

TEST REPORT

Test report no.: 1-3617/21-01-02

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

15

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com
e-mail: https://www.ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

AGD Systems Limited

White Lion House, Gloucester Road, Staverton, GL51 0TF Cheltenham / UNITED KINGDOM

Phone: +44 14 52 85 42 12 Contact: Richard Ellis

e-mail: Richard.Ellis@agd-systems.com

Manufacturer

InnoSenT GmbH Innovative Sensor-Technik

Am Rödertor 30

97499 Donnersdorf / GERMANY

Test standard/s

FCC - Title 47 CFR Part FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Speed & Ranging Radar Traffic

Model name: AGD 317
FCC ID: WH3AGD317

Frequency: 24.075 – 24.175 GHz

(24.080 GHz / 24.125 GHz / 24.170 GHz)

Antenna: Integrated patch antenna

Power supply: 10.8 V to 16.0 V DC by power supply

Temperature range: -20°C to +60°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Thomas Vogler	Meheza Walla
Lab Manager	Lab Manager
Radio Communications & EMC	Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Genera	al information	3
	2.1 2.2 2.3	Notes and disclaimerApplication detailsTest laboratories sub-contracted	3
3	Test st	tandard/s, references and accreditations	4
4	Report	ting statements of conformity – decision rule	5
5	Test e	nvironment	6
6	Test it	em	6
	6.1 6.2	General descriptionAdditional information	
7	Descri	ption of the test setup	7
	7.1 7.2 7.3 7.4 7.5	Shielded semi anechoic chamber	10 11 11
8	Seque	nce of testing	14
	8.1 8.2 8.3 8.4 8.5	Sequence of testing radiated spurious 9 kHz to 30 MHz	15 16 17
9	Measu	rement uncertainty	19
10	Sun	nmary of measurement results	20
11	Mea	asurement results	21
	11.1 11.2 11.3 11.4	Field strength of emissions (wanted signal) Occupied bandwidth (99% bandwidth) Field strength of emissions and band edge (radiated spurious) Conducted spurious emissions < 30 MHz	24 25
12	Glo	ssary	39
13	Doo	cument history	40
14	Acc	reditation Certificate - D-PL-12076-01-05	40

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

 Date of receipt of order:
 2022-02-17

 Date of receipt of test item:
 2022-03-04

 Start of test:*
 2022-03-07

 End of test:*
 2022-09-12

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

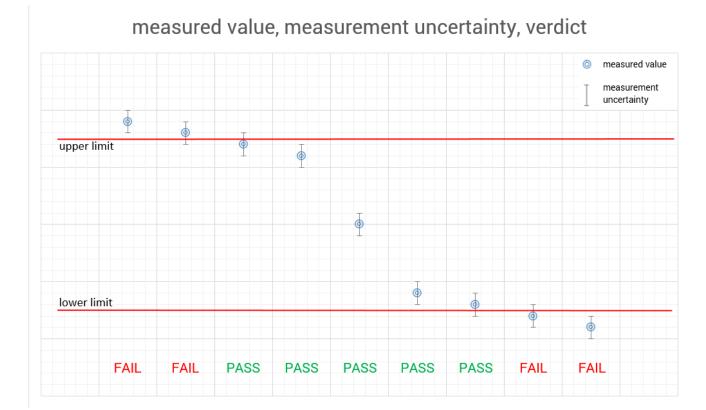
© CTC advanced GmbH Page 3 of 40

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description					
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices					
Guidance	Version	Description					
ANSI C63.4-2014 ANSI C63.10-2013 ANSI C63.26-2015	-/- -/- -/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services					
Accreditation	Descriptio	n					
D-PL-12076-01-05		unication FCC requirements akks.de/as/ast/d/D-PL-12076-01-05e.pdf Dakks Deutsche Akkreditierungsstelle D-PL-12076-01-05					

FCC designation number: DE0002


© CTC advanced GmbH Page 4 of 40

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 40

5 Test environment

Temperature : T _{max} +60 °C during high temp		T_{max}	+22 °C during room temperature tests +60 °C during high temperature tests -20 °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply :		V _{nom} V _{max} V _{min}	12.0 V DC by power supply 16.0 V 10.8 V

6 Test item

6.1 General description

Kind of test item	:	Speed & Ranging Radar Traffic
Model name	:	AGD 317
S/N serial number	:	122269-0002
Hardware status	:	7
Software status	:	MI-144P ver 9
Frequency band	:	24.075 – 24.175 GHz (24.080 GHz / 24.125 GHz / 24.170 GHz)
Type of modulation	:	FMCW
Number of channels	:	1
Antenna	:	Integrated patch antenna
Power supply	:	10.8 V to 16.0 V DC by power supply
Temperature range	:	-20°C to +60°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-3617/21-01-01 AnnexA

1-3617/21-01-01_AnnexB 1-3617/21-01-01_AnnexD

In addition to the normal operation mode, a test mode is used in accordance with CFR 47 Part §15.31 (c) & (m), in which the frequency sweep is stopped at the following positions in the range of operation:

- Stop Mode, Low Frequency: 24.080 GHz

- Stop Mode, Middle Frequency: 24.125 GHz

- Stop Mode, High Frequency: 24.170 GHz

© CTC advanced GmbH Page 6 of 40

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 40

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

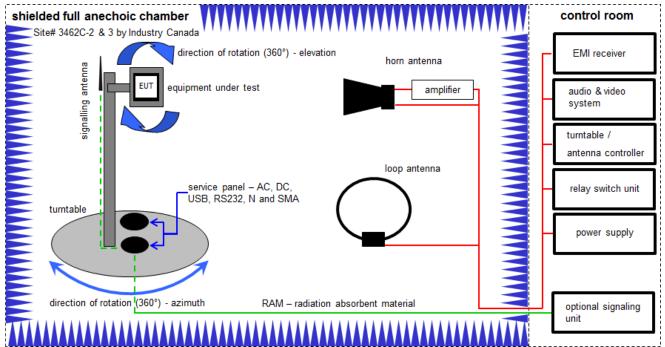
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 <math>\mu V/m$)

© CTC advanced GmbH Page 8 of 40


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2021	21.12.2022
5	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	30.09.2019	29.09.2023
9	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
10	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020 20.05.2022	09.06.2022 31.05.2023

© CTC advanced GmbH Page 9 of 40

7.2 Shielded fully anechoic chamber

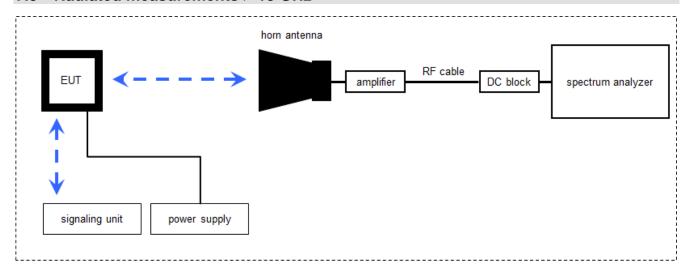
Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

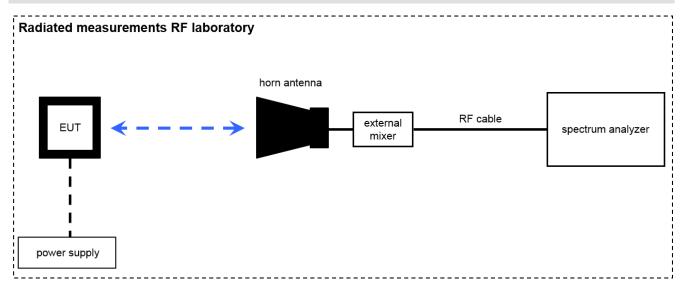
(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vIKI!	09.12.2020	08.12.2023
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	01.07.2021	31.07.2023
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	30.09.2021	29.09.2023
5	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5289	300000213	vIKI!	14.07.2020 11.07.2022	13.07.2022 31.07.2024
6	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
7	n. a.	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
8	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2020	31.12.2022
9	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	n. a.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
12	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
14	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
15	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-


© CTC advanced GmbH Page 10 of 40

7.3 Radiated measurements > 18 GHz

7.4 Radiated measurements > 50/85 GHz

Measurement distance: horn antenna e.g. 25 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

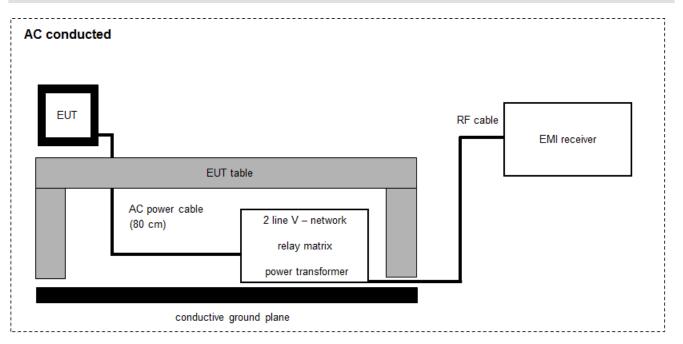
OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 μ W)

OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain) OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 μ W)

Note: conversion loss of mixer is already included in analyzer value.

© CTC advanced GmbH Page 11 of 40


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n.a.	Horn Antenna 18.0-40.0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vIKI!	17.01.2022	31.01.2023
2	n. a.	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	vIKI!	17.01.2022	31.01.2024
3	n. a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vIKI!	17.01.2022	31.01.2024
4	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
5	n. a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
6	n.a.	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2020 09.03.2022	08.03.2022 08.03.2024
7	n. a.	Harmonic Mixer 3- Port, 60-90 GHz	FS-Z90	R&S	102152	300006202	k	09.02.2022	28.02.2023
8	n. a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	30.06.2021 11.07.2022	29.06.2022 31.07.2023

© CTC advanced GmbH Page 12 of 40

7.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	-/-	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	14.12.2021	31.12.2023
2	-/-	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	-/-	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2021	31.12.2022
4	-/-	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-

© CTC advanced GmbH Page 13 of 40

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 14 of 40

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 40

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 16 of 40

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 17 of 40

8.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 18 of 40

9 Measurement uncertainty

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± span/1000
Conducted unwanted emissions in the spurious domain (up to 18 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 18 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Conducted unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	±1°C
Humidity	± 3 %

© CTC advanced GmbH Page 19 of 40

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 15 RSS 210. Issue 10. Annex F	see table	2022-09-13	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	N/C	N/A	N/P	Results (max.)
§15.245 (b)	Field strength of emissions (wanted signal)	Nominal	Nominal	\boxtimes				114 dBμV (PK) 90 dBμV (AVG)
§2.1049	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				45 MHz
§15.209 (a) §15.245 (b)	Field strength of spurious emissions (band edge/harmonics)	Nominal	Nominal					complies
§15.207 (a)	Conducted emissions < 30 MHz	Nominal	Nominal	\boxtimes				Complies

Note: C = Compliant; N/C = Not compliant; N/A = Not applicable; N/P = Not performed

© CTC advanced GmbH Page 20 of 40

11 Measurement results

11.1 Field strength of emissions (wanted signal)

Description:

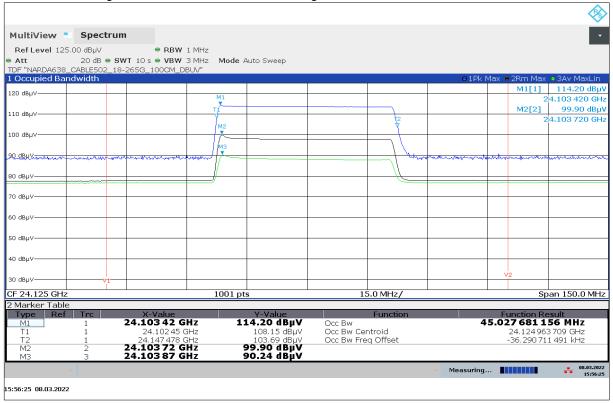
Measurement of the maximum radiated field strength of the wanted signal.

Measurement:

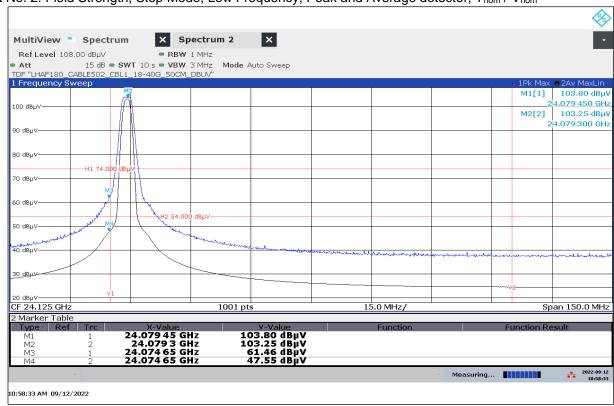
Measurement parameter			
Detector:	Pos-Peak / AVERAGE		
Sweep time:	See plots		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	150 MHz		
Trace-Mode:	Max Hold		

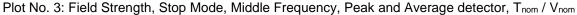
Limits:

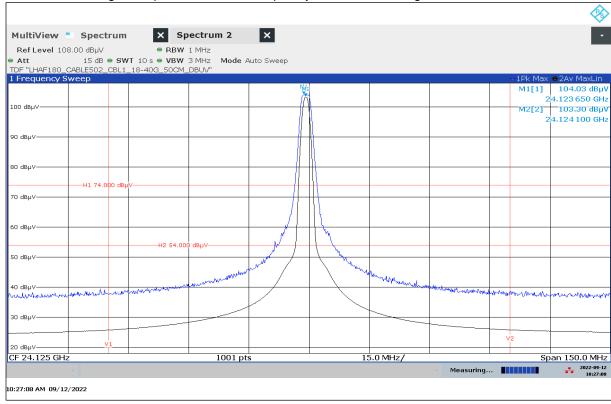
FCC				
CFR Part 15.245 (b)				
Field strength of emissions				
The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:				
Frequency [GHz]	Field Strength [dBµV/m]	Measurement distance [m]		
24.075 – 24.175	148 (Peak) / 128 (Average) /	3		

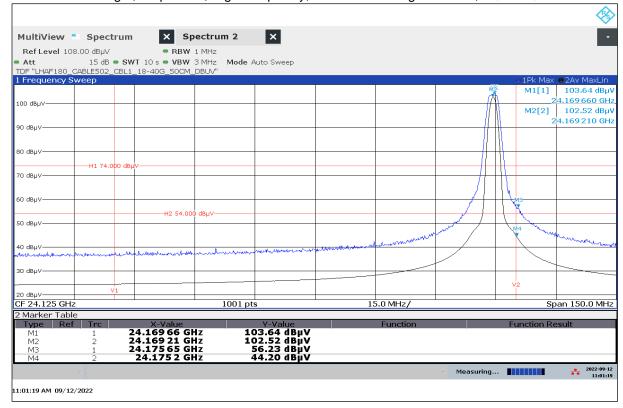

Result:

Test condition T nom / V nom	Maximum field strength [dBμV/m @ 3 m]	
Normal Mode	114.2 (Peak) / 90.2 (Average)	
Stop Mode, Low Frequency	103.8 (Peak) / 103.3 (Average)	
Stop Mode, Middle Frequency	104.0 (Peak) / 103.3 (Average)	
Stop Mode, High Frequency	103.6 (Peak) / 102.5 (Average)	


© CTC advanced GmbH Page 21 of 40




Plot No. 2: Field Strength, Stop Mode, Low Frequency, Peak and Average detector, T_{nom} / V_{nom}


© CTC advanced GmbH Page 22 of 40

Plot No. 4: Field Strength, Stop Mode, High Frequency, Peak and Average detector, T_{nom} / V_{nom}

© CTC advanced GmbH Page 23 of 40

11.2 Occupied bandwidth (99% bandwidth)

Definition:

The occupied bandwidth is defined as the 99% bandwidth.

Measurement:

The EUT is powered on and set up to transmit its normal signal modulation sequence(s). A spectrum analyzer with the following settings is used:

The test was performed under normal and extreme test conditions.

Measurement parameter		
Detector:	Pos-Peak	
Sweep time:	10s	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	150 MHz	
Trace-Mode:	Max Hold	

Limits:

FCC
CFR Part 15.245 (b)
Fundamental frequency
24.075 GHz – 24.175 GHz (100 MHz):

Results:

Test condition	99% Occupied bandwidth [MHz]	
T nom / V nom	45	

© CTC advanced GmbH Page 24 of 40

11.3 Field strength of emissions and band edge (radiated spurious)

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measurement:

Measurement parameter				
Detector:	F < 1 GHz: F > 1 GHz:	Quasi-Peak Pos-Peak / AVERAGE		
Sweep time:	Auto			
Video bandwidth:	Auto			
Resolution bandwidth:	F < 1 GHz: F > 1 GHz:	100 kHz 1 MHz		
Trace-Mode:	Max-Hold			

Limits:

FCC

CFR Part 15.209 (a) / CFR Part 15.245 (b)(1)(i)

The field strength of harmonics from intentional radiators shall comply with the following:

(b)(1)Harmonic emissions in the restricted bands below 17.7 GHz, as specified in § 15.205, shall not exceed the field strength limits shown in § 15.209. Harmonic emissions in the restricted bands at and above 17.7 GHz shall not exceed the following field strength limits:

(i) For the second and third harmonics of field disturbance sensors operating in the 24075-24175 MHz band and for other field disturbance sensors designed for use only within a building or to open building doors, 25.0 mV/m.

Harmonics: PEAK→ 108 dBµV/m / Average → 88 dBµV/m (at a distance of 3 m)

CFR Part 15.209 (a) / CFR Part 15.245 (b)(3)

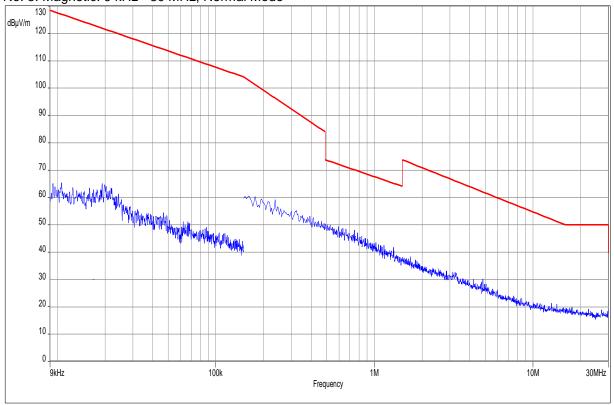
Radiated Spurious Emissions

Emissions radiated outside of the specified frequency bands, except for harmonic emissions shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits specified in §15.209, whichever is less stringent

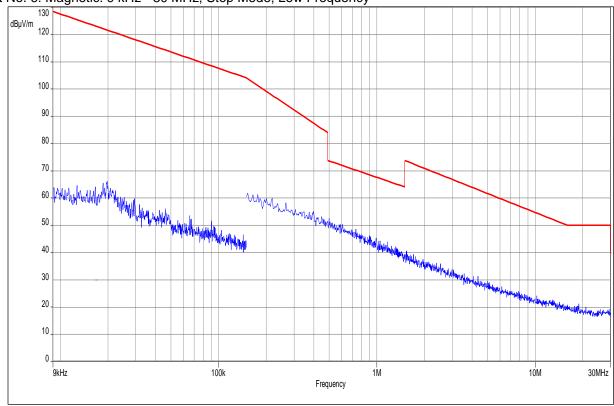
PEAK \rightarrow 64 dB μ V/m / Average \rightarrow 44 dB μ V/m (at 3 m)

PEAK→ 74.0 dBµV/m / Average → 54.0 dBµV/m (at 3 m)

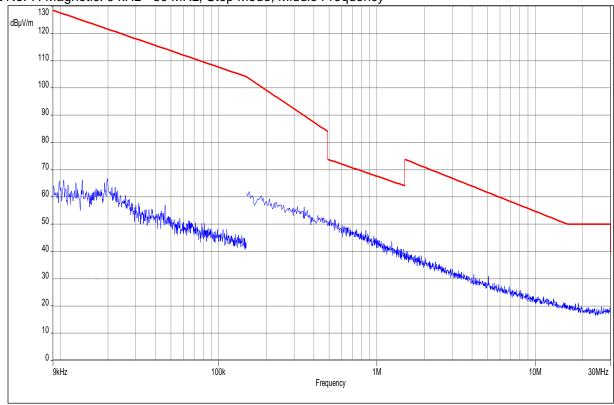
Emissions radiated outside of the specified frequency bands, except for harmonic emissions shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits specified in RSS-Gen, whichever is less stringent

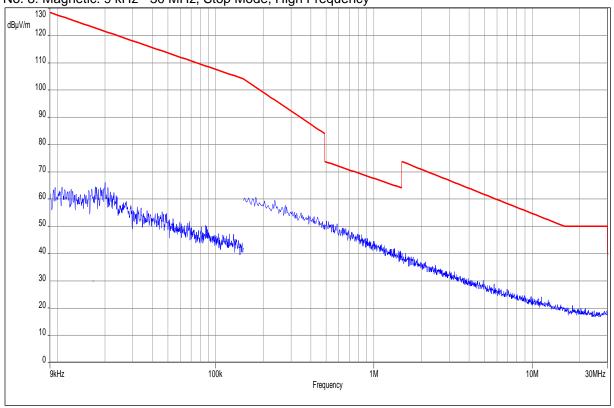

PEAK \rightarrow 74.0 dB μ V/m / Average \rightarrow 54.0 dB μ V/m (at 3 m)

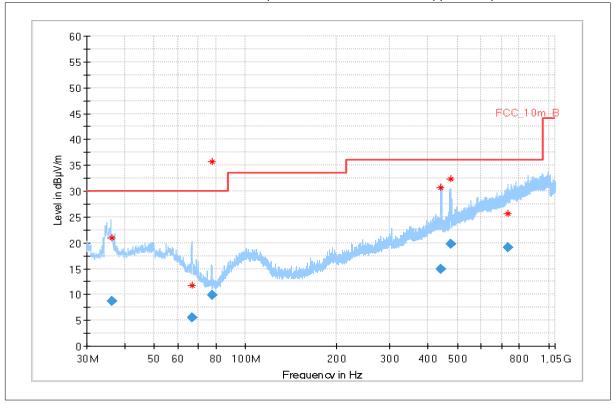
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3


© CTC advanced GmbH Page 25 of 40

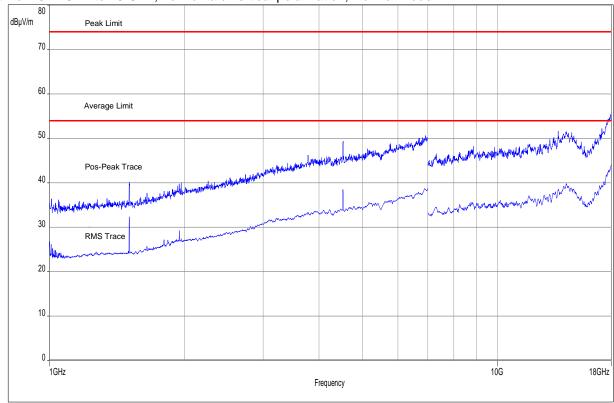
Plot No. 5: Magnetic: 9 kHz - 30 MHz, Normal Mode

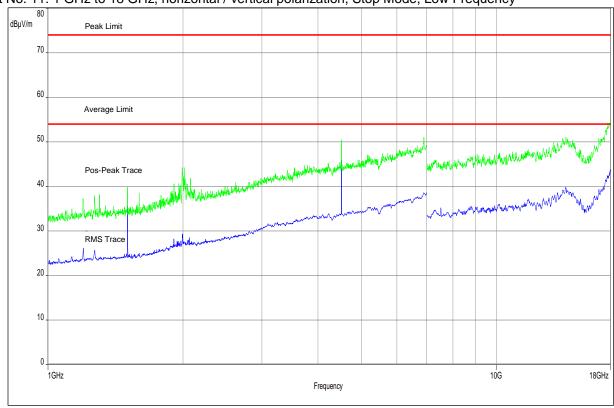

Plot No. 6: Magnetic: 9 kHz - 30 MHz, Stop Mode, Low Frequency


© CTC advanced GmbH Page 26 of 40

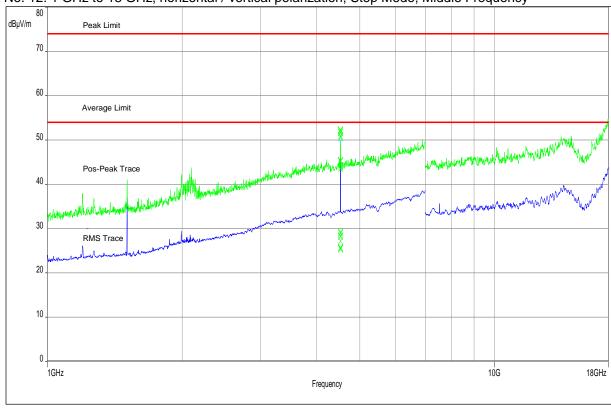

Plot No. 8: Magnetic: 9 kHz - 30 MHz, Stop Mode, High Frequency

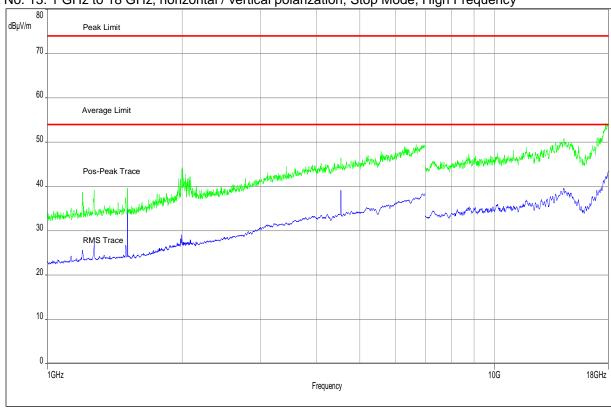
© CTC advanced GmbH Page 27 of 40


Plot No. 9: 30 MHz to 1 GHz, horizontal / vertical polarization, Valid for all Stopped Frequencies

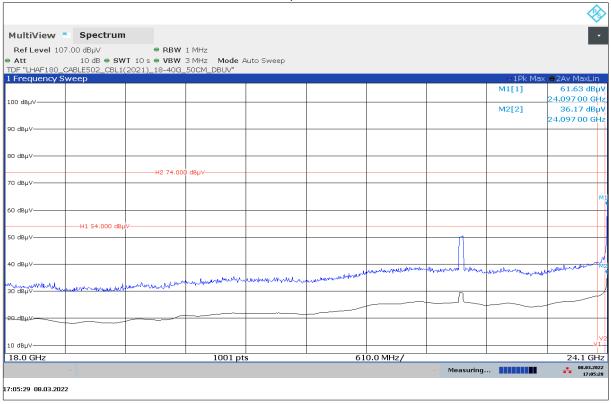

© CTC advanced GmbH Page 28 of 40

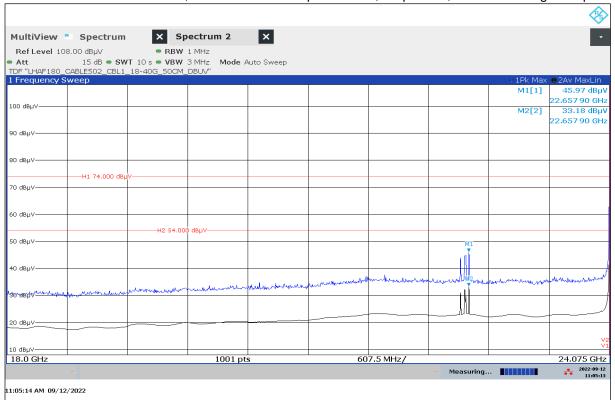
Plot No. 10: 1 GHz to 18 GHz, horizontal / vertical polarization, Normal Mode


Plot No. 11: 1 GHz to 18 GHz, horizontal / vertical polarization, Stop Mode, Low Frequency

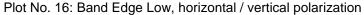

© CTC advanced GmbH Page 29 of 40

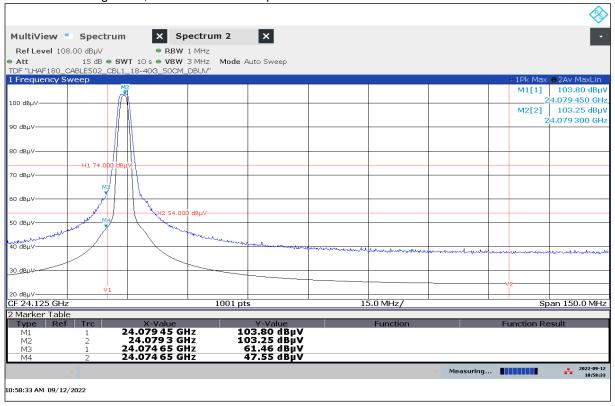
Plot No. 12: 1 GHz to 18 GHz, horizontal / vertical polarization, Stop Mode, Middle Frequency


Plot No. 13: 1 GHz to 18 GHz, horizontal / vertical polarization, Stop Mode, High Frequency

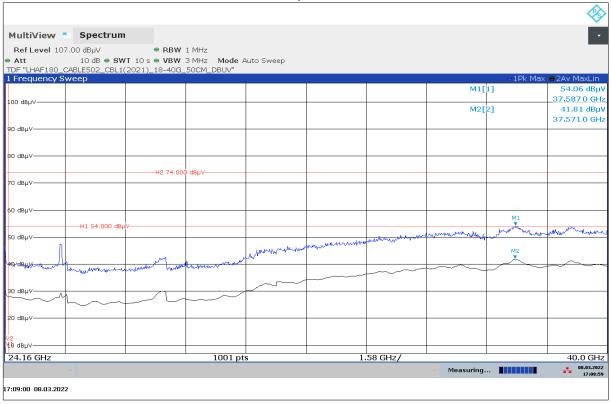

© CTC advanced GmbH Page 30 of 40

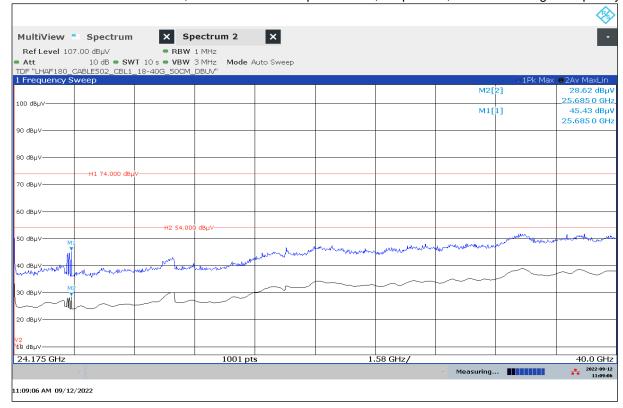
Plot No. 14: 18 GHz to 24.1 GHz, horizontal / vertical polarization, Normal Mode



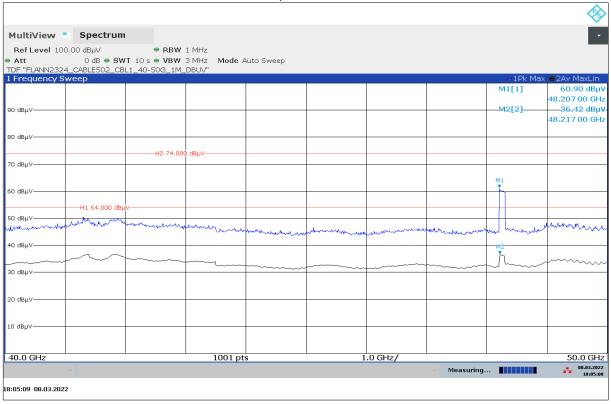

Plot No. 15: 18 GHz to 24.075 GHz, horizontal / vertical polarization, Stop Mode, Low-Middle-High Frequency

© CTC advanced GmbH Page 31 of 40

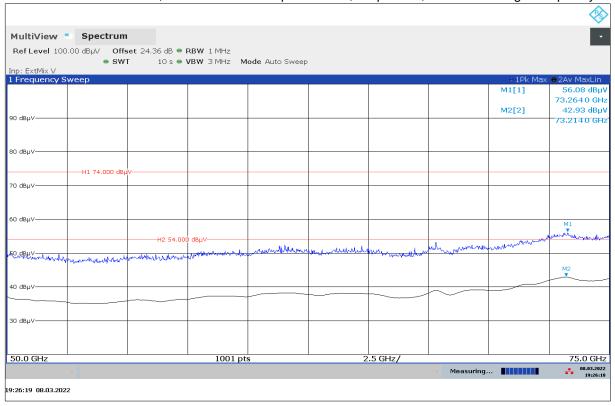

Plot No. 17: Band Edge High, horizontal / vertical polarization

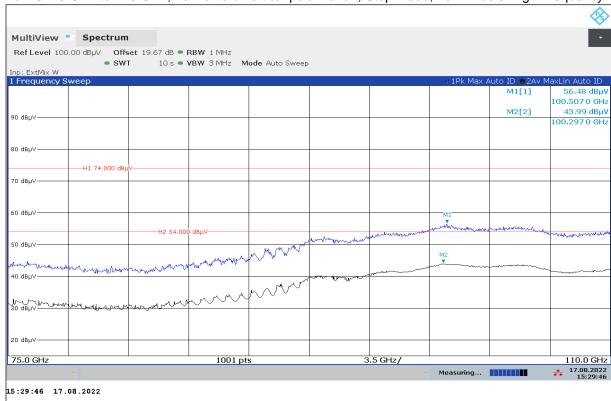

© CTC advanced GmbH Page 32 of 40

Plot No. 18: 24.16 GHz to 40 GHz, horizontal / vertical polarization, Normal Mode


Plot No. 19: 24.16 GHz to 40 GHz, horizontal / vertical polarization, Stop Mode, Low-Middle-High Frequency


© CTC advanced GmbH Page 33 of 40


Plot No. 21: 40 GHz to 50 GHz, horizontal / vertical polarization, Stop Mode, Low-Middle-High Frequency


© CTC advanced GmbH Page 34 of 40

Plot No. 22: 50 GHz to 75 GHz, horizontal / vertical polarization, Stop Mode, Low-Middle-High Frequency

Plot No. 23: 75 GHz to 110 GHz, horizontal / vertical polarization, Stop Mode, Low-Middle-High Frequency

© CTC advanced GmbH Page 35 of 40

11.4 Conducted spurious emissions < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

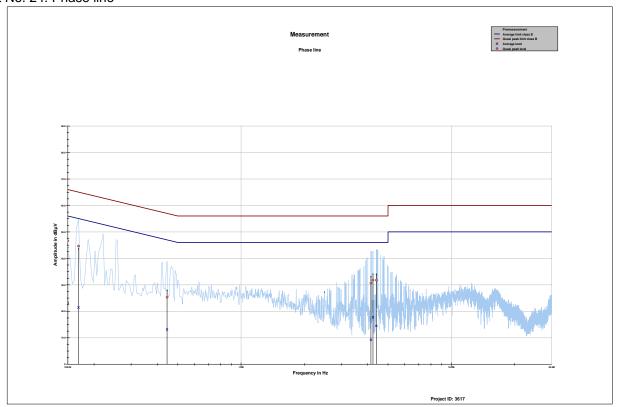
Measurement:

Measurement parameter				
Detector:	Peak - Quasi Peak / Average			
Sweep time:	Auto			
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace-Mode: Max Hold				

Limits:

FCC					
CFR Part 15.207(a)					
	Conducted Spurious Emissions < 30 MHz				
Frequency (MHz)	Quasi-Peak (dBµV/m)	Average (dBµV/m)			
0.15 – 0.5	79 to 69* (Class A) 66 to 56* (Class B)	79 to 69* (Class A) 56 to 46* (Class B)			
0.5 – 5	73 (Class A) 56 (Class B)	63 (Class A) 46 (Class B)			
5 – 30.0	73 (Class A) 60 (Class B)	63 (Class A) 50 (Class B)			

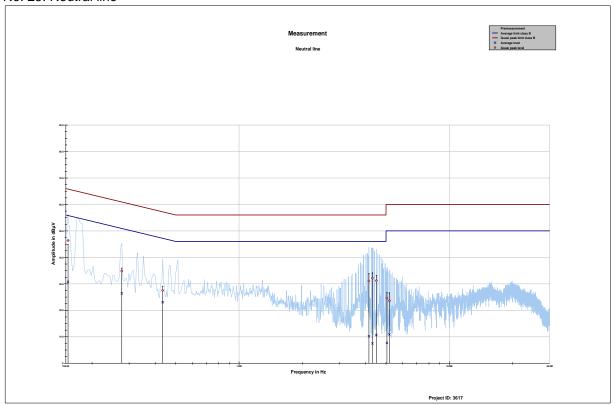
^{*}Decreases with the logarithm of the frequency


Measurement results:

See plots below.

© CTC advanced GmbH Page 36 of 40

Plot No. 24: Phase line



Frequency	Quasi peak	Margin quasi	Limit QP	Average level	Margin	Limit AV
	level	peak			average	
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.150000	46.61	19.39	66.000	23.20	32.80	56.000
0.168656	44.63	20.40	65.026	21.42	34.05	55.467
0.444769	25.29	31.68	56.972	13.12	34.46	47.578
4.146169	30.63	25.37	56.000	9.22	36.78	46.000
4.239450	31.79	24.21	56.000	17.71	28.29	46.000
4.399894	31.78	24.22	56.000	14.50	31.50	46.000

© CTC advanced GmbH Page 37 of 40

Plot No. 25: Neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.153731	46.35	19.44	65.796	30.75	25.14	55.893
0.276863	34.84	26.07	60.909	26.38	26.00	52.375
0.433575	27.50	29.69	57.184	23.03	24.86	47.898
4.146169	31.04	24.96	56.000	10.14	35.86	46.000
4.310344	32.16	23.84	56.000	7.46	38.54	46.000
4.496906	31.17	24.83	56.000	10.68	35.32	46.000
5.049131	24.61	35.39	60.000	7.67	42.33	50.000
5.187188	23.62	36.38	60.000	10.86	39.14	50.000

© CTC advanced GmbH Page 38 of 40

12 Glossary

EUT	Equipment under test			
DUT	Device under test			
UUT	Unit under test			
GUE	GNSS User Equipment			
ETSI	European Telecommunications Standards Institute			
EN	European Standard			
FCC	European Standard Federal Communications Commission			
FCC ID	Company Identifier at FCC			
IC	Industry Canada			
PMN	Product marketing name			
HMN	Host marketing name			
HVIN	Hardware version identification number			
FVIN	Firmware version identification number			
EMC	Electromagnetic Compatibility			
HW	Hardware			
SW	Software			
Inv. No.	Inventory number			
S/N or SN	Serial number			
С	Compliant			
NC	Not compliant			
NA	Not applicable			
NP	Not performed			
PP	Positive peak			
QP	Quasi peak			
AVG	Average			
ОС	Operating channel			
OCW	Operating channel bandwidth			
OBW	Occupied bandwidth			
ООВ	Out of band			
DFS	Dynamic frequency selection			
CAC	Channel availability check			
OP	Occupancy period			
NOP	Non occupancy period			
DC	Duty cycle			
PER	Packet error rate			
CW	Clean wave			
MC	Modulated carrier			
WLAN	Wireless local area network			
RLAN	Radio local area network			
DSSS	Dynamic sequence spread spectrum			
OFDM	Orthogonal frequency division multiplexing			
FHSS	Frequency hopping spread spectrum			
GNSS	Global Navigation Satellite System			
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz			

© CTC advanced GmbH Page 39 of 40

13 Document history

Version	Applied changes	Date of release
-/-	Initial release - DRAFT	2022-03-10
-/-	Minor changes, Spurious Stopped Mode added	2022-09-13

14 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGSV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of Din EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements) The accreditation certificate shall only apply in connection with the notice of accreditation of 09.05.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of O5 pages. Registration number of the certificate: D-PL-12076-01-05 Frankflust am Main, 09.06.2020 The certificate together with its annex reflects the status at the time of the date of assac. The current atoms of the scope of accordated basiles of Deutsche Akkreditoroungstelle GmbH. The certificate together with its annex reflects the status at the time of the date of assac. The current atoms of the scope of accordated basiles of Deutsche Akkreditoroungstelle GmbH. The certificate together with its annex reflects the status at the time of the date of assac. The current atoms of the scope of accordated basiles of Deutsche Akkreditoroungstelle GmbH. The certificate together with its annex reflects the status at the time of the date of assac. The current atoms of the scope of accordated basiles of Deutsche Akkreditoroungstelle GmbH. The certificate together with its annex reflects the status at the time of the date of assac. The current atoms of the scope of accordated basiles of Deutsche Akkreditoroungstelle GmbH. The certificate together with its annex reflects the status at the time of the date of assac. The current atoms of the scope of accordated basiles of Deutsche Akkreditoroungstelle GmbH.	Office Barlin Spithelmarkt 10 Europa-Allies 52 10117 Berlin The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DASA). Exempted is the unchanged form of separate disseminations of the occer sheet by the conforming assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DASAS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkSiselleC) of 31 July 2009 (Federal Law Gastet Is a 263) and the Regulation (EQ No 782/2008 of the European Parliament and of the Council of 91 July 2008 setting out the requirements for accreditation and market survivalence relating to the marketing of products (Dficial Journal of the European Davilament and of Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ICA). The signatories to these agreements for Mutuants recognise acchieves their succeeditations. The up-to-date state of membership can be retrieved from the following websites: EX: www.european-accreditation.org IAF: www.european-accreditation.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05 TCB USA.pdf