§1.1307 (b) (1) \& §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to FCC §15.319(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Averaging Time (minute)
Limits for General Population/Uncontrolled Exposure				
$0.3-1.34$	614	1.63	$*(100)$	30
$1.34-30$	$842 / \mathrm{f}$	$2.19 / \mathrm{f}$	$*(180 / \mathrm{f} 21)$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	$/$	$/$	$\mathrm{f} / 1500$	30
$1500-100,000$	$/$	$/$	1.0	30

$\mathrm{f}=$ frequency in MHz

* = Plane-wave equivalent power density

MPE Calculation

Predication of MPE limit at a given distance

$$
\mathrm{S}=\frac{P G}{4 \pi R^{2}}
$$

Where: $\mathrm{S}=$ power density (in appropriate units, e.g. $\mathrm{mW} / \mathrm{cm}^{2}$);
$\mathrm{P}=$ power input to the antenna (in appropriate units, e.g., mW);
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$\mathrm{R}=$ distance to the center of radiation of the antenna (appropriate units, e.g., cm);
For worst case:

Frequency $\mathbf{(M H z)}$	Antenna Gain		Maximum Tune- up power		Evaluation Distance $\mathbf{(c m})$	Power Density $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	MPE Limit $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$
	(numeric)	$\mathbf{(d B m)}$	$\mathbf{(m W)}$				
1921.536							
$-\quad$	-1.42	0.72	17.5	56.23	20	0.008	1.0

For the simultaneous transmitting consideration:
Refer to the RGMA190731001-00A, the Calculated Value for BT is $0.0008 \mathrm{~mW} / \mathrm{cm}^{2}$.

$$
\sum_{i} \frac{S_{i}}{S_{\text {Limit }, i}}=0.0008 / 1.0+0.008 / 1.0=0.0088<1
$$

Result: The device meets MPE limit at 20 cm distance.

