# INTRODUCTION

### TYPICAL APPLICATIONS

Multiple lane control from fixed infrastructure







### PRODUCT OVERVIEW



## INSTALLATION

#### RADAR MOUNTING GEOMETRY



## INSTALLATION

#### RADAR MOUNTING HEIGHT

The radar can be installed at different heights but operation is best in the height range 1m to 3.5m. The radar can be mounted up to a height of 5m but it is important to understand that at these higher mounting heights the vertical cosine will affect the speed reading of the radar to progressively under-read for increasing heights for lanes that are too close to the radar.

It is therefore recommended that a minimum off-set, that is, a minimum perpendicular distance from the mounting position to the nearest enforceable lane is adopted as shown in the following table.

| Mounting Height | Minimum<br>Offset | Radar Declination Angle | Comment |
|-----------------|-------------------|-------------------------|---------|
| 1-2m            | 2m                | 00                      |         |
| 3m              | 3m                | 00                      |         |
| 4m              | 4m                | 7.50                    | TBC     |
| 5m              | 6m                | 7.50                    | TBC     |

#### SELECTING A SUITABLE SITE

When choosing to deploy the radar on a site the following is a non-exhaustive list of considerations which should be taken into account;

- Do the lane(s) have a measurable radius which cause the vehicles to travel on an arc around the radar?
- Does the roads surface slope in a direction excessively which means deployment is not possible or needs to be accounted for in the set-up/alignment process of the radar.
- Is the nearest lane to be covered greater than the specified offset given the proposed deployment height for the radar?
- . Are there any large reflecting surfaces directly in front or behind the radar mounting position?

#### RADAR MESSAGES IN NORMAL OPERATION

When the radar is installed and aligned correctly it will perform to specification.

# SYSTEM HARDWARE OVERVIEW

### SYSTEM HARDWARE OVERVIEW



# SYSTEM HARDWARE OVERVIEW

#### RADAR CHARACTERISTICS

The radar has been designed to have a specific set of functional characteristics which make it suitable for speed measurements for enforcement applications.

#### Radar Antenna

The antenna design is a planar patch array with the following performance;

| Parameter             | Specified  | Notes           |
|-----------------------|------------|-----------------|
| Horizontal Beam-width | 4.5*       | -3dB (HPBW)     |
| Vertical Bearn-width  | 15*        | -3dB (HPBW)     |
| Side-lobe Suppression | >15dB      |                 |
| E-Field               | Horizontal | Plane Polarised |

#### Operating Frequency Band and Power

The transmitter is a Phase Locked Loop (PLL) controlled MMIC based oscillator. The design confidence means that the nominal centre frequency of the transmission shall remain within a 10MHz window for the required 7 years for a radar functioning normally.

The change in frequency with temperature is measured to be  $\leq \pm 1.21$ MHz over the operating temperature range -20°C to +60°C.

The radar frequency and power is as follows;

| Parameter                 | Specified           | Notes |
|---------------------------|---------------------|-------|
| Operating Frequency Band  | 24.075 – 24.125 GHz |       |
| Frequency Modulation (FM) | 9.4MHz              |       |
| Power                     | <100mW eirp         |       |
| Field Strength            | Typically 450mV/m   | At 3m |
| ITU Code                  | 9M4FXN              |       |