

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (1) of (30)

TEST REPORT Part 90 Subpart I

Equipment under test EV Gateway

Model name J1803

FCC ID WDC-J1803

Applicant JTECH an HME Company

Manufacturer Lee Technology Korea Co., Ltd.

Date of test(s) $2018.02.12 \sim 2018.02.22$

Date of issue 2018.02.24

Issued to JTECH an HME Company

1400 Northbrook Parkway Suite #320 Suwanee, GA USA

Tel: +1-678-280-2707 / Fax: +1-700-682-3459

Issued by KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by:	Report approval by:		
Kwon-se Kim	Hyeon-Su, Jang		
Test engineer	Technical manager		

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (2) of (30)

Revision history

Revision	Date of issue	Test report No.	Description
-	2018.02.24	KES-RF-18T0026	Initial

KESK

KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (3) of (30)

TABLE OF CONTENTS

1.	General i	nformation	4
	1.1.	EUT description	4
	1.2.	Test configuration	
	1.3.	Accessory information	
	1.4.	Software and Firmware description.	
	1.5.	Measurement results explanation example	5
	1.6	Measurement Uncertainty	
	1.7.	Test frequency	
2.	Summary	of tests	
3.		lts	
	3.1	RF output power	
	3.2	Bandwidth limitation	
	3.3	Emission mask	
	3.4	Conducted spurious emissions	
	3.5	Frequency stability	
	3.6	Transient frequency behavior of the transmitter	
	3.7	Radiation spurious emissions	
Appe	endix A.	Measurement equipment	
		Test setup photos	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (4) of (30)

1. General information

Applicant: JTECH an HME Company

Applicant address: 1400 Northbrook Parkway Suite #320 Suwanee, GA USA

Test site: KES Co., Ltd.

Test site address: 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,

Gyeonggi-do, 14057, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Test Facility FCC Accreditation Designation No.: KR0100, Registration No.: 444148

FCC rule part(s): Part 90

FCC ID: WDC-J1803

Test device serial No. Production Pre-production Engineering

1.1. EUT description

Frequency range 450.0250 Mb ~ 469.9750 Mb

Model: J1803
Type of emission 5K93F1D
Channel separation 12.5 kHz
Rated power 11 dBm

Antenna specification Antenna type: Dipole antenna, Peak gain: -2.34dBi

Power source AC 120 V Adaptor (Output : DC 12.0V//5.0A)

1.2. Test configuration

The <u>JTECH an HME Company EV Guest Tag FCC ID: WDC-J1803</u> was tested according to the specification of EUT, the EUT must comply with following standards

FCC Part 90 FCC Part 2 TIA-603-E:2016

1.3. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
-	-	-	-	-

1.4. Software and Firmware description

The software and firmware installed in the EUT is version 1.0.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (5) of (30)

1.5. Measurement results explanation example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 1.05 + 10 = 11.05 (dB)

1.6 Measurement Uncertainty

Test Item	Uncertainty	
Uncertainty for Conduction emis	2.62 dB	
	9kHz - 30MHz	4.54 dB
Uncertainty for Radiation emission test (include Fundamental emission)	30MHz - 1GHz	4.36 dB
	Above 10Hz	5.00 dB

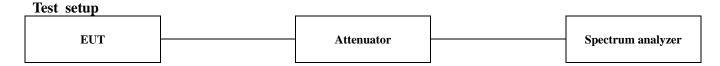
Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test frequency

Low channel		Middle channel	High channel	
Frequency (Mb)	450.0250	457.5750	469.9750	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (6) of (30)

2. Summary of tests


Section in FCC Part 90 & 2	Parameter	Test results
90.205(h)	RF output power	Pass
90.209	Bandwidth limitations	Pass
90.210(d)	Emission mask	Pass
90.210(d)	Conducted spurious emissions	Pass
90.213(a), 2.1055(a)(1)	Frequency stability	Pass
90.214	Transient frequency behavior	
90.210(d)	Radiated spurious emissions	Pass

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (7) of (30)

3. Test results

3.1 RF output power

Test procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator
- 2. Use the following spectrum analyzer setting

Span = 2 MHz

RBW = 100 kHz

 $VBW = 100 \text{ kHz } (\geq RBW)$

Sweep = auto

Detector function = peak

Trace = max hold

Limit

According to 90.205(h) 450 ~ 470 Mz, (1) The maximum allowable station effective radiated power (ERP) is dependent upon the station's antenna HAAT and required service area and will be authoriz ed in accordance with table 2. Applicants requesting an ERP in excess of that listed in table 2 mus t submit an engineering analysis based upon generally accepted engineering practices and standards t hat includes coverage contours to demonstrate that the requested station parameters will not produce coverage in excess of that which the applicant requires.

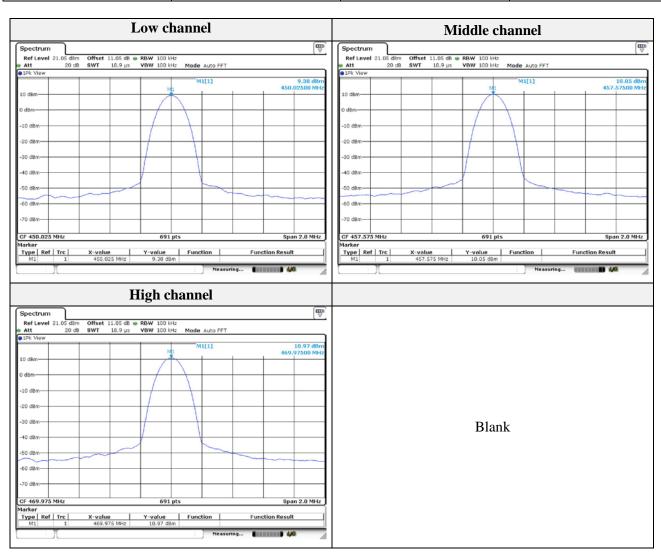
Table 2. 450 ~ 470 M₂—Maximum ERP/Reference HAAT for a Specific Service Area Radius

	Service area radius (km) 3 8 13 16 24 32 40 ⁴ 48 ⁴ 64 ⁴ 80 ⁴									
					804					
Maximum ERP (W) ¹	<u>2</u>	100	² 500							
Up to reference HAAT (m) ³	<u>15</u>	15	15	27	63	125	250	410	950	2700

¹Maximum ERP indicated provides for a 39 dBu signal strength at the edge of the service area per FCC Report R-6602, Fig. 29 (See §73.699, Fig. 10 b).

²Maximum ERP of 500 watts allowed. Signal strength at the service area contour may be less than 39 dBu.

³When the actual antenna HAAT is greater than the reference HAAT, the allowable ERP will be reduced in accordance with the following equation: $ERP_{allow} = ERP_{max} \times (HAAT_{ref}/HAAT_{actual})^2$.


⁴Applications for this service area radius may be granted upon specific request with justification and must include a technical demonstration that the signal strength at the edge of the service area does not exceed 39 dBu.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (8) of (30)

Test results

Frequency (Mb)	Output power(dBm)	Output power(W)	Rated power(dBm)
450.0250	9.38	0.009	
457.5750	10.05	0.010	11.00
469.9750	10.97	0.013	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (9) of (30)

3.2 Bandwidth limitation

Test setup

Test procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator
- 2. Use the following spectrum analyzer setting

Span = 50 kHz

RBW = 300 Hz

 $VBW = 300 \text{ Hz } (\geq RBW)$

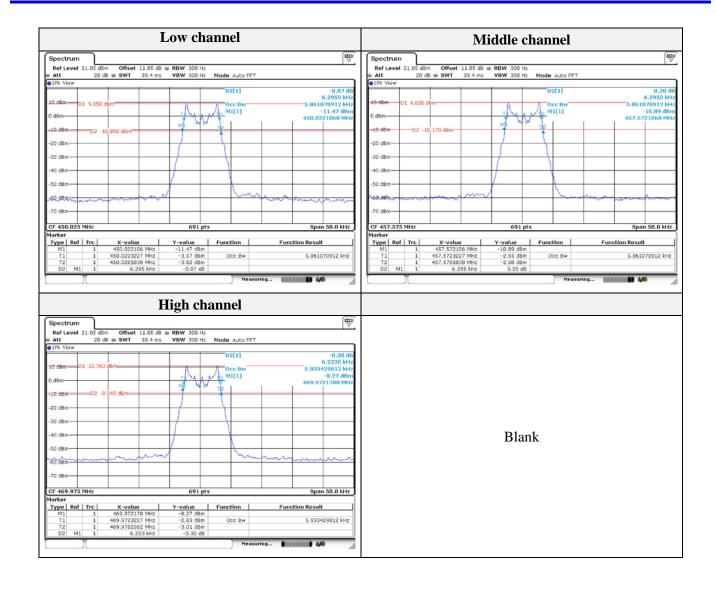
Sweep = auto

Detector function = peak

Trace = max hold

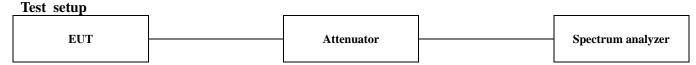
3. Mark the peak frequency and -20 dB(Upper and lower) frequency.

Limit


N/A

Test results

Frequency(Mbz)	20 dB bandwidth (kHz)	OBW (kHz)
450.0250	6.30	5.86
457.5750	6.30	5.86
469.9750	6.22	5.93


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (10) of (30)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (11) of (30)

3.3 Emission mask

Test procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator
- 2. Use the following spectrum analyzer setting

Span = 120 kHz

RBW = 100 Hz

 $VBW = 100 \text{ Hz} \quad (\geq RBW)$

Sweep = auto

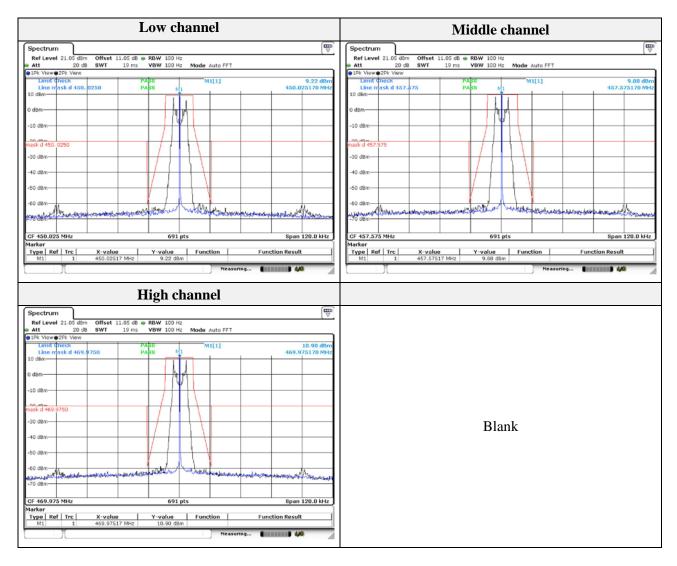
Detector function = peak

Trace = max hold

- 3. Mark the peak frequency with maximum peak power as the center of the display of the spectrum analyzer.
- 4. Record the power spectrum analyzer and compare to the mask.

Limit

According to § 90.210(d), Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power(P) of the highest emission contained within the authorized bandwidth as follows:


- (1) On any frequency from the center of the authorized bandwidth f₀ to 5.625 kHz removed from f₀: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz, but no more than 12.5 kHz: At least 7.27 (f_d-2.88 kHz) dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10log(P) dB or 70 dB, whichever is the lesser attenuation.

KESK

KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (12) of (30)

Test results

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (13) of (30)

3.4 Conducted spurious emissions

Test setup	_		
EUT		Attenuator	Spectrum analyzer

Test procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator
- 2. Use the following spectrum analyzer setting

Span = 30 MHz to 5 GHz

RBW = 100 kHz

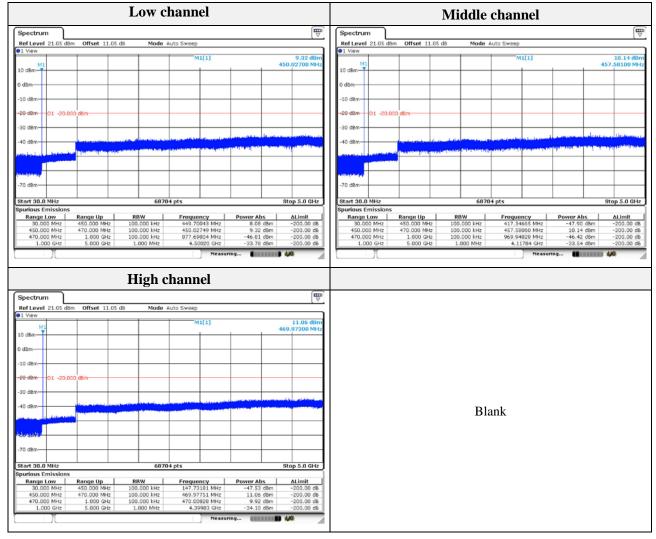
 $VBW = 100 \text{ kHz } (\geq RBW)$

Sweep = auto

Detector function = peak

Trace = max hold

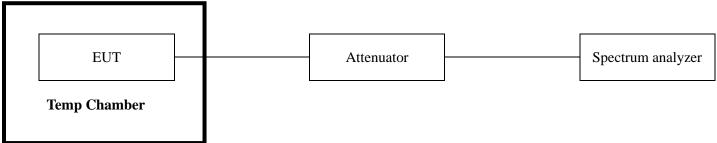
Limit


According to part 90.210(d), Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power(P) of the highest emission contained within the authorized bandwidth as follows:

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10log(P) dB or 70 dB, whichever is the lesser attenuation.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (14) of (30)

Test results



3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (15) of (30)

3.5 Frequency stability

Test setup

Test procedure

TIA-603-E - Section 2.2.2, FCC Part 2.1055

TIA-603-E – Section 2.2.2

- 1. Connect the equipment as illustrated.
- 2. Operate the equipment in standby conditions for 15 minutes before proceeding.
- 3. Record the carrier frequency of the transmitter as MCF_{Mz}.
- 4. Calculate the ppm frequency error by the following:

$$ppm \, error = \left(\frac{MCF_{MHz}}{ACF_{MHz}} - 1\right) * 10^6$$

Where

MCF_{Mk} is the Measured Carrier Frequency in Mk ACF_{mk} is the Assigned Carrier Frequency in Mk

5. The value recorded in step 4 is the carrier frequency stability.

FCC Part 2.1055

(1) From -30° to $+50^{\circ}$ centigrade for all equipment except that specified in paragraphs (a)(2) and (3) of this section.

KES (K

KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (16) of (30)

Limit

- 1. According to $\S2.1055(a)(1)$, the frequency stability shall be measured with variation of ambient temperature from -30 °C to +50 °C centigrade.
- 2. According to §2.1055(d)(2), for battery powered equipment the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3. According to §90.213, (a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table.

Minimum Frequency Stability [Parts per million (ppm)]

		Mobile	stations	
Frequency range (Mz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power	
Below 25	1,2,3100	100	200	
25–50	20	20	50	
72–76	5		50	
150–174	5,115	⁶ 5	^{4,6} 50	
216–220	1.0		1.0	
220-22212	0.1	1.5	1.5	
421–512	^{7,11,14} 2.5	<mark>85</mark>	⁸ 5	
806–809	¹⁴ 1.0	1.5	1.5	
809–824	¹⁴ 1.5	2.5	2.5	
851–854	1.0	1.5	1.5	
854–869	1.5	2.5	2.5	
896–901	¹⁴ 0.1	1.5	1.5	
902–928	2.5	2.5	2.5	
902–928 ¹³	2.5	2.5	2.5	
929–930	1.5			
935–940	0.1	1.5	1.5	
1427–1435	9300	300	300	
Above 2450 ¹⁰	-	-	-	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (17) of (30)

- ¹Fixed and base stations with over 200 watts transmitter power must have a frequency stability of 50 ppm except for equipment used in the Public Safety Pool where the frequency stability is 100 ppm.
- ²For single sideband operations below 25 Mb, the carrier frequency must be maintained within 50 Hz of the authorized carrier frequency.
- ³Travelers information station transmitters operating from 530 ∼ 1 700 kHz and transmitters exceeding 200 watts peak envelope power used for disaster communications and long distance circuit operations pursuant to §90.242 and §90.264 must maintain the carrier frequency to within 20 Hz of the authorized frequency.
- ⁴Stations operating in the 154.45 to 154.49 Mb or the 173.2 to 173.4 Mb bands must have a frequency stability of 5 ppm.
- 5 In the 150 ~ 174 MHz band, fixed and base stations with a 12.5 MHz channel bandwidth must have a frequency stability of 2.5 ppm. Fixed and base stations with a 6.25 MHz channel bandwidth must have a frequency stability of 1.0 ppm.
- ⁶In the 150 ~ 174 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth or designed to operate on a frequency specifically designated for itinerant use or designed for low-power operation of two watts or less, must have a frequency stability of 5.0 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 2.0 ppm.
- 7 In the 421 ~ 512 Mz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of 1.5 ppm. Fixed and base stations with a 6.25 kHz channel bandwidth must have a frequency stability of 0.5 ppm.
- ⁸In the 421 ~ 512 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 1.0 ppm.
- ⁹Fixed stations with output powers above 120 watts and necessary bandwidth less than 3 kHz must operate with a frequency stability of 100 ppm. Fixed stations with output powers less than 120 watts and using time-division multiplex, must operate with a frequency stability of 500 ppm.
- ¹⁰Except for DSRCS equipment in the 5 850 ~ 5 925 Mb band, frequency stability is to be specified in the station authorization. Frequency stability for DSRCS equipment in the 5 850 ~ 5 925 Mb band is specified in subpart M of this part.
- 11 Paging transmitters operating on paging-only frequencies must operate with frequency stability of 5 ppm in the $150 \sim 174$ MHz band and 2.5 ppm in the $421 \sim 512$ MHz band.
- ¹²Mobile units may utilize synchronizing signals from associated base stations to achieve the specified carrier stability.
- ¹³Fixed non-multilateration transmitters with an authorized bandwidth that is more than 40 kHz from the band edge, intermittently operated hand-held readers, and mobile transponders are not subject to frequency tolerance restrictions.
- ¹⁴Control stations may operate with the frequency tolerance specified for associated mobile frequencies.
- (b) For the purpose of determining the frequency stability limits, the power of a transmitter is considered to be the maximum rated output power as specified by the manufacturer.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (18) of (30)

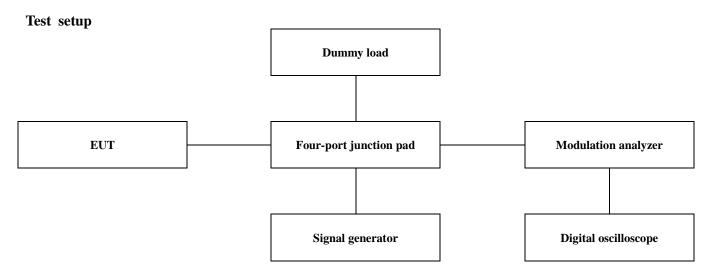
Test results

Operating frequency: 450.0250 Mbz

Test voltage	Test voltage (V)	Temperature (\mathfrak{C})	Measure frequency (MHz)	Frequency deviation (Hz)	Deviation (%)
. ,		-30	450.025 029	28	0.000 006
		-20	450.025 078	78	0.000 017
		-10	450.025 104	104	0.000 023
		0	450.025 145	145	0.000 032
100 %	AC 120	10	450.025 166	166	0.000 037
		20	450.025 203	203	0.000 045
		30	450.025 145	145	0.000 032
		40	450.025 186	186	0.000 041
		50	450.025 232	232	0.000 052
115 %	AC 138	20	450.025 215	215	0.000 048
85 %	AC 108	20	450.025 199	199	0.000 044

Operating frequency: 457.5750 Mbz

Test voltage	Test voltage	Temperature	Measure frequency	Frequency deviation	Deviation
(%)	(V)	(℃)	(MHz)	(Hz)	(%)
		-30	457.575 029	29	0.000 006
		-20	457.575 100	100	0.000 022
		-10	457.575 136	136	0.000 030
		0	457.575 145	145	0.000 032
100 %	AC 120	10	457.575 189	189	0.000 041
		20	457.575 203	203	0.000 044
		30	457.575 145	145	0.000 032
		40	457.575 234	234	0.000 051
		50	457.575 260	260	0.000 057
115 %	AC 138	20	457.575 222	222	0.000 049
85 %	AC 108	20	457.575 210	210	0.000 046


Operating frequency: 469.9750 Mb

Test voltage (%)	Test voltage (V)	Temperature (\mathcal{C})	Measure frequency (MHz)	Frequency deviation (Hz)	Deviation (%)
		-30	469.975 087	87	0.000 019
		-20	469.975 111	111	0.000 024
		-10	469.975 131	131	0.000 028
		0	469.975 116	116	0.000 025
100 %	AC 120	10	469.975 161	161	0.000 034
		20	469.975 232	232	0.000 049
		30	469.975 174	174	0.000 037
		40	469.975 233	233	0.000 050
		50	469.975 289	289	0.000 061
115 %	AC 138	20	469.975 235	235	0.000 050
85 %	AC 108	20	469.975 155	155	0.000 033

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (19) of (30)

3.6 Transient frequency behavior of the transmitter

Test procedure

- 1. Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -15 dBm.
- 2. Key the transmitter.
- 3. Supply sufficient attenuation via the RF attenuator to provide an input level to the test receiver that is 40 dB below the test receiver maximum allowed input power when the transmitter is operating at its rated power level.
- 4. Unkey the transmitter.
- 5. Adjust the RF level of the signal generator to provide RF power into the RF power meter equal to the level this signal generator RF level shall be maintained throughout the rest of the measurement.
- 6. Connect the output of the RF combiner network to the input of the Modulation analyzer.
- 7. Set the horizontal sweep rate on the storage oscilloscope to 10 milliseconds per division and adjust the display to continuously view the 1 000 Hz tone. Adjust the vertical amplitude control of the oscilloscope to display the 1 000 Hz at ±4 divisions vertically centered on the display.
- 8. Key the transmitter and observe the stored display, once the modulation Analyzer demodulator has been captured by the transmitter power, the display will show the frequency difference from the assigned frequency to the actual transmitter frequency versus time. The instant when the 1 kHz test signal is completely suppressed (including any capture time due to phasing) is considered to be ton. The trace should be maintained within the allowed divisions during the period t1 and t2. See the figure in the appropriate standards section.
- 9. During the time from the end of t₂ to the beginning of t₃ the frequency difference should not exceed the limits set by the FCC in 47 CFR 90.214 and outlined in 3.2.2. The allowed limit is equal to the transmitter frequency times its FCC frequency tolerance times ±4 display divisions divided by 12.5 kHz.
- 10. Key the transmitter and observe the stored display. The trace should be maintained within the allowed divisions after the end of t₂ and remain within it until the end of the trace. See the figure in the appropriate standards sections.
- 11. To test the transient frequency behavior during the period t₃ the transmitter shall be keyed.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (20) of (30)

- 12. Adjust the oscilloscope trigger controls so it will trigger on a decreasing magnitude from the Modulation analyzer, at 1 division from the right side of the display, when the transmitter is turned off. Set the controls to store the display. The moment when the 1 kHz test signal starts to rise is considered to provide to toff.
- 13. The transmitter shall be unkeyed.
- 14. Observe the display. The trace should remain within the allowed divisions during period t3. See the figures in the appropriate standards section.

Limit

According to §90.214, Transmitters designed to operate in the 150 ~ 174 Mz and 421 ~ 512 Mz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

TP'1-12	Maximum frequency	All equ	ipment			
Time intervals ^{1, 2}	difference ³	150 to 174 MHz	421 to 512 MHz			
Transient frequency behaviour for equipment designed to operate on 25 kHz channel						
t1 ⁴	±25.0 kHz	5.0 ms	10.0 ms			
t2	±12.5 kHz	20.0 ms	25.0 ms			
t3 ⁴	±25.0 kHz	5.0 ms	10.0 ms			
Transient	Frequency Behaviour for Equipme	nt Designed to Operate on 12.5 kHz	Channel			
t1 ⁴	±12.5 kHz	5.0 ms	10.0 ms			
t2	±6.25 kHz	20.0 ms	25.0 ms			
t3 ⁴	±12.5 kHz	5.0 ms	10.0 ms			
Transient	Transient Frequency Behaviour for Equipment Designed to Operate on 6.25 kHz Channel					
t1 ⁴	±6.25 kHz	5.0 ms	10.0 ms			
t2	t2 ±3.125 kllz		25.0 ms			
t3 ⁴	±6.25 kHz	5.0 ms	10.0 ms			

¹_{on} is the instant when a 1 klz test signal is completely suppressed, including any capture time due to phasing.

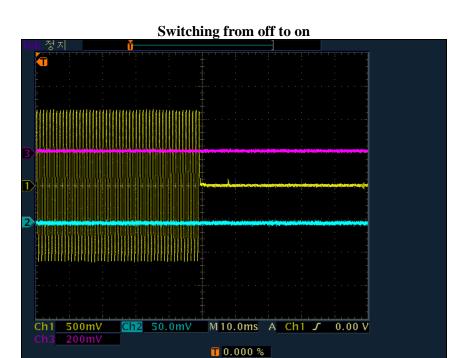
t₁ is the time period immediately following t_{on}.

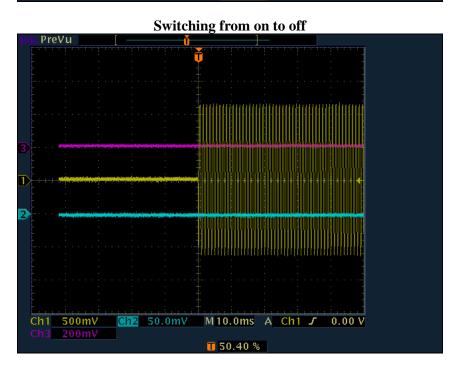
 t_2 is the time period immediately following t_1 .

t₃ is the time period from the instant when the transmitter is turned off until t_{off}.

t_{off} is the instant when the 1 kHz test signal starts to rise.

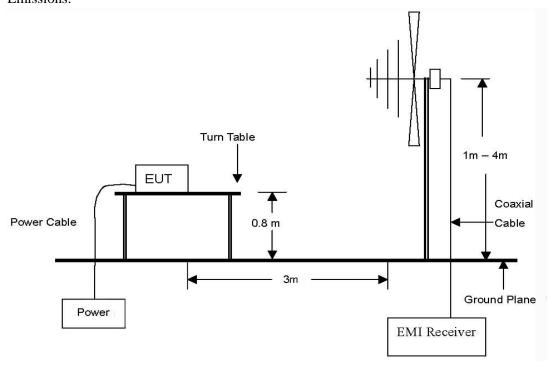
² During the time from the end of t₂ to the beginning of t₃, the frequency difference must not exceed the limits specified in §90.213.


³ Difference between the actual transmitter frequency and the assigned transmitter frequency.

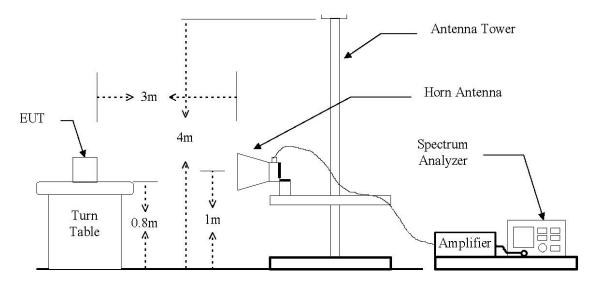

⁴ If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time may exceed the maximum frequency difference for this period.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (21) of (30)

Test results

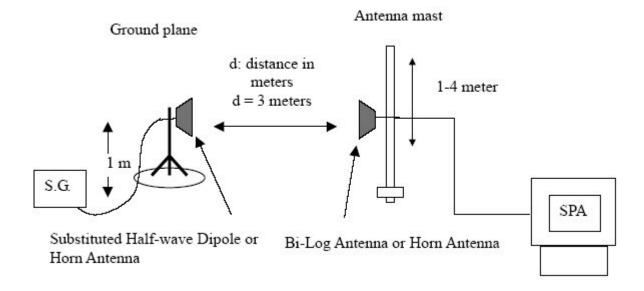


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (22) of (30)


3.7 Radiation spurious emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 GHz Emissions.


The diagram below shows the test setup that is utilized to make the measurements for emission from 1 CHz to 5 CHz Emissions.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (23) of (30)

The diagram below shows the test setup for substituted method

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (24) of (30)

Test procedure: Based on TIA 603E: 2016

- 1. On a test site, the EUT shall be placed at 80 cm height on a turn table, and in the position closest to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3m from EUT to correspond to the fundamental frequency of the transmitter.
- 3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.
- 4. During the measurement of the EUT, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using
 - 1) RBW: 100 kHz(< 1 GHz), 1 MHz(> 1 GHz).
 - 2) VBW: 300 kHz(< 1 GHz), 3 MHz(> 1 GHz).
- 5. The transmitter shall be switched on, the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 6. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 7. The transmitter shall then the rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 8. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 9. The maximum signal level detected by the measuring receiver shall be noted.
- 10. The EUT was replaced by half-wave dipole(below 1 000 吨) or horn antenna(above 1 000 吨) connected to a signal generator.
- 11. In necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 12. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 13. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 14. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

Limit

According to $\S90.210(d)$, Spurious attenuated in dB = $50 + 10\log(Power output in watts)$

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (25) of (30)

Test results (Below 1 000 版)

Mode: GFSK
Distance of measurement: 3 meter
Channel: Low

Frequency	Ant. Pol.	E.R.P.	
(MHz)	(H/V)	(dBm)	(W)
450.0250	Н	13.00	0.019 953
450.0250	V	14.24	0.026 546

Mode: GFSK
Distance of measurement: 3 meter
Channel: Middle

Frequency	Ant. Pol.	E.R.P.	
(MHz)	(H/V)	(dBm)	(W)
457.5750	Н	13.03	0.020 091
457.5750	V	13.58	0.022 803

Mode: GFSK

Distance of measurement: 3 meter

Channel: High

Frequency	Ant. Pol.	E.R.P.	
(MHz)	(H/V)	(dBm)	(W)
469.9750	Н	12.78	0.018 967
469.9750	V	13.64	0.023 121

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (26) of (30)

Test results (Above 1 000 Mb)

Mode: GFSK

Distance of measurement: 3 meter

Channel: Low

Frequency	Ant. Pol.	Spurious attenuation	Limit	Margin
(MHz)	(H/V)	(dBc)	(dBc)	(dB)
900.58	Н	39.22	34.24	4.98
900.58	V	38.23	34.24	3.99
1 350.20	Н	54.46	34.24	20.22
1 350.20	V	51.62	34.24	17.38
1 801.70	Н	65.89	34.24	31.65
1 801.70	V	67.04	34.24	32.80
2 253.30	Н	67.87	34.24	33.63
2 253.30	V	68.11	34.24	33.87

Note.

- 1. Spurious attenuation = EUT max. output power(dBm) absolute level
- 2. Spurious attenuation limit in $dB = 50 + 10\log(power in watts)$

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (27) of (30)

Mode:	GFSK
Distance of measurement:	3 meter
Channel:	Middle

Frequency	Ant. Pol.	Spurious attenuation	Limit	Margin
(MHz)	(H/V)	(dBc)	(dBc)	(dB)
915.34	Н	38.51	33.58	4.93
915.34	V	39.66	33.58	6.08
1 373.40	Н	48.90	33.58	15.32
1 373.40	V	49.77	33.58	16.19
1 830.70	Н	52.42	33.58	18.84
1 830.70	V	54.28	33.58	20.70
2 288.00	Н	61.15	33.58	27.57
2 288.00	V	61.72	33.58	28.14

Note.

- 1. Spurious attenuation = EUT max. output power(dBm) absolute level
- 2. Spurious attenuation limit in $dB = 50 + 10\log(power in watts)$

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (28) of (30)

Mode: GFSK
Distance of measurement: 3 meter
Channel: High

Frequency	Ant. Pol.	Spurious attenuation	Limit	Margin
(MHz)	(H/V)	(dBc)	(dBm)	(dB)
939.65	Н	42.17	33.64	8.53
939.65	V	39.29	33.64	5.65
1 408.10	Н	46.71	33.64	13.07
1 408.10	V	50.78	33.64	17.14
1 882.80	Н	56.46	33.64	22.82
1 882.80	V	60.76	33.64	27.12
2 351.70	Н	69.72	33.64	36.08
2 351.70	V	70.59	33.64	36.95

Note.

- 1. Spurious attenuation = EUT max. output power(dBm) absolute level
- 2. Spurious attenuation limit in $dB = 50 + 10\log(power in watts)$

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-18T0026 Page (29) of (30)

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV40	101002	1 year	2018.07.04
Spectrum Analyzer	R&S	FSV30	101389	1 year	2019.01.19
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2019.01.22
Power Meter	Anritsu	ML2495A	1438001	1 year	2019.01.25
Pluse Power Sensor	Anritsu	MA2411B	1339205	1 year	2019.01.25
Loop antenna	SCHWARZBECK	FMZB1513	225	2 years	2019.05.10
Trilog-broadband antenna	SCHWARZBECK	VULB 9163	9168-714	2 years	2018.11.28
Dipole antenna	SCHWARZBECK	VHA9103	3093	2 years	2019.05.19
Dipole antenna	SCHWARZBECK	UHA9105	2703	2 years	2019.05.19
Dipole antenna	SCHWARZBECK	VHA9103	3101	2 years	2019.05.19
Dipole antenna	SCHWARZBECK	UHA9105	2702	2 years	2019.05.19
Horn Antenna	A.H	SAS-571	414	2 years	2019.02.15
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170550	2 years	2019.02.15
Preamplifier	AGILENT	8449B	3008A01729	1 year	2018.05.31
Broadband Amplifier	SCHWARZBECK	BBV-9721	PS9721-003	1 year	2019.01.23
High Pass Filter	Mini-Circuits	NHP-800+	15542	1 year	2018.07.03
Attenuator	Agilent	8493C	82506	1 year	2019.01.22
EMI Test Receiver	R&S	ESR3	101781	1 year	2018.04.27
EMI Test Receiver	R&S	ESU26	100552	1 year	2018.04.19
Temperature & Humidity Chamber	Daehan Engineering	DH-1000	DH1000060628	1 year	2019.01.19
DC Power Supply	HP	6632B	MY43004130	1 year	2018.07.03
4Port Junction Pad	Anritsu	MA1612A	M14368	1 year	2018.07.08
Oscilloscope	Tektronix	TDS3014B	B014381	1 year	2018.09.20

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
Notebook Computer	LG Electronics Inc.,	LGS53	306QCZP560949
Notebook Computer	Samsung Electronics Co., Ltd.	NT-RV518-AD6S	HTK99NC600207R