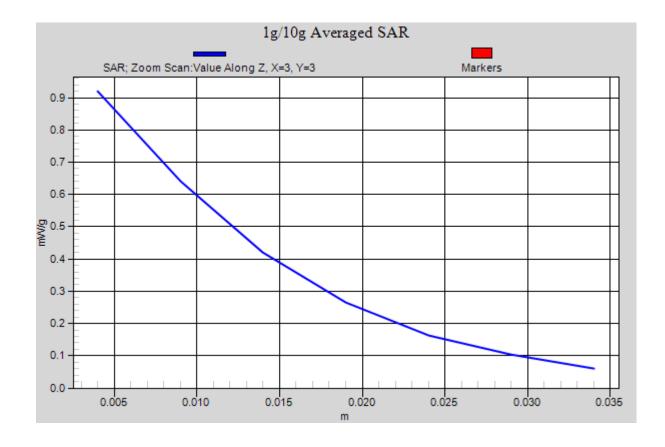


Figure 27 Left Hand Touch Cheek GSM 1900 SIM1 Channel 512

GSM 1900 SIM1 Left Tilt Middle

Date/Time: 9/4/2010 1:38:56 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.37 \text{ mho/m}$; $\epsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.202 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.21 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 0.628 W/kg

SAR(1 g) = 0.151 mW/g; SAR(10 g) = 0.093 mW/g Maximum value of SAR (measured) = 0.165 mW/g

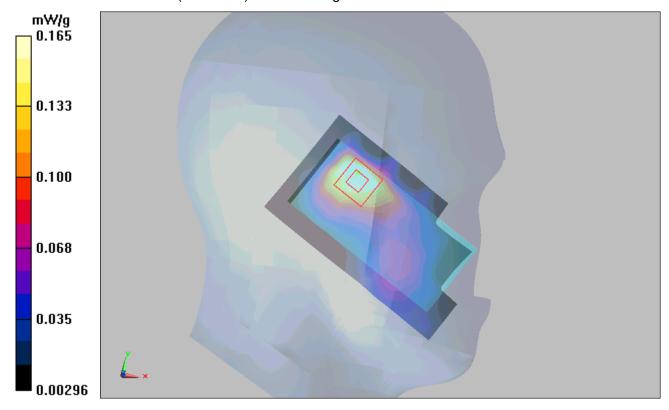


Figure 28 Left Hand Tilt 15° GSM 1900 SIM1 Channel 661

GSM 1900 SIM1 Right Cheek Middle

Date/Time: 9/4/2010 11:36:04 AM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.37 \text{ mho/m}$; $\epsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.755 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.14 V/m; Power Drift = 0.047 dB

Peak SAR (extrapolated) = 0.924 W/kg

SAR(1 g) = 0.661 mW/g; SAR(10 g) = 0.407 mW/g Maximum value of SAR (measured) = 0.715 mW/g

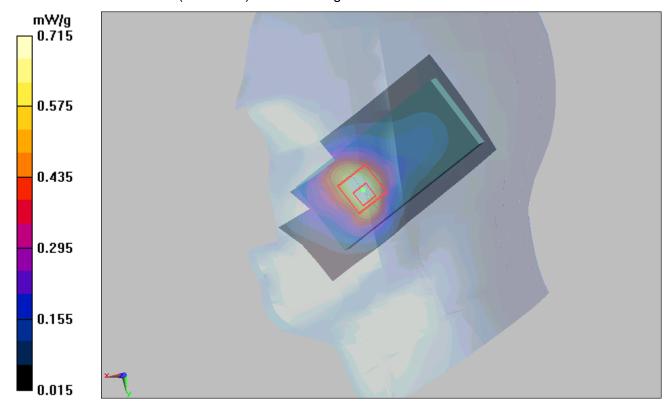


Figure 29 Right Hand Touch Cheek GSM 1900 SIM1 Channel 661

GSM 1900 SIM1 Right Tilt Middle

Date/Time: 9/4/2010 11:58:10 AM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.37 \text{ mho/m}$; $\epsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.164 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.23 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.217 W/kg

SAR(1 g) = 0.145 mW/g; SAR(10 g) = 0.088 mW/g

Maximum value of SAR (measured) = 0.158 mW/g

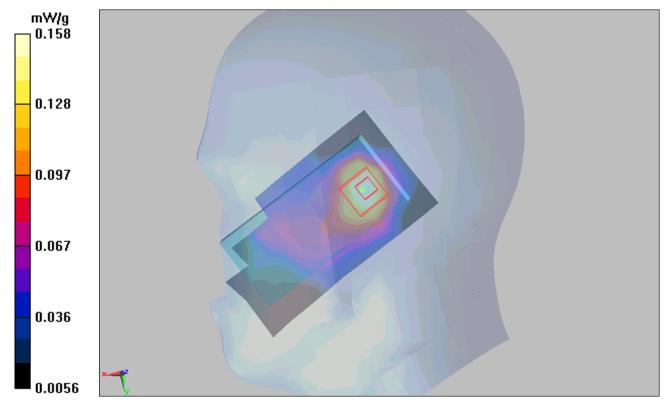


Figure 30 Right Hand Tilt 15° GSM 1900 SIM1 Channel 661

GSM 1900 SIM2 Left Cheek Low

Date/Time: 9/4/2010 2:03:25 PM

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.35 \text{ mho/m}$; $\epsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.939 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.89 V/m; Power Drift = 0.150 dB

Peak SAR (extrapolated) = 1.2 W/kg

SAR(1 g) = 0.838 mW/g; SAR(10 g) = 0.504 mW/g Maximum value of SAR (measured) = 0.903 mW/g

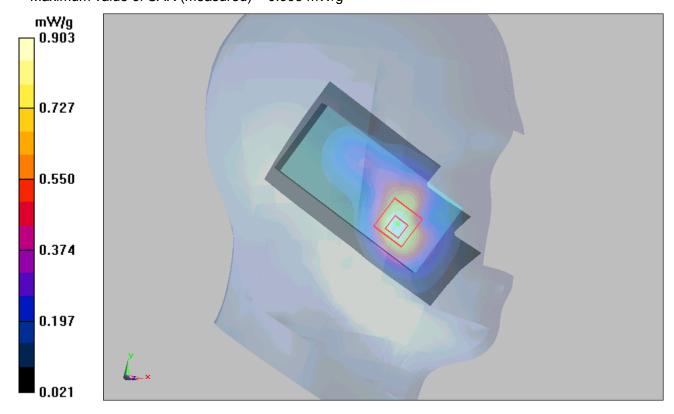


Figure 31 Left Hand Touch Cheek GSM 1900 SIM2 Channel 512

GSM 1900 SIM1 Towards Ground High

Date/Time: 9/4/2010 8:14:15 PM

Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liqiud Temperature: 21.5 °C

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.165 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 4.39 V/m; Power Drift = 0.053 dB

Peak SAR (extrapolated) = 0.246 W/kg

SAR(1 g) = 0.154 mW/g; SAR(10 g) = 0.095 mW/g

Maximum value of SAR (measured) = 0.165 mW/g

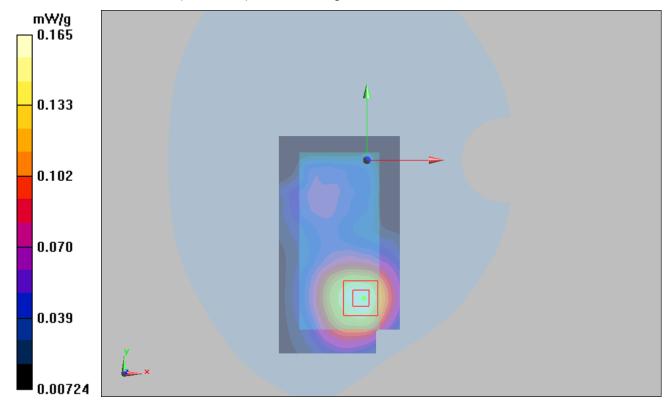


Figure 32 Body, Towards Ground, GSM 1900 SIM1 Channel 810

GSM 1900 SIM1 Towards Ground Middle

Date/Time: 9/4/2010 7:05:26 PM

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liqiud Temperature: 21.5 °C

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.257 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 5.23 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 0.356 W/kg

SAR(1 g) = 0.238 mW/g; SAR(10 g) = 0.148 mW/g

Maximum value of SAR (measured) = 0.257 mW/g

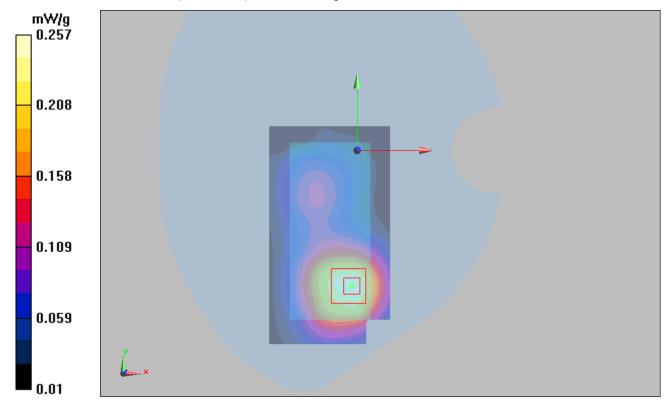


Figure 33 Body, Towards Ground, GSM 1900 SIM1 Channel 661

GSM 1900 SIM1 Towards Ground Low

Date/Time: 9/4/2010 7:51:55 PM

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.305 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 6.4 V/m; Power Drift = -0.187 dB

Peak SAR (extrapolated) = 0.421 W/kg

SAR(1 g) = 0.282 mW/g; SAR(10 g) = 0.177 mW/g

Maximum value of SAR (measured) = 0.303 mW/g

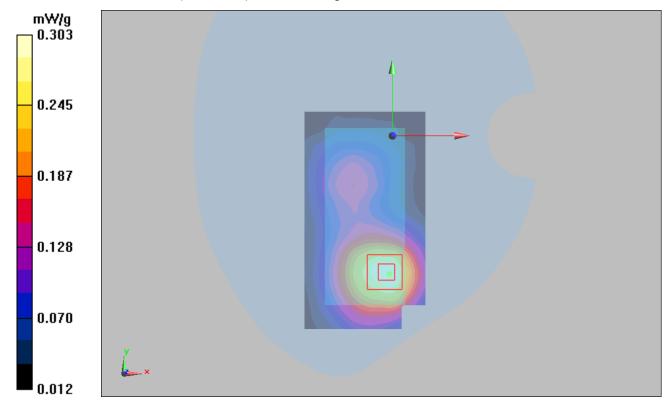


Figure 34 Body, Towards Ground, GSM 1900 SIM1 Channel 512

GSM 1900 SIM1 Towards Phantom Middle

Date/Time: 9/4/2010 7:28:27 PM

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liqiud Temperature: 21.5 °C

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.258 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 4.68 V/m; Power Drift = -0.113 dB

Peak SAR (extrapolated) = 0.375 W/kg

SAR(1 g) = 0.238 mW/g; SAR(10 g) = 0.140 mW/g

Maximum value of SAR (measured) = 0.261 mW/g

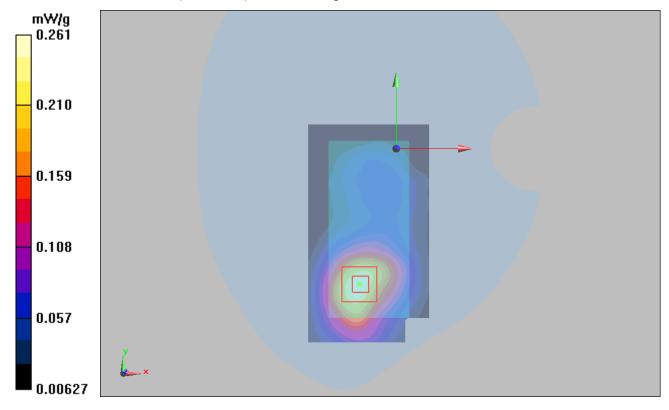


Figure 35 Body, Towards Phantom, GSM 1900 SIM1 Channel 661

GSM 1900 SIM2 Towards Ground Low

Date/Time: 9/4/2010 9:48:51 PM

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.314 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 6.76 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 0.445 W/kg

SAR(1 g) = 0.295 mW/g; SAR(10 g) = 0.185 mW/g

Maximum value of SAR (measured) = 0.316 mW/g

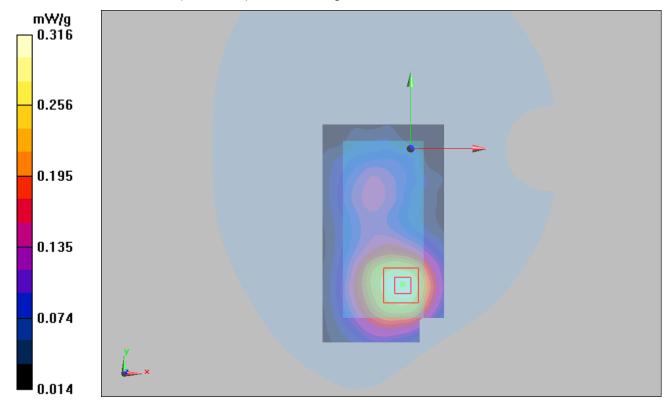


Figure 36 Body, Towards Ground, GSM 1900 SIM2 Channel 512

GSM 1900 SIM1 with Earphone Towards Ground Low

Date/Time: 9/4/2010 9:24:53 PM

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.331 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 6.57 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 0.442 W/kg

SAR(1 g) = 0.295 mW/g; SAR(10 g) = 0.185 mW/g

Maximum value of SAR (measured) = 0.318 mW/g

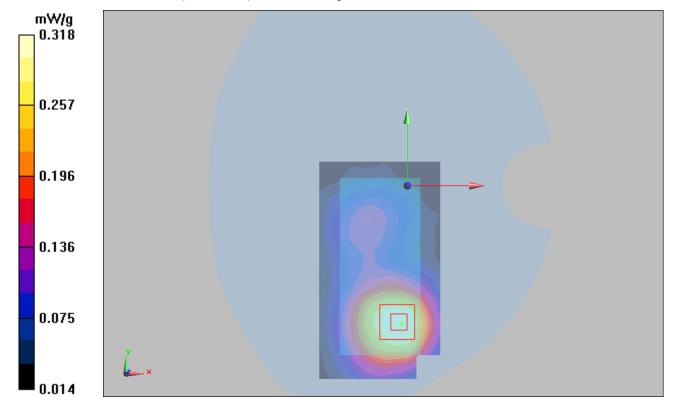


Figure 37 Body with Earphone, Towards Ground, GSM 1900 SIM1 Channel 512

GSM 1900 SIM1 GPRS (2Up) Towards Ground Low

Date/Time: 9/4/2010 9:00:25 PM

Communication System: PCS 1900+GPRS(2Up); Frequency: 1850.2 MHz;Duty Cycle: 1:4.15

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

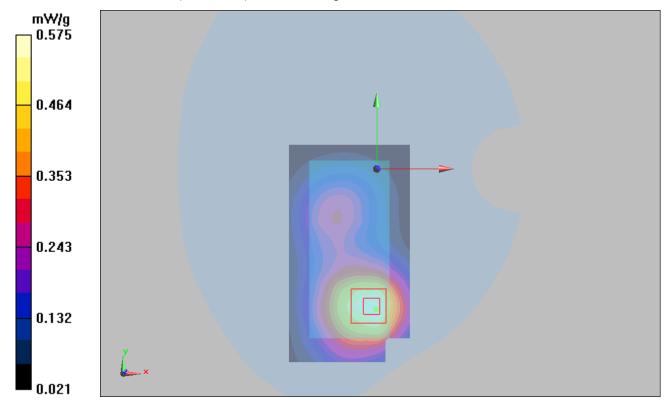
Phantom: SAM2; Type: SAM;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.584 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 8.7 V/m; Power Drift = -0.046 dB

Peak SAR (extrapolated) = 0.783 W/kg

SAR(1 g) = 0.532 mW/g; SAR(10 g) = 0.335 mW/g

Maximum value of SAR (measured) = 0.575 mW/g

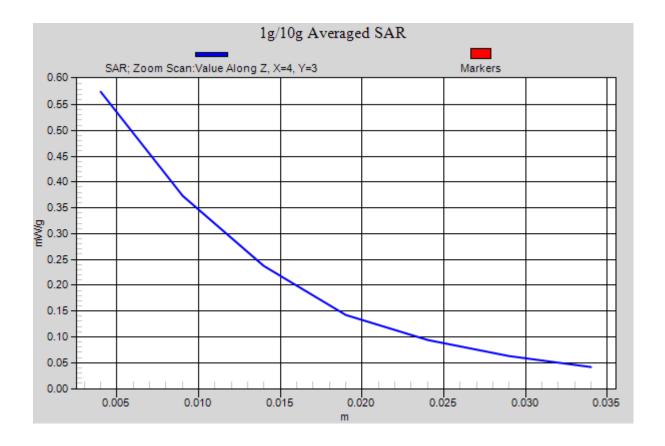


Figure 38 Body, Towards Ground, GSM 1900 SIM1 GPRS (2Up) Channel 512

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

TA (Auden)

Certificate No: EX3-3677_Sep09

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE EX3DV4 - \$N:3677 Object QA CAL-01.v6, QA CAL-12.v5, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date: September 23, 2009 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41495277 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attenuator SN: S5054 (3c) 31-Mar-09 (No. 217-01026) Mar-10 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 2-Jan-09 (No. ES3-3013 Jan09) Jan-10 DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Name Function Calibrated by: **Laboratory Technician** Approved by: Issued: September 23, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3677_Sep09

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Service suisse d'étaionnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP

sensitivity in TSL / NORMx,y,z

Polarization φ

diode compression point φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-1380SAR01R1

Page 74 of 109

EX3DV4 SN:3677

September 23, 2009

Probe EX3DV4

SN:3677

Manufactured: Last calibrated: September 9, 2008 November 7, 2008 September 23, 2009

Recalibrated:

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

September 23, 2009

DASY - Parameters of Probe: EX3DV4 SN:3677

Sensitivity in Free Space ^A			Diode Compression ^B		
NormX	0.42 ± 10.1%	μ V/(V/m) ²	DCP X	91 mV	
NormY	0.47 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	92 mV	
NormZ	0.40 ± 10.1%	μ V/(V/m) ²	DCP Z	93 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

т	c	1		

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to	Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	8.2	4.4
SAR _{be} [%]	With Correction Algorithm	8.0	0.5

TSL

1750 MHz

Typical SAR gradient: 10 % per mm

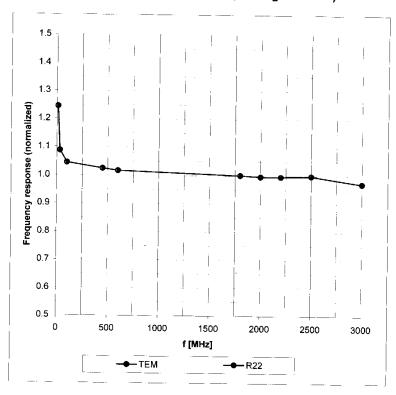
Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	7.5	3.9
SAR _{be} [%]	With Correction Algorithm	8.0	0.4

Sensor Offset

Probe Tip to Sensor Center _ _

1.0 mm

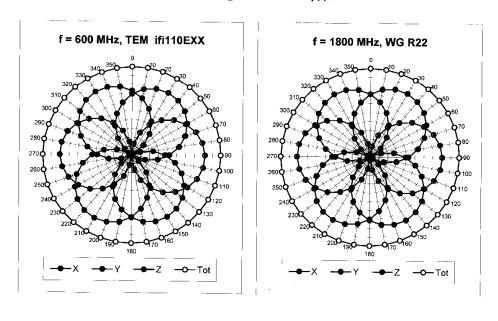
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

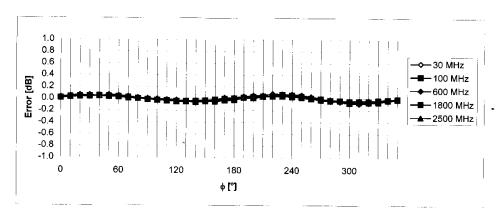

 $^{^{\}mathrm{A}}$ The uncertainties of NormX,Y,Z do not affect the E $^{\mathrm{2}}$ -field uncertainty inside TSL (see Page 8).

 $^{^{\}mbox{\scriptsize B}}$ Numerical linearization parameter: uncertainty not required.

September 23, 2009

Frequency Response of E-Field

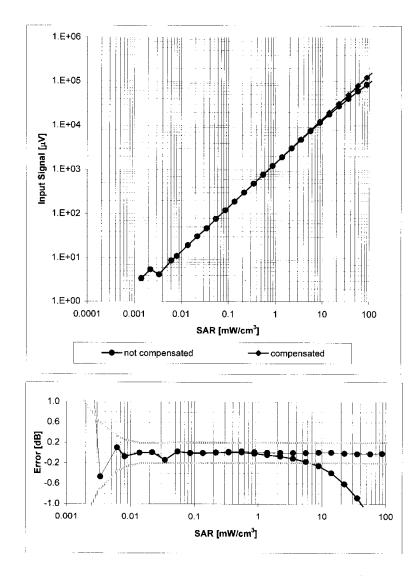

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

September 23, 2009

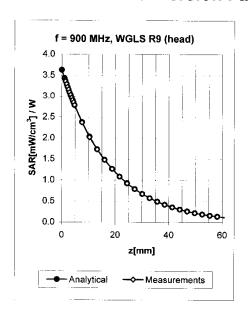
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

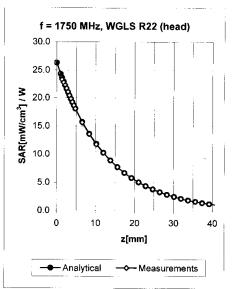


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

September 23, 2009

Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)

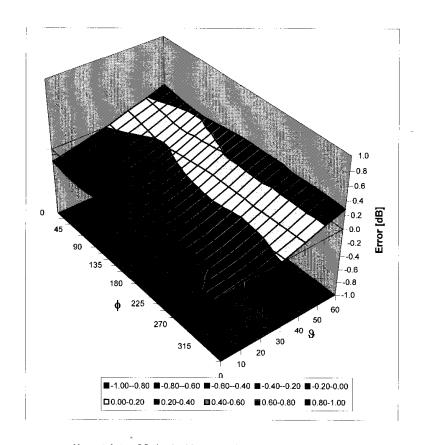


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

September 23, 2009

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.68	0.64	9.20 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.71	0.62	8.91 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.68	0.62	8.04 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	$40.0\pm5\%$	1.40 ± 5%	0.70	0.60	7.53 ± 11.0% (k=2)
							•
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.32	0.49	10.43 ± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.54	0.73	9.11 ± 11.0% (k=2)
900	± 50 / ± 100	Body	$55.0 \pm 5\%$	1.05 ± 5%	0.63	0.71	8.89 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.55	0.74	7.70 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.30	1.01	7.62 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.56	0.68	7.28 ± 11.0% (k=2)


^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3677_Sep09

September 23, 2009

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

ANNEX E: D835V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Issued: January 18, 2010

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Auden Certificate No: D835V2-4d092_Jan10

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d092

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date: January 14, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	of la
Approved by:	Katja Pokovic	Technical Manager	The My

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d092_Jan10

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

ACT System configuration, as its as not	given on page 1.	
DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.2 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 mW / g
SAR normalized	normalized to 1W	9.56 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.63 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 mW / g
SAR normalized	normalized to 1W	6.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW /g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd. Test Report

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	10.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.86 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.63 mW / g
SAR normalized	normalized to 1W	6.52 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.47 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-4d092_Jan10 Page 4 of 9

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-1380SAR01R1

Page 85 of 109

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω - 2.8 jΩ	
Return Loss	- 30.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.6 Ω - 4.5 jΩ
Return Loss	- 25.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.392 ns
Liectrical Delay (one direction)	1.002 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	September 15, 2009	

DASY5 Validation Report for Head TSL

Date/Time: 11.01.2010 12:00:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.2$; $\rho = 1000$ kg/m³

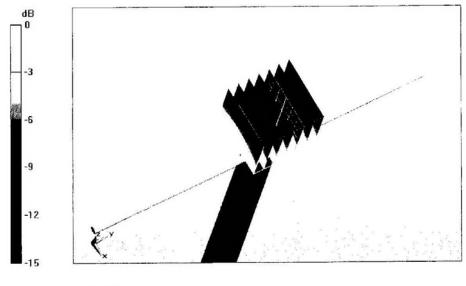
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

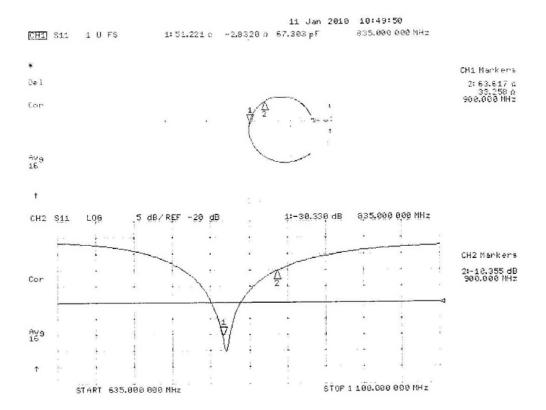
- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.5 V/m; Power Drift = -0.00176 dB

Peak SAR (extrapolated) = 3.58 W/kg


SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.56 mW/g

Maximum value of SAR (measured) = 2.77 mW/g

0 dB = 2.77 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 14.01.2010 15:40:17

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

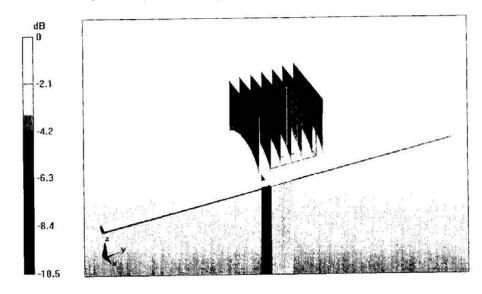
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.9 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.63 mW/g

Maximum value of SAR (measured) = 2.89 mW/g

0 dB = 2.89 mW/g