

FCC Part 1 Subpart I FCC Part 2 Subpart J INDUSTRY CANADA RSS 102 ISSUE 5

RF EXPOSURE REPORT

FOR

RF ID Reader

MODEL NUMBER:

FCC ID: WFQCS-490 IC: 10717A-CS490

REPORT NUMBER: 13276062B

ISSUE DATE: 2020-07-13

Prepared for RF CONTROLS LLC Suite 200 1400 S 3rd St SAINT LOUIS, MO, 63104

US

Prepared by
UL LLC
333 Pfingsten Rd.
Northbrook, IL 60062, USA
TEL: (847) 272-8800

Revision History

Rev.	Issue Rev. Date Revisions		Revised By
V1	2020-07-13	Initial Issue	B. Mucha

TABLE OF CONTENTS

1.	. AT	TESTATION OF TEST RESULTS	4
2.	. TE	ST METHODOLOGY	5
3.	. RE	FERENCES	5
4.	. FA	CILITIES AND ACCREDITATION	5
5.	. MA	XXIMUM PERMISSIBLE RF EXPOSURE	6
		FCC RULES	
	5.2.	IC RULES	7
	5.3.	EQUATIONS	8
	5.4.	IC EXEMPTION	9
e F	RF	EXPOSURE RESULTS	a

DATE: 2020-07-13

ISED ID: 10717A-CS490

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: RF CONTROLS LLC

Suite 200 1400 S 3rd St SAINT LOUIS, MO, 63104

US

EUT DESCRIPTION: RFID Reader

MODEL: CS-490 NA

SERIAL NUMBER: not provided

DATE TESTED: See original certification reports referenced in section 3 of this report.

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

FCC PART 1 SUBPART I & PART 2 SUBPART J

Complies

INDUSTRY CANADA RSS 102 ISSUE 5

Complies

Mhulm

UL LLC calculated the RF Exposure of the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Approved & Released For

UL LLC By:

Prepared By:

Bob Delisi

Principal Engineer

UL LLC

Bart Mucha Staff Engineer UL LLC

Page 4 of 9

2. TEST METHODOLOGY

All calculations were made in accordance with FCC Parts 2.1091, 2.1093 and KDB 447498 D01 v06 and IC Safety Code 6, RSS 102 Issue 5

3. REFERENCES

Certification Test Report #13276062A Issue by UL LLC, 2020-06-25

Output power and Duty cycle data and Antenna Gain Data is excerpted from the above referenced test report.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 333 Pfingsten Road, Northbrook, Illinois, USA.

UL LLC is accredited by NVLAP, Laboratory Code 1004141-0. The full scope of accreditation can be viewed at https://www.nist.gov/nvlap.

5. MAXIMUM PERMISSIBLE RF EXPOSURE

5.1. FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)				
(A) Limits for Occupational/Controlled Exposure								
0.3-3.0	614	1.63	*100	6				
3.0-30	1842/f	4.89/f	*900/f²	6				
30-300	61.4	0.163	1.0	6				
300-1,500			f/300	6				
1,500-100,000			5	6				
	(B) Limits for Genera	l Population/Uncontrolle	d Exposure					
0.3-1.34	614	1.63	*100	30				
1.34-30	824/f	2.19/f	*180/f ²	30				
30-300	27.5	0.073	0.2	30				
300-1,500			f/1500	30				
1,500-100,000			1.0	30				

f = frequency in MHz

Notes:

- (1) Occupational/controlled exposure limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when a person is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
- (2) General population/uncontrolled exposure limits apply in situations in which the general public may be exposed, or in which persons who are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

^{* =} Plane-wave equivalent power density

5.2. IC RULES

IC Safety Code 6 (2015), Section 2.2.2: To ensure compliance with the basic restrictions outlined in Section 2.1, at frequencies between 10 MHz and 300 GHz, the reference levels for electric- and magnetic-field strength and power density must be complied with.

TABLE 4: Reference Levels for Electric Field Strength, Magnetic Field Strength and Power Density in Uncontrolled Environments

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	(W/m^2)	(minutes)
$0.003 \text{-} 10^{21}$	83	90	-	Instantaneous*
0.1-10	-	0.73/f	-	6**
1.1-10	$87/f^{0.5}$	-	-	6**
10-20	27.46	0.0728	2	6
20-48	$58.07/f^{0.25}$	$0.1540/f^{0.25}$	$8.944/f^{0.5}$	6
48-300	22.06	0.05852	1.291	6
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619f^{0.6834}$	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	$616000/f^{1.2}$
150000-300000	$0.158 f^{0.5}$	$4.21 \times 10^{-4} f^{0.5}$	6.67 x 10 ⁻⁵ f	616000/ f ^{1.2}

Note: f is frequency in MHz.

TABLE65: Reference Levels for Electric Field Strength, Magnetic Field Strength and Power Density in Controlled Environments

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	(W/m^2)	(minutes)
$0.003 \text{-} 10^{23}$	170	180	-	Instantaneous*
1-10	-	1.6/ f	-	6**
1.29-10	$193/f^{0.5}$	-	-	6**
10-20	61.4	0.163	10	6
20-48	$129.8/f^{0.25}$	$0.3444/f^{0.25}$	$44.72/f^{0.5}$	6
48-100	49.33	0.1309	6.455	6
100-6000	$15.60 f^{0.25}$	$0.04138 f^{0.25}$	$0.6455 f^{0.5}$	6
6000-15000	137	0.364	50	6
15000-150000	137	0.364	50	$616000/f^{1.2}$
150000-300000	$0.354 f^{0.5}$	$9.40 \times 10^{-4} f^{0.5}$	$3.33 \times 10^{-4} f$	$616000/f^{1.2}$

Note: *f* is frequency in MHz.

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

5.3. EQUATIONS

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm^2 is converted to units of W/m^2 by multiplying by 10.

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm^2

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in W

5.4. IC EXEMPTION

INDUSTRY CANADA EXEMPTION

RSS-102 Clause 2.5.2 RF exposure evaluation is required if the separation distance between the user and the device's radiating element is greater than 20 cm, except when the device operates as follows:

• at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10-2 f0.6834 W (adjusted for tune-up tolerance), where f is in MHz;

6. RF EXPOSURE RESULTS

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

(Single chain transmitter, no colocation, 34 cm MPE distance)

Band	Mode	Separation	Output	Antenna	Duty	EIRP	FCC Power	IC Power
		Distance	Peak	Gain	Cycle		Density	Density
MHz		(cm)	Power (dBm)	(dBi)	(%)	(mW)	(mW/cm^2)	(W/m^2)
902-928	TX	34	23.49	12.49	100.0	3962.8	0.278	2.778

Minimum separation distance for FCC (power routed to 4W):

$$D = sqrt(4000/(4 \times Pi \times 0.61)) = 22.8cm$$

Minimum separation distance for IC:

$$D = sqrt(4.0 (4 \times Pi \times 2.77)) = 33.9cm$$

END OF REPORT