

Report Number: F690501/RF-RTL005403-3

Page: 1 of 32

# **TEST REPORT**

of

FCC Part 15 Subpart C §15.247

FCC ID: WEK-BC-01

**Equipment Under Test** 

RF Remote Control

Model Name

BC-01

Serial No.

: N/A

Applicant

: Semilink Co., Ltd.

Manufacturer

Semilink Co., Ltd.

Date of Test(s)

2012. 03. 22 ~ 2012. 03. 30

Date of Issue

: 2012.05.09

In the configuration tested, the EUT complied with the standards specified above.

Tested By:

Date

2012.05.09

Alvin Kim

Approved By:

3

Date

2012.05.09



Report Number: F690501/RF-RTL005403-3 Page: 2 of 32

# **INDEX**

| <u>Table of Contents</u>                                                   | Page |
|----------------------------------------------------------------------------|------|
| 1. General Information                                                     | 3    |
| 2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission | 7    |
| 3. 20 dB Bandwidth                                                         | 17   |
| 4. Maximum Peak Output Power                                               | 21   |
| 5. Hopping Channel Separation                                              | 23   |
| 6. Number of Hopping Frequency                                             | 25   |
| 7. Time of Occupancy(Dwell Time)                                           | 28   |
| 8. Antenna Requirement                                                     | 32   |



Report Number: F690501/RF-RTL005403-3 Page: 3 of 32

## 1. General Information

## 1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 705, Dongchun-Dong Sooji-Gu, Yongin-Shi, Kyungki-Do, South Korea.

- Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040

## www.ee.sgs.com/korea

Telephone : +82 31 428 5700 FAX : +82 31 427 2371

## 1.2. Details of Applicant

Applicant : Semilink Co., Ltd

Address : #417 Doosan Venture Digm, 126-1, Pyungchon-dong, Dongan-gu, Anyang-si,

Gyeonggi-do, Republic of Korea, 431-070

Contact Person : Lee, Suk-Yong Phone No. : +82 31 440 9331

## 1.3. Description of EUT

| Kind of Product      | RF Remote Control                               |
|----------------------|-------------------------------------------------|
| Model Name           | BC-01                                           |
| Serial Number        | N/A                                             |
| Power Supply         | DC 3 V (Lithium type battery)                   |
| Frequency Range      | 2 402 ~ 2 480 Mb                                |
| Modulation Technique | GFSK                                            |
| Number of Channels   | Maximum: 79 channel / Minimum: 20 channel (AFH) |
| Antenna Type         | Integral type (PCB Antenna )                    |
| Antenna Gain         | 1.87 dBi                                        |

## 1.4. Declaration by the manufacturer

- The EUT can not support EDR mode.



Report Number: F690501/RF-RTL005403-3 Page: 4 of 32

#### 1.5. Information about the FHSS characteristics:

## 1.5.1. Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

### 1.5.2. Equal Hopping Frequency Use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

## 1.5.3. System Receiver Input Bandwidth

Each channel bandwidth is 1 Mb

## 1.5.4. Equipment Description

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.



Report Number: F690501/RF-RTL005403-3 Page: 5 of 32

## 1.6. Test Equipment List

| Equipment             | Manufacturer                   | Model                                | S/N         | Cal Due.      |
|-----------------------|--------------------------------|--------------------------------------|-------------|---------------|
| Signal Generator      | R&S                            | SMR40                                | 100272      | Jul. 15, 2012 |
| Spectrum Analyzer     | Spectrum Analyzer R & S        |                                      | 101004      | Jul. 06, 2012 |
| Spectrum Analyzer     | R&S                            | FSP40                                | 100007      | Jul. 14, 2012 |
| Bluetooth Tester      | TESOM                          | TC-3000B                             | 3000B630018 | Jul. 06, 2012 |
| Directional Coupler   | KRYTAR                         | 152613                               | 122661      | May. 16, 2012 |
| High Pass Filter      | Wainwright                     | WHK3.0/18G-10SS                      | 344         | Jul. 07, 2012 |
| Power Sensor          | R&S                            | NRP-Z81                              | 100669      | Apr. 04. 2012 |
| DC power Supply       | Agilent                        | U8002A                               | MY49030063  | Jan. 03, 2013 |
| Preamplifier          | H.P.                           | 8447F                                | 2944A03909  | Jul. 04, 2012 |
| Preamplifier          | Preamplifier R & S 8449B 3008A |                                      | 3008A01932  | Mar. 31, 2012 |
| Preamplifier          | MITEQ Inc.                     | JS44-18004000-35-8P                  | 1546891     | Jul. 04, 2012 |
| Test Receiver         | R&S                            | ESU26                                | 100109      | Feb. 21, 2013 |
| Bilog Antenna         | SCHWARZBECK                    | VULB9163                             | 396         | Apr. 27, 2013 |
| Horn Antenna          | SCHWARZBECK                    | BBHA9170                             | BBHA9170223 | Jun. 30, 2012 |
| Horn Antenna          | R&S                            | HF 906                               | 100326      | Nov. 23, 2013 |
| Antenna Master        | INN-CO                         | MM4000                               | N/A         | N.C.R.        |
| Turn Table            | INN-CO                         | DS 1200 S                            | N/A         | N.C.R.        |
| Anechoic Chamber      | SY Corporation                 | L × W × H<br>(9.6 m × 6.4 m × 6.6 m) | N/A         | N.C.R.        |
| Test Receiver         |                                |                                      | 863365/018  | Jul. 07, 2012 |
| Two-Line<br>V-Network | R&S                            | ENV216                               | 100190      | Jan. 09, 2013 |
| Anechoic Chamber      | SY Corporation                 | L × W × H<br>(6.5 m × 3.5 m × 3.5 m) | N/A         | N.C.R.        |



Report Number: F690501/RF-RTL005403-3 Page: 6 of 32

## 1.7. Summary of Test Results

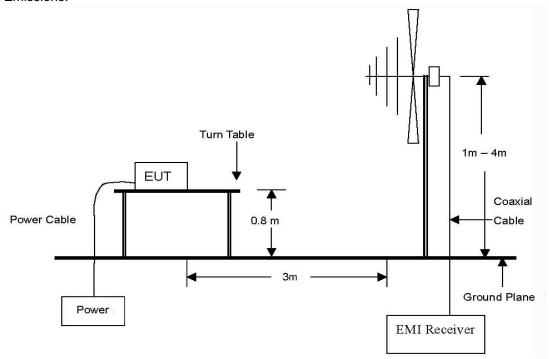
The EUT has been tested according to the following specifications:

| APPLIE                           | APPLIED STANDARD:FCC Part15 subpart C                                  |          |  |  |  |  |  |  |  |  |  |
|----------------------------------|------------------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|--|
| Section                          | Test Item                                                              | Result   |  |  |  |  |  |  |  |  |  |
| 15.205(a)<br>15.209<br>15.247(d) | Transmitter Radiated Spurious Emissions<br>Conducted Spurious Emission | Complied |  |  |  |  |  |  |  |  |  |
| 15.247(a)(1)                     | 20 dB Bandwidth                                                        | Complied |  |  |  |  |  |  |  |  |  |
| 15.247(b)(1)                     | Maximum Peak Output Power                                              | Complied |  |  |  |  |  |  |  |  |  |
| 15.247(a)(1)                     | Frequency Separation                                                   | Complied |  |  |  |  |  |  |  |  |  |
| 15.247(b)(1)                     | Number of Hopping Frequency                                            | Complied |  |  |  |  |  |  |  |  |  |
| 15.247(a)(1)(iii)                | Time of Occupancy<br>(Dwell Time)                                      | Complied |  |  |  |  |  |  |  |  |  |

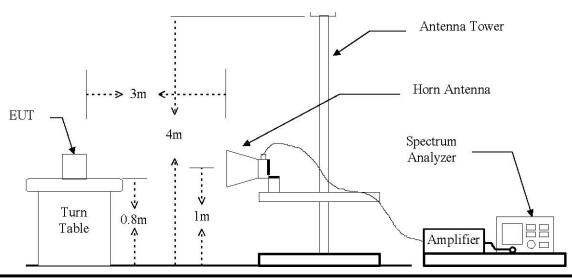
## 1.8 Test report revision

| Revision | Report number          | Description                   |
|----------|------------------------|-------------------------------|
| 0        | F690501/RF-RTL005403   | Initial                       |
| 1        | F690501/RF-RTL005403-1 | Modify model name             |
| 2        | F690501/RF-RTL005403-2 | Remove RF Exposure Evaluation |
| 3        | F690501/RF-RTL005403-3 | Modify items of AFH           |




Report Number: F690501/RF-RTL005403-3 Page: 7 of 32

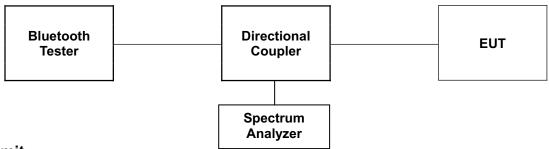
# 2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission


## 2.1. Test Setup

## 2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mb to 1 Gb Emissions.




The diagram below shows the test setup that is utilized to make the measurements for emission from 1  $\times$  to 26.5  $\times$  Emissions.





Report Number: F690501/RF-RTL005403-3 Page: 8 of 32

## 2.1.2. Conducted Spurious Emissions



2.2. Limit

According to §15.247(d), in any 100  $\,\mathrm{klz}$  bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20  $\,\mathrm{dB}$  below that in the 100  $\,\mathrm{klz}$  bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement , provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30  $\,\mathrm{dB}$  instead of 20  $\,\mathrm{dB}$ . Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.205(c))

According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

| Frequency<br>(쌘) | Distance<br>(Meters) | Field Strength<br>(dB μV/m) | Field Strength<br>(μV/m) |
|------------------|----------------------|-----------------------------|--------------------------|
| 30 - 88          | 3                    | 40.0                        | 100                      |
| 88 – 216         | 3                    | 43.5                        | 150                      |
| 216 – 960        | 3                    | 46.0                        | 200                      |
| Above 960        | 3                    | 54.0                        | 500                      |



Report Number: F690501/RF-RTL005403-3 Page: 9 of 32

#### 2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of DA000705

## 2.3.1. Test Procedures for Radiated Spurious Emissions

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 % the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 % the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### NOTE;

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 \( \mathbb{k} \mathbb{l} \) for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 \( \mathbb{k} \mathbb{l} \).
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 Gb.
- 4. When Average result is different from Peak result over 20 dB (over-averaging), we find an appropriate video bandwidth as an inverse of duty cycle period and is used for Average detection (AV) at frequency above 1 GHz.

## 2.3.2. Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=100 kHz, VBW=100 kHz.



Report Number: F690501/RF-RTL005403-3 Page: 10 of 32

#### 2.4. Test Results

Ambient temperature :  $(24 \pm 2)$  °C Relative humidity : 47 % R.H.

## 2.4.1. Spurious Radiated Emission

The frequency spectrum from 30 Mb to 1 000 Mb was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values.

| Radiated Emissions |                   | Ant            | Correctio | n Factors    | Total            | FCC L              | imit              |                |
|--------------------|-------------------|----------------|-----------|--------------|------------------|--------------------|-------------------|----------------|
| Frequency<br>(Mb)  | Reading<br>(dBμV) | Detect<br>Mode | Pol.      | AF<br>(dB/m) | AMP + CL<br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| 31.29              | 42.7              | Peak           | Н         | 10.7         | -26.6            | 26.8               | 40.0              | 13.2           |
| 43.94              | 41.2              | Peak           | V         | 14.1         | -26.4            | 28.9               | 40.0              | 11.1           |
| 95.11              | 44.9              | Peak           | Н         | 11.1         | -26.5            | 29.5               | 43.5              | 14.0           |
| 103.44             | 46.5              | Peak           | Н         | 11.4         | -26.4            | 31.5               | 43.5              | 12.0           |
| 103.44             | 46.2              | Peak           | V         | 11.4         | -26.4            | 31.2               | 43.5              | 12.3           |
| 116.29             | 41.3              | Peak           | V         | 10.0         | -26.3            | 25.0               | 43.5              | 18.5           |
| 311.99             | 41.4              | Peak           | Н         | 12.8         | -25.0            | 29.2               | 46.0              | 16.8           |
| 480.00             | 38.4              | Peak           | Н         | 15.5         | -25.4            | 28.5               | 46.0              | 17.5           |
| 528.01             | 36.9              | Peak           | Н         | 16.4         | -25.5            | 27.8               | 46.0              | 18.2           |
| 633.30             | 36.2              | Peak           | V         | 18.2         | -25.4            | 29.0               | 46.0              | 17.0           |
| Above 700.00       | Not<br>detected   | -              | -         | -            | -                | -                  | -                 | -              |

### Remark:

- 1. All spurious emissions at channels are almost the same below 1 \$\mathbb{H}{z}\$, so that middle channel was chosen at representative in final test.
- 2. Actual = Reading + AF + AMP + CL
- 3. The field strength of spurious emission was measured in three orthogonal EUT positions (x-axis, y-axis and z-axis). Worst case is z-axis.



Report Number: F690501/RF-RTL005403-3 Page: 11 of 32

## 2.4.2. Spurious Radiated Emission

The frequency spectrum above 1 000  $\,^{\text{Mb}}$  was investigated. Emission levels are not reported much lower than the limits by over 30  $\,^{\text{dB}}$ .

**Operating Mode: GFSK** 

A. Low Channel (2 402 账)

| Radiated Emissions |                   |                | Ant  | Correctio    | n Factors  | Total              | FCC Li            | mit            |
|--------------------|-------------------|----------------|------|--------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(雕)   | Reading<br>(dBμV) | Detect<br>Mode | Pol. | AF<br>(dB/m) | CL<br>(dB) | Actual<br>(dΒμV/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| *2 390.00          | 26.38             | Peak           | Н    | 28.05        | 5.14       | 59.57              | 74.00             | 14.43          |
| *2 390.00          | 13.97             | Average        | Н    | 28.05        | 5.14       | 47.16              | 54.00             | 6.84           |

| Radiated Emissions |                   |                | Ant  | Correctio    | n Factors      | Total              | FCC Li            | mit            |
|--------------------|-------------------|----------------|------|--------------|----------------|--------------------|-------------------|----------------|
| Frequency<br>(Mb)  | Reading<br>(dBμV) | Detect<br>Mode | Pol. | AF<br>(dB/m) | AMP+CL<br>(dB) | Actual<br>(dΒμλ/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| *4 800.05          | 52.99             | Peak           | Н    | 32.29        | -34.89         | 50.39              | 74.00             | 23.61          |
| *4 800.05          | 35.98             | Average        | Н    | 32.29        | -34.89         | 33.38              | 54.00             | 20.62          |
| Above<br>4 900.00  | Not<br>detected   | -              | -    | -            | -              | -                  | -                 | -              |

## B. Middle Channel (2 441 Mb)

| Radiated Emissions |                   |                | Ant  | Correctio                    | n Factors      | Total              | FCC Li            | imit           |
|--------------------|-------------------|----------------|------|------------------------------|----------------|--------------------|-------------------|----------------|
| Frequency<br>(艦)   | Reading<br>(dBμV) | Detect<br>Mode | Pol. | <b>AF</b><br>(dB/ <b>m</b> ) | AMP+CL<br>(dB) | Actual<br>(dΒμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| *4 881.61          | 51.91             | Peak           | Н    | 32.85                        | -34.93         | 49.83              | 74.00             | 24.17          |
| *4 881.61          | 35.65             | Average        | Н    | 32.85                        | -34.93         | 33.57              | 54.00             | 20.43          |
| Above<br>4900.00   | Not<br>detected   | -              | -    | -                            | -              | -                  | -                 | -              |



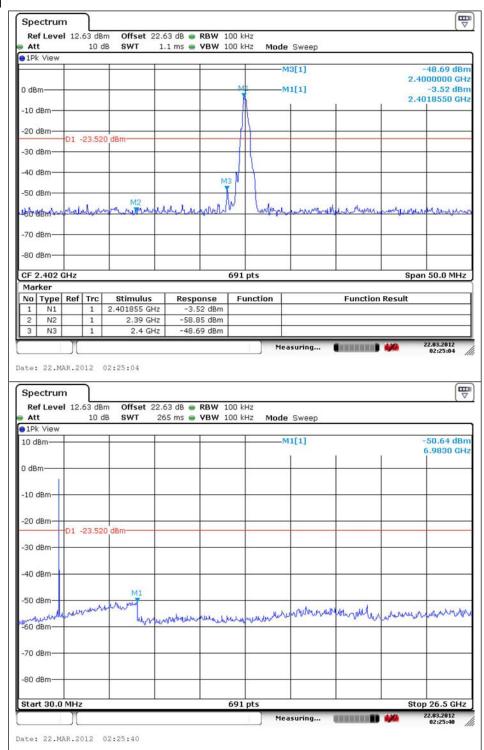
Report Number: F690501/RF-RTL005403-3 Page: 12 of 32

## C. High Channel (2 480 Mb)

| Radiated Emissions |                   |                | Ant  | Correctio    | n Factors  | Total              | FCC Li            | mit            |
|--------------------|-------------------|----------------|------|--------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(雕)   | Reading<br>(dBμV) | Detect<br>Mode | Pol. | AF<br>(dB/m) | CL<br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| *2 483.50          | 25.17             | Peak           | Н    | 28.31        | 5.19       | 58.67              | 74.00             | 15.33          |
| *2 483.50          | 13.79             | Average        | Н    | 28.31        | 5.19       | 47.29              | 54.00             | 6.71           |

| Radiated Emissions |                   |                | Ant  | Correctio                    | n Factors   | Total              | FCC Li            | mit            |
|--------------------|-------------------|----------------|------|------------------------------|-------------|--------------------|-------------------|----------------|
| Frequency<br>(脈)   | Reading<br>(dBμV) | Detect<br>Mode | Pol. | <b>AF</b><br>(dB/ <b>m</b> ) | AMP+CL (dB) | Actual<br>(dΒμV/m) | Limit<br>(dΒμV/m) | Margin<br>(dB) |
| *4 955.17          | 48.42             | Peak           | Н    | 33.29                        | -34.88      | 46.83              | 74.00             | 27.17          |
| *4 955.17          | 33.62             | Average        | Н    | 33.29                        | -34.88      | 32.03              | 54.00             | 21.97          |
| Above 5000.00      | Not<br>detected   | -              | -    | -                            | -           | -                  | -                 | -              |

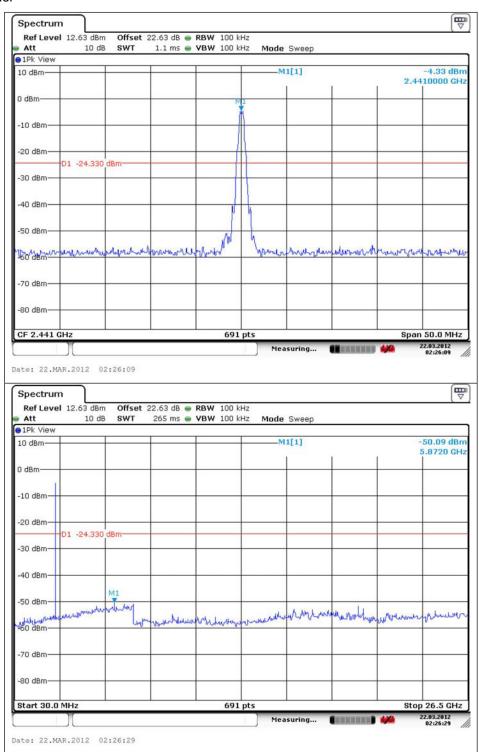
#### Remarks;


- 1. "\*" means the restricted band.
- 3. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using Peak / average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit.
- 5. Actual = Reading + AF + AMP + CL
- 6. The field strength of spurious emission was measured in three orthogonal EUT positions (x-axis, y-axis and z-axis). Worst case is z -axis.



Report Number: F690501/RF-RTL005403-3 Page: 13 of 32

# 2.4.3. Spurious RF Conducted Emissions: Plot of Spurious RF Conducted Emission Operating Mode: GFSK


Low Channel





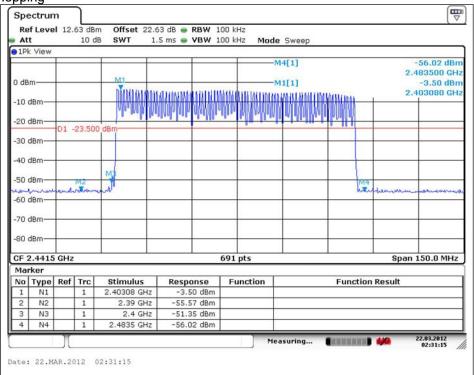
Report Number: F690501/RF-RTL005403-3 Page: 14 of 32


#### Middle Channel





Report Number: F690501/RF-RTL005403-3 Page: 15 of 32

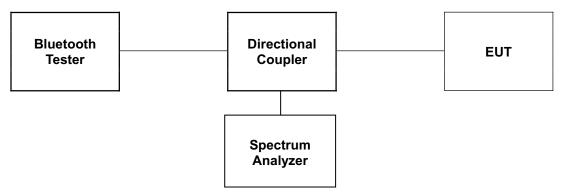

#### High Channel





Report Number: F690501/RF-RTL005403-3 Page: 16 of 32

Bandedge at Hopping






Report Number: F690501/RF-RTL005403-3 Page: 17 of 32

## 3. 20 dB Bandwidth Measurement

#### 3.1. Test Setup



#### 3.2. Limit

Limit: Not Applicable

#### 3.3. Test Procedure

- 1. The 20 dB band width was measured with a spectrum analyzer connected to RF antenna connector(conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer. Display Line and Marker Delta functions, the 20 dB band width of the emission was determined.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 30 kHz, VBW = 30 kHz, Span = 5 MHz.

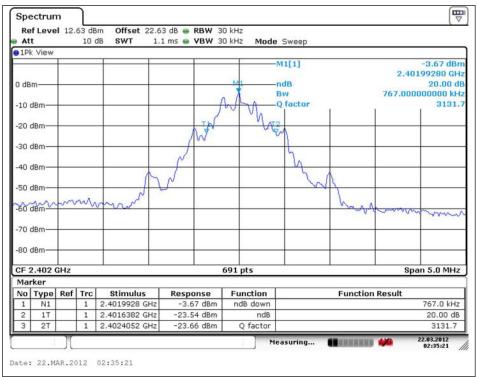


Report Number: F690501/RF-RTL005403-3 Page: 18 of 32

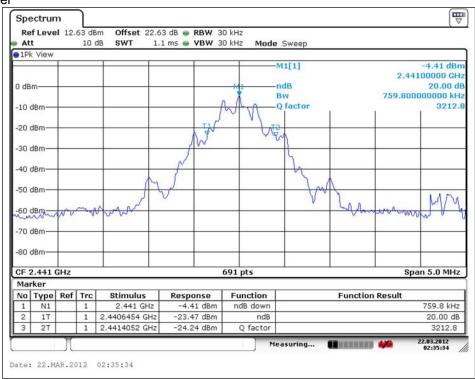
## 3.4. Test Results

Ambient temperature :  $(24 \pm 2)$  °C Relative humidity : 47 % R.H.

| Operation Mode | Channel | Channel Frequency<br>(쌘) | 20 dB Bandwidth<br>(Nb) |
|----------------|---------|--------------------------|-------------------------|
|                | Low     | 2 402                    | 0.767                   |
| GFSK           | Middle  | 2 441                    | 0.760                   |
|                | High    | 2 480                    | 0.767                   |



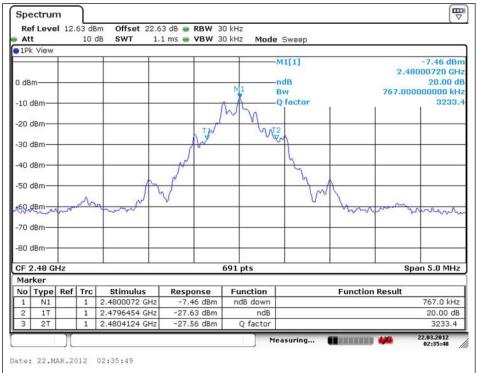

Report Number: F690501/RF-RTL005403-3 Page: 19 of 32


#### 20 dB Bandwidth

**Operating Mode: GFSK** 

Low Channel



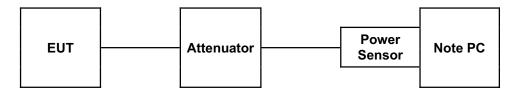

#### Middle Channel





Report Number: F690501/RF-RTL005403-3 Page: 20 of 32

#### High Channel






Report Number: F690501/RF-RTL005403-3 Page: 21 of 32

## 4. Maximum Peak Output Power Measurement

## 4.1. Test Setup



#### 4.2. Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. §15.247(b)(1), For frequency hopping systems operating in the 2 400 − 2 483.5 № employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 − 5 805 № band: 1 Watt.

#### 4.3. Test Procedure

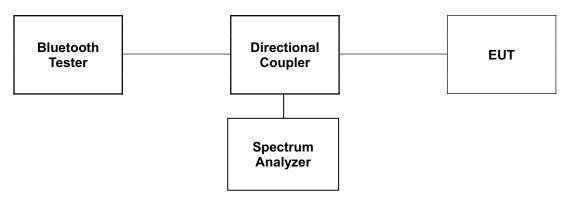
- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.



Report Number: F690501/RF-RTL005403-3 Page: 22 of 32

## 4.4. Test Results

Ambient temperature :  $(24 \pm 2)$  °C Relative humidity : 47 % R.H.


| Operation<br>Mode | Channel | Channel Frequency<br>(쌘) | Attenuator +<br>Cable offset<br>(dB) | Peak Power<br>Result<br>(dB m) | Peak Power<br>Limit<br>(dB m) |
|-------------------|---------|--------------------------|--------------------------------------|--------------------------------|-------------------------------|
|                   | Low     | 2 402                    | 22.30                                | 1.37                           | 20.97                         |
| GFSK              | Middle  | 2 441                    | 22.34                                | 1.05                           | 20.97                         |
|                   | High    | 2 480                    | 22.41                                | 0.88                           | 20.97                         |



Report Number: F690501/RF-RTL005403-3 Page: 23 of 32

## 5. Hopping Channel Separation

## 5.1. Test Setup



#### 5.2. Limit

§15.247(a)(1) Frequency hopping system operating in 2 400 – 2 483.5  $\pm$  Band may have hopping channel carrier frequencies that are separated by 25  $\pm$  or two-third of 20 dB bandwidth of the hopping channel, whichever is is greater, provided the systems operate with an output power no greater than 125  $\pm$ .

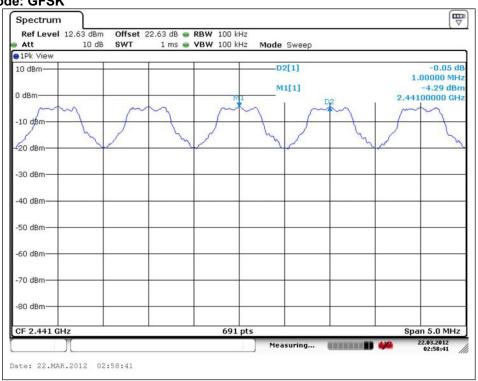
#### 5.3. Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by spectrum analyzer MARK function. And then plot the result on spectrum analyzer screen.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. Set center frequency of spectrum analyzer = middle of hopping channel.
- 7. Set the spectrum analyzer as RBW = 100 kHz, VBW = 100 kHz, Span = 5 MHz and Sweep = sweep.



Report Number: F690501/RF-RTL005403-3 Page: 24 of 32

### 5.4. Test Results

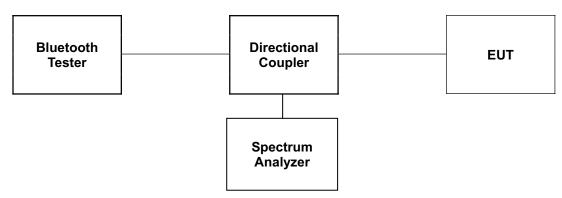

Ambient temperature :  $(24 \pm 2)$  °C Relative humidity : 47 % R.H.

| Operation<br>Mode | Channel<br>(Middle) | Adjacent Hopping<br>Channel<br>Separation<br>(쌦) | Two-third of 20 dB<br>Bandwidth<br>(战) | Minimum<br>Bandwidth<br>(虓) |
|-------------------|---------------------|--------------------------------------------------|----------------------------------------|-----------------------------|
| GFSK              | 2 441 MHz           | 1 000                                            | 506.667                                | 25                          |

## Note;

 $20~{
m dB}$  bandwidth measurement, the measured channel separation should be greater than two-third of  $20~{
m dB}$  bandwidth or Minimum bandwidth.

## **Operating Mode: GFSK**






Report Number: F690501/RF-RTL005403-3 Page: 25 of 32

# 6. Number of Hopping Frequency

## 6.1. Test Setup



## 6.2. Limit

§15.247(b)(1), For frequency hopping systems operating in the 2 400 – 2 483.5 Mb employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 – 5 805 Mb band: 1 Watt.

#### 6.3. Test Procedure

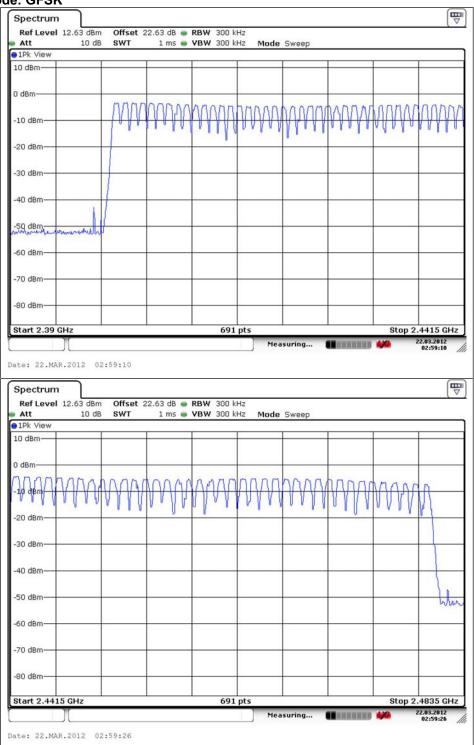
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna the port to the Spectrum analyzer
- 3. Set spectrum analyzer Start = 2 400 Mb, Stop = 2 441.5 Mb, Sweep=sweep and Start = 2 441.5 Mb, Stop = 2 483.5 Mb, Sweep = sweep.
- 4. Set the spectrum analyzer as RBW, VBW = 300 kHz.
- 5. Max hold, view and count how many channel in the band.

<sup>\*</sup>Note: the device supports adaptive frequency hopping and will use at least 20 of the 79 channels.



Report Number: F690501/RF-RTL005403-3 Page: 26 of 32

## 6.4. Test Results

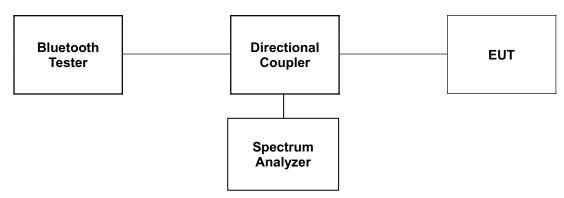

Ambient temperature :  $(24 \pm 2)$  °C Relative humidity : 47 % R.H.

| Operation Mode | Number of Hopping Frequency | Limit |
|----------------|-----------------------------|-------|
| GFSK           | 79                          | ≥ 75  |



Report Number: F690501/RF-RTL005403-3 Page: 27 of 32

## **Operating Mode: GFSK**






Report Number: F690501/RF-RTL005403-3 Page: 28 of 32

# 7. Time Of Occupancy (Dwell Time)

## 7.1. Test Set up



## **7.2. Limit**

§15.247(a)(1)(iii) For frequency hopping system operating in the 2  $400 - 2483.5 \, \text{Mb}$  band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

A period time = 0.4(s) \* 79 = 31.6(s)

#### 7.3. Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable.
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured and set spectrum analyzer to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

\*Note: When AFH is used the same hopping rate and pseudo-random channel selection is used so compliance is assured.

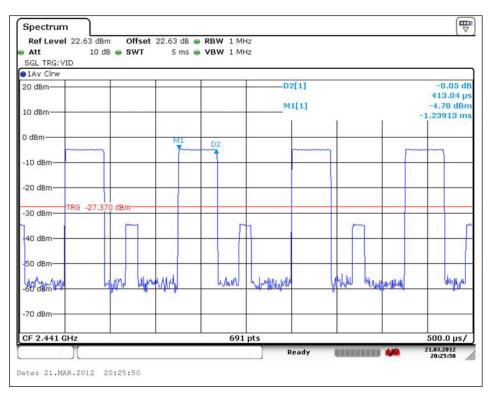


Report Number: F690501/RF-RTL005403-3 Page: 29 of 32

#### 7.4. Test Results

Ambient temperature :  $(24 \pm 2)$  °C Relative humidity : 47 % R.H.

Time of occupancy on the TX channel in 31.6 sec


= time domain slot length × (hop rate ÷ number of hop per channel) × 31.6

## 7.4.1. Packet Type: DH1

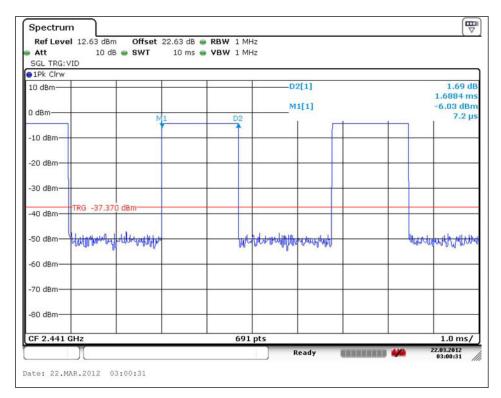
| Operation<br>Mode | Frequency | Dwell Time<br>(ms) | Time of occupancy on<br>the Tx Channel in<br>31.6 sec (ms) | Limit for time of occupancy on the Tx Channel in 31.6 sec (ms) |
|-------------------|-----------|--------------------|------------------------------------------------------------|----------------------------------------------------------------|
| GFSK              | 2 441 Mb  | 0.413              | 132.16                                                     | 400                                                            |

2 441 Mb:  $0.413 \text{ (ms)} \times [(1600 \div 2) \div 79] \times 31.6 \text{ (s)} = 132.16 \text{ (ms)}$ 

## **Operating Mode: GFSK**






Report Number: F690501/RF-RTL005403-3 Page: 30 of 32

## 7.4.2. Packet Type: DH3

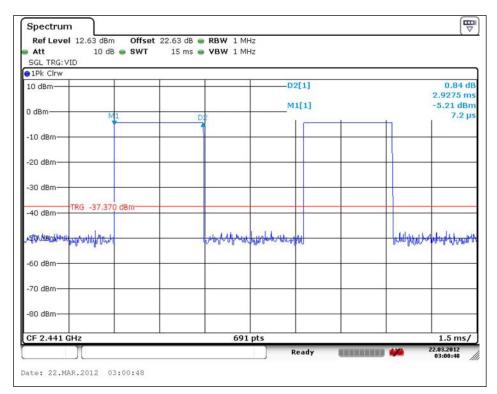
| Operation<br>Mode | Frequency | Dwell Time<br>(ms) | Time of occupancy on<br>the Tx Channel in<br>31.6 sec (ms) | Limit for time of<br>occupancy<br>on the Tx Channel in<br>31.6 sec (ms) |
|-------------------|-----------|--------------------|------------------------------------------------------------|-------------------------------------------------------------------------|
| GFSK              | 2 441 Mb  | 1.688              | 270.08                                                     | 400                                                                     |

2 441 Mz : 1.688 (ms) × [(1 600 ÷ 4) ÷ 79] ×31.6(s) = 270.08 (ms)

## **Operating Mode: GFSK**






Report Number: F690501/RF-RTL005403-3 Page: 31 of 32

## 7.4.3. Packet Type: DH5

| Operation<br>Mode | Frequency | Dwell Time<br>(ms) | Time of occupancy on<br>the Tx Channel in<br>31.6 sec<br>(ms) | Limit for time of<br>occupancy<br>on the Tx Channel in<br>31.6 sec<br>(ms) |
|-------------------|-----------|--------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|
| GFSK              | 2 441 MHz | 2.928              | 312.32                                                        | 400                                                                        |

2 441 Mb:  $2.928 \text{ (ms)} \times [(1\ 600 \div 6) \div 79] \times 31.6 \text{(s)} = 312.32 \text{ (ms)}$ 

## **Operating Mode: GFSK**





Report Number: F690501/RF-RTL005403-3 Page: 32 of 32

## 8. Antenna Requirement

## 8.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

## 8.2. Antenna Connected Construction

Antenna used in this product is Integral type (PCB Antenna) gain of 1.87 dB i.