

CTC I advanced nember of RWTÜV group

Bundesnetzagentu

TEST REPORT

Test report no.: 1-7763/18-01-02

Testing laboratory

CTC advanced GmbH

BNetzA-CAB-02/21-102

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 + 49 681 5 98 - 9075 Fax: Internet: http://www.ctcadvanced.com e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Carl Zeiss Meditec AG Goeschwitzer Strasse 51-52 07745 Jena / GERMANY Phone: -/-Contact: Marcel Bieg e-mail: marcel.bieg@zeiss.com +49 7364 204610 Phone:

Manufacturer

Carl Zeiss Meditec AG Rudolf-Eber-Strasse 11 73447 Oberkochen / GERMANY

Test standard/s

FCC - Title 47 CFR Part FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio 15 frequency devices Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and RSS - 247 Issue 2 Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

	Test Item
Kind of test item:	Bluetooth Classic Device
Model name:	FCP Interface WL P
FCC ID:	WCJ304970-9420
IC:	7781A-3049709420
Frequency:	DTS band 2400 MHz to 2483.5 MHz
Technology tested:	Bluetooth®
Antenna:	Internal antenna
Power supply:	15.0 V DC by external power supply
Temperature range:	-40°C to +85°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino	
Lab Manager	
Radio Communications	

Test performed:

Mihail Dorongovskij Lab Manager **Radio Communications**

Table of contents 1

1	Table of contents					
2	Gener	al information	3			
	2.1	Notes and disclaimer	3			
	2.2	Application details				
	2.3	Test laboratories sub-contracted	3			
3	Test s	tandard/s, references and accreditations	4			
4	Test e	nvironment	5			
5	Test it	em	5			
	5.1	General description	5			
	5.2	Additional information				
6	Seque	nce of testing	6			
	6.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	6			
	6.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	7			
	6.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	8			
	6.4	Sequence of testing radiated spurious above 18 GHz	9			
7	Descri	ption of the test setup	10			
	7.1	Shielded semi anechoic chamber	11			
	7.2	Shielded fully anechoic chamber				
	7.3	Radiated measurements > 18 GHz				
	7.4	Conducted measurements Bluetooth system				
8	Measu	Irement uncertainty	15			
9	Summ	nary of measurement results	16			
10	Α	dditional comments	17			
11	М	easurement results	18			
	11.1	Antenna gain	18			
	11.2	Carrier frequency separation				
	11.3	Number of hopping channels				
	11.4	Time of occupancy (dwell time)	21			
	11.5	Spectrum bandwidth of a FHSS system	22			
	11.6	Maximum output power				
	11.7	Detailed spurious emissions @ the band edge - conducted				
	11.8	Band edge compliance radiated				
	11.9	Spurious emissions conducted				
	11.10 11.11	Spurious emissions radiated below 30 MHz				
	11.12	Spurious emissions radiated 30 MHz to 1 GHz Spurious emissions radiated above 1 GHz				
Ann	ex A	Glossary	43			
Ann	ex B	Document history				
Ann	ex C	Accreditation Certificate – D-PL-12076-01-04	44			
Ann	ex D	Accreditation Certificate – D-PL-12076-01-05	45			

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2019-02-27
Date of receipt of test item:	2019-04-02
Start of test:	2019-04-04
End of test:	2019-09-17
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description			
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices			
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices			
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus			
Guidance	Version	Description			
KDB 558074 D01 ANSI C63.4-2014	v05r02 -/-	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz			
Accreditation	Description	n			
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf				
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf				

4 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme environmental conditions required. No tests under extreme environmental conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V _{nom}	15.0 V DC by external power supply
Power supply	:	V_{max}	No tests under extreme environmental conditions required.
		V_{min}	No tests under extreme environmental conditions required.

5 **Test item**

General description 5.1

Kind of test item :	Bluetooth Classic Device
Model name :	FCP Interface WL P
HMN :	-/-
PMN :	FCP Interface WL P
HVIN :	304970-9420-000
FVIN :	-/-
S/N serial number :	Radiated: 107596
S/N Senai Humber .	Conducted: Not available
Hardware status :	Not available
Software status :	Not available
Firmware status :	Not available
Frequency band :	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission :	FHSS
Use of frequency spectrum :	1105
Type of modulation :	GFSK
Number of channels :	79
Antenna :	Internal antenna
Power supply :	15.0 V DC by external power supply
Temperature range :	-40°C to +85°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-7763/18-01-01_AnnexA 1-7763/18-01-01_AnnexB 1-7763/18-01-01_AnnexD

6 Sequence of testing

6.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

6.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

6.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

6.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

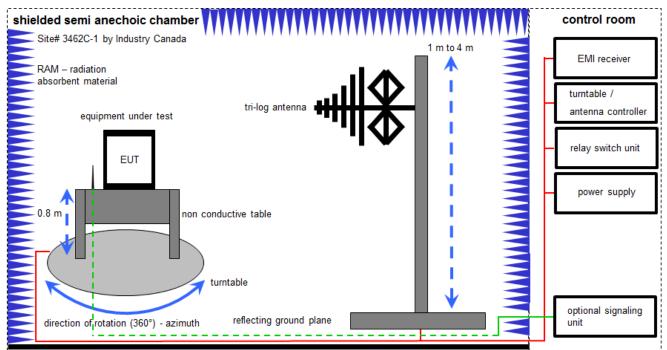
- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

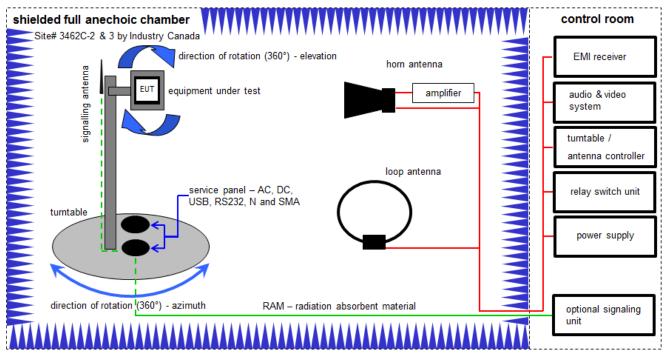
7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter, EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

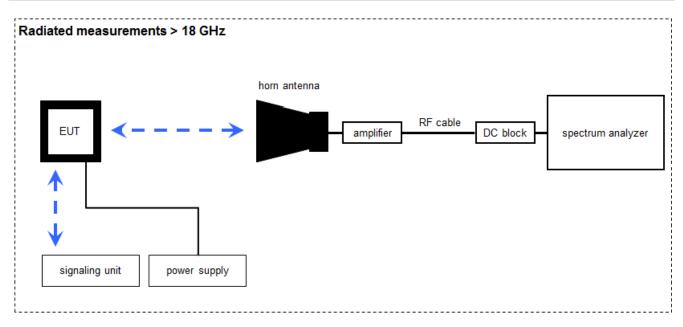
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	21.05.2019	20.05.2020
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vlKl!	24.11.2017	23.11.2020

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

<u>Example calculation</u>: FS [dB μ V/m] = 40.0 [dB μ V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB μ V/m] (71.61 μ V/m)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	С	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	13.06.2019	12.06.2021
2	A, B, C	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
3	А, В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKl!	27.02.2019	26.02.2021
4	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	А	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
6	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	19.12.2018	18.12.2019
7	Α	Highpass Filter	WHKX2.6/18G-10SS	Wainwright	12	300004651	ne	-/-	-/-
8	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
9	А, В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
10	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
11	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
12	A, B, C	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-

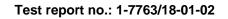
CTC | advanced

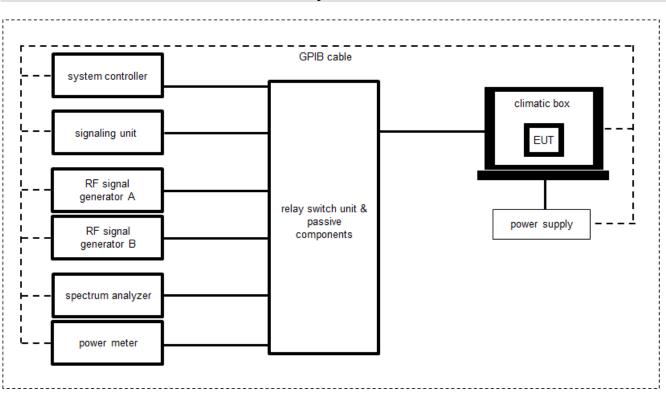
member of RWTÜV group

CTC I

advanced member of RWTÜV group

Measurement distance: horn antenna 50 cm


FS = UR + CA + AF


(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation: FS [dBμV/m] = 40.0 [dBμV/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dBμV/m] (6.79 μV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	-/-	300000486	vlKli	13.12.2017	12.12.2019
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	vlKI!	17.12.2018	16.12.2019
4	А	RF-Cable	ST18/SMAm/SMAm/48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
5	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

7.4 Conducted measurements Bluetooth system

OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Spectrum Analyzer	FSV30	Rohde & Schwarz	103809	300005359	vlKI!	17.12.2018	16.12.2020
2	А	Relay Switch Matrix	RSM-1	CTC advanced GmbH	0001	400001355	ev	07.02.2019	06.02.2020
3	А	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-

CTC I advanced

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Carrier frequency separation	± 21.5 kHz					
Number of hopping channels	-/-					
Time of occupancy	According BT Core specification					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum output power	± 1 dB					
Detailed conducted spurious emissions @ the band edge	±1 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained									
	There were deviations from the technical specifications ascertained									
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.									
TC Identifier		Description			'	Verdict		Date		Remark
RF-Testing	R	CFR Part 15 SS - 247, Issue	e 2		S	ee table!	2	020-04-	-03	-/-
Test specification clause	Test case	Temperature conditions	Power source voltages	Mod	le	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4.(f)(ii)	Antenna gain	Nominal	Nominal	GFS	К	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1.(b)	Carrier frequency separation	Nominal	Nominal	GFS	К					-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	GFS	К	\boxtimes				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (c)	Time of occupancy (dwell time)	Nominal	Nominal	GFS	к	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	GFS	К					-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	GFS	К					-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	GFS	к					-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	GFS	к					-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	GFS	к					-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	GFS	К					-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	GFS RX mo						-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	GFS RX mo						-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	GFS RX mo				\boxtimes		-/-

<u>Note:</u> C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10 Additional comments

The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

Reference documents:	1-776	1-7763_18-01-02_log1_conducted.pdf	
Special test descriptions:	DH5 p TX Te	Bluetest3 CSR Software was used for all tests. DH5 packet configuration: 15/339 TX Test amplifier configuration: 50/255 Idle mode: Pause TX Test	
Configuration descriptions:	None		
Test mode:		Bluetooth Test mode loop back enabled (EUT is controlled over CBT/CMU/CMW)	
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself	
Antennas and transmit operating modes:	\boxtimes	 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) 	

11 Measurement results

11.1 Antenna gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth[®] devices, the GFSK modulation is used.

Measurement parameters (radiated)			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	3 MHz		
Video bandwidth	3 MHz		
Span	5 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.2 B		
Measurement uncertainty	See sub clause 8		

Measurement parameters (conducted)			
	1-7763_18-01-02_log1_conducted.pdf		
External result file	Common2G4 Peak Output Power conducted		
	3MHz_3MHz		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 8		

Limits:

FC	cc	IC
6 0	dBi / > 6 dBi output power and	power density reduction required

T _{nom}	V _{nom}	lowest channel 2402 MHz	middle channel 2441 MHz	highest channel 2480 MHz
Conducted power [dBm] Measured with GFSK modulation		-3.2	-2.1	-2.1
Radiated power [dBm] Measured with GFSK modulation		-2.6	-1.3	-1.3
Gain [dBi] Calculated		0.6	0.8	0.8

11.2 Carrier frequency separation

Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters			
External result file	1-7763_18-01-02_log1_conducted.pdf		
	FCC Part 15.247 Carrier Frequency Separation FHSS		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC		
Carrier frequency separation			
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.			

Carrier frequency separation	~ 1 MHz
------------------------------	---------

11.3 Number of hopping channels

Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters		
External result file	1-7763_18-01-02_log1_conducted.pdf FCC Part 15.247 Number Of Hopping Channels FHSS	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

<u>Limits:</u>

FCC	IC	
Number of hopping channels		
At least 15 non overlapping hopping channels		

11.4 Time of occupancy (dwell time)

Measurement:

For Bluetooth[®] devices no measurements mandatory depending on the fixed requirements according to the Bluetooth[®] Core Specifications!

For Bluetooth® devices:

The channel staying time of 0.4 s within a 31.6 second period in data mode is constant for Bluetooth[®] devices and independent from the packet type (packet length). The calculation for a 31.6 second period is a follows:

Channel staying time = time slot length * hop rate / number of hopping channels * 31.6 s

Example for a DH1 packet (with a maximum length of one time slot) Channel staying time = $625 \ \mu s + 1600 \times 1/s / 79 \times 31.6 s = 0.4 s$ (in a 31.6 s period)

For multi-slot packets the hopping is reduced according to the length of the packet.

Example for a DH3 packet (with a maximum length of three time slots) Channel staying time = $3 \times 625 \ \mu s \times 1600/3 \times 1/s / 79 \times 31.6 \ s = 0.4 \ s$ (in a 31.6 s period)

Example for a DH5 packet (with a maximum length of five time slots) Channel staying time = $5 * 625 \ \mu s * 1600/5 * 1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

This is according the Bluetooth® Core Specification 5.0 (and lower) for all Bluetooth® devices and all modulations.

The following table shows the relations:

Packet Size	Pulse Width [ms] *	Max. number of transmissions per channel in 31.6 sec
DH1	0.366	640
DH3	1.622	214
DH5	2.870	128

* according Bluetooth® specification

<u>Results:</u>

Packet Size	Pulse Width [ms]*	Max. number of transmissions in 31.6 sec	Time of occupancy (dwell time) [Pulse width * Number of transmissions]
DH1	0.366	640	234.2 ms
DH3	1.622	214	347.1 ms
DH5	2.870	128	367.4 ms

Limits:

FCC	IC	
Time of occupancy (dwell time)		
The frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.		

11.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement parameters		
External result file	1-7763_18-01-02_log1_conducted.pdf	
	FCC Part 15.247 Bandwidth 99PCT	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

<u>Limits:</u>

FCC	IC	
Spectrum bandwidt	h of a FHSS system	
GFSK < 1500 kHz Pi/4 DQPSK < 1500 kHz 8DPSK < 1500 kHz		

Results:

Modulation		20 dB bandwidth [kHz]	
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	867	867	867

Modulation		99 % bandwidth [kHz]	
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	858	858	860

11.6 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode. The measurement is performed according to the ANSI C63.10.

Measurement parameters	
	1-7763_18-01-02_log1_conducted.pdf
External result file	FCC Part 15.247 Maximum Peak Conducted Output
	Power FHSS
Test setup	See sub clause 7.4 A
Measurement uncertainty	See sub clause 8

<u>Limits:</u>

FCC	IC
Maximum output power	
Systems using more that	antenna gain max. 6 dBi] an 75 hopping channels: ntenna gain max. 6 dBi

Modulation	Maximum	n output power conduc	ted [dBm]
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	-3.1	-2.1	-2.1

11.7 Detailed spurious emissions @ the band edge - conducted

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

Measurement parameters	
External result file	1-7763_18-01-02_log1_conducted.pdf
	FCC Part 15.247 TX Spurious Conducted
Test setup	See sub clause 7.4 A
Measurement uncertainty	See sub clause 8

<u>Limits:</u>

FCC	IC
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below	
that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.	

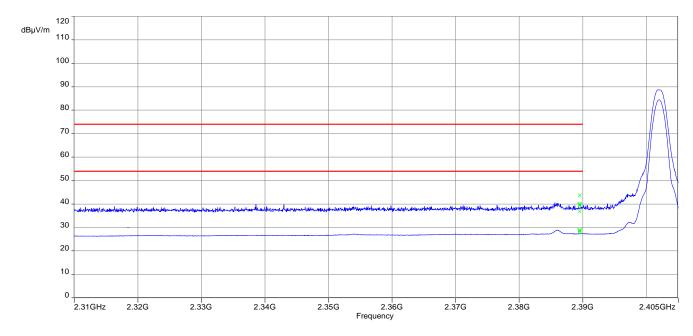
Scenario	Spurious band edge conducted [dB]	
Modulation	GFSK	
Lower band edge – hopping off	> 20 dB	
Lower band edge – hopping on	> 20 dB	
Upper band edge – hopping off	> 20 dB	
Upper band edge – hopping on	> 20 dB	

11.8 Band edge compliance radiated

Description:

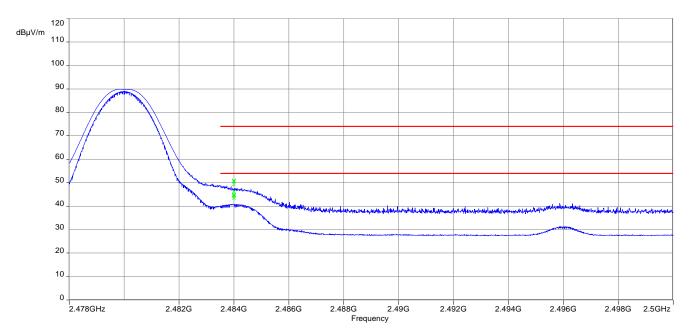
Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

Measurement parameters		
Detector	Peak / RMS	
Sweep time	Auto	
Resolution bandwidth	1 MHz	
Video bandwidth	3 MHz	
Span	Lower Band: 2370 – 2400 MHz Upper Band: 2480 – 2500 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.2 B	
Measurement uncertainty	See sub clause 8	


<u>Limits:</u>

FCC	IC	
Band edge com	pliance radiated	
radiator is operating, the radio frequency power that is produ that in the 100 kHz bandwidth within the band that contains conducted or a radiated measurement. Attenuation below the	inds, as defined in Section 15.205(a), must also comply with	
54 dBμV/m AVG 74 dBμV/m Peak		

Scenario	Band edge compliance radiated [dBµV/m]	
Modulation	GFSK	
Lower restricted band	< 54 AVG / < 74 PP	
Upper restricted band	< 54 AVG / < 74 PP	



Plots:

Plot 1: Lower band edge, GFSK modulation, vertical & horizontal polarization

Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization

11.9 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is repeated for all modulations.

Measurement parameters		
External result file	1-7763_18-01-02_log1_conducted.pdf	
	FCC Part 15.247 TX Spurious Conducted	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

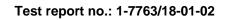
<u>Limits:</u>

FCC	IC		
TX spurious emissions conducted			
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required			

TX spurious emissions conducted				
GFSK - mode				
	amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
	-4.0	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant
	-3.1	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant
	-3.0	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant
	Please take a loo d emissions are be Please take a loo d emissions are be	amplitude of emission [dBm] -4.0 d emissions are below the -20 dBc Please take a look at the plot! -3.1 d emissions are below the -20 dBc Please take a look at the plot! -3.0 d emissions are below the -20 dBc	GFSK - mode amplitude of emission [dBm] max. allowed emission power -4.0 30 dBm d emissions are below the -20 dBc Please take a look at the plot! -20 dBc -20 dBc Please take a look at the plot! -20 dBc -20 dBc -20 dBc -20 dBc -20 dBc -20 dBc -20 dBc -20 dBc	GFSK - mode amplitude of emission [dBm] limit max. allowed emission power actual attenuation below frequency of operation [dB] -4.0 30 dBm

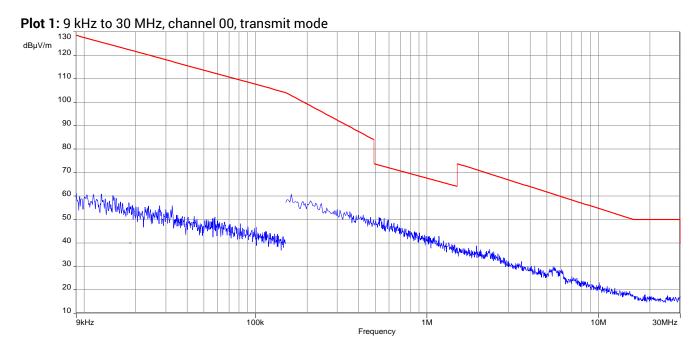
11.10 Spurious emissions radiated below 30 MHz

Description:

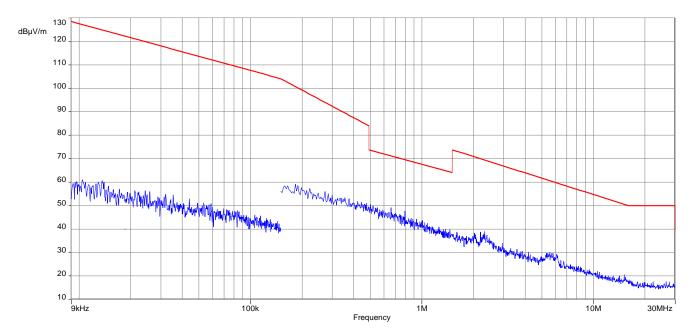

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

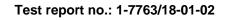
Measurement parameters			
Detector	Peak / Quasi peak		
Sweep time	Auto		
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span	9 kHz to 30 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.2 C		
Measurement uncertainty	See sub clause 8		

Limits:

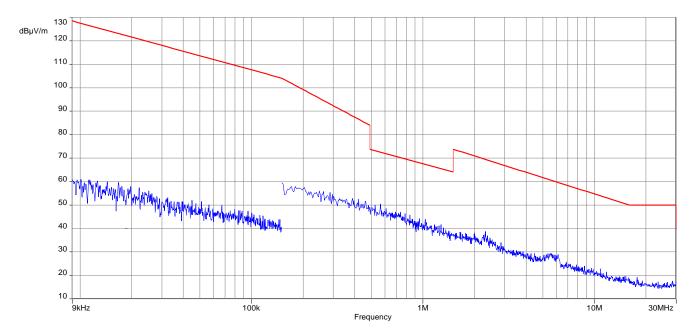

FCC			IC
TX spurious emissions radiated below 30 MHz			
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance
0.009 - 0.490	2400/F(kHz)		300
0.490 - 1.705	24000/F(kHz)		30
1.705 – 30.0	30		30

TX spurious emissions radiated below 30 MHz [dBµV/m]					
F [MHz] Detector Level [dBµV/m]					
All detected emissions are more than 20 dB below the limit.					





Plots:



Plot 2: 9 kHz to 30 MHz, channel 39, transmit mode

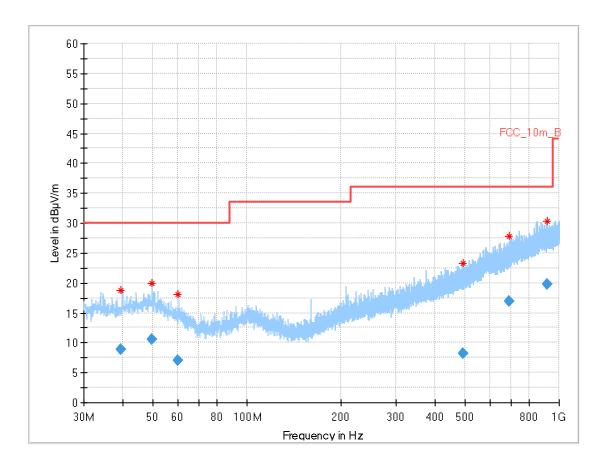
Plot 3: 9 kHz to 30 MHz, channel 78, transmit mode

11.11 Spurious emissions radiated 30 MHz to 1 GHz

Description:

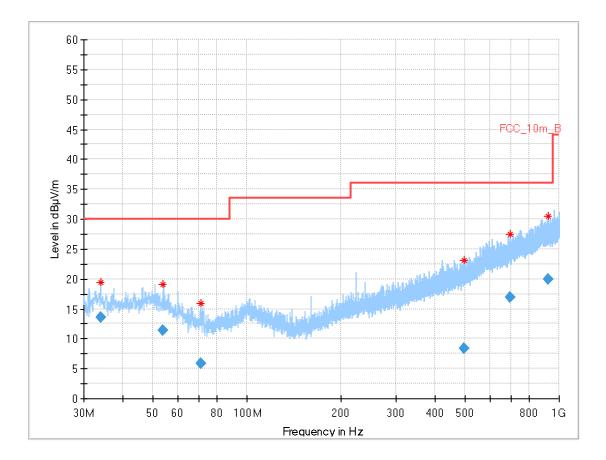
Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters		
Detector	Peak / Quasi Peak	
Sweep time	Auto	
Resolution bandwidth	120 kHz	
Video bandwidth	3 x RBW	
Span	30 MHz to 1 GHz	
Trace mode	Max hold	
Measured modulation	⊠ GFSK	
Test setup	See sub clause 7.1 A	
Measurement uncertainty	See sub clause 8	

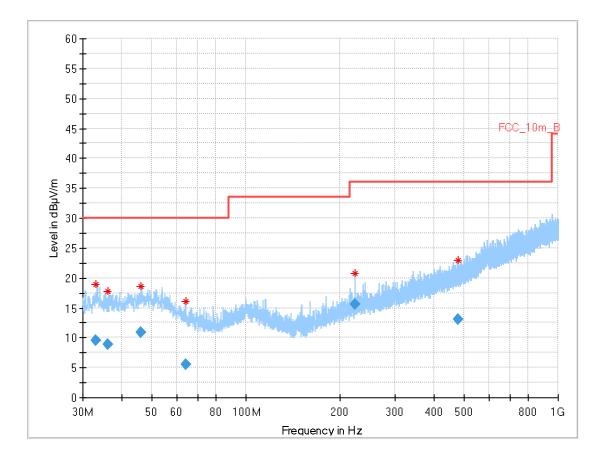

Limits:

FCC		IC			
	TX spurious emissions radiated				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).					
§15.209					
Frequency (MHz) Field strength (dBµV/m) Measurement distance					
30 - 88	30	0.0	10		
88 – 216	33.5		10		
216 - 960	36.0		10		
Above 960	54.0		3		

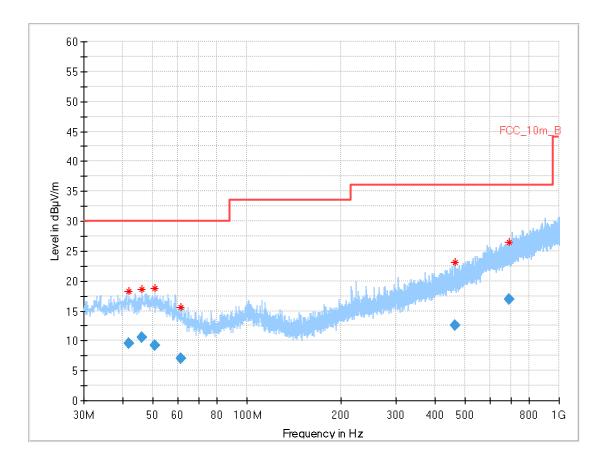
Plots: Transmit mode


Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.491	8.84	30.0	21.16	1000	120	101.0	Н	83.0	14
49.720	10.56	30.0	19.44	1000	120	101.0	v	355.0	15
60.259	7.03	30.0	22.97	1000	120	101.0	v	284.0	13
492.892	8.17	36.0	27.83	1000	120	147.0	v	105.0	18
693.637	16.86	36.0	19.14	1000	120	145.0	Н	11.0	21
914.839	19.84	36.0	16.16	1000	120	160.0	V	192.0	24


Plot 2: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.000	13.53	30.0	16.47	1000	120	98.0	V	301.0	14
53.922	11.37	30.0	18.63	1000	120	101.0	v	333.0	14
70.958	5.87	30.0	24.13	1000	120	98.0	н	49.0	11
494.436	8.31	36.0	27.69	1000	120	144.0	Н	355.0	18
695.320	16.95	36.0	19.05	1000	120	101.0	v	198.0	21
923.115	19.92	36.0	16.08	1000	120	98.0	V	105.0	24



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.903	9.62	30.0	20.38	1000	120	98.0	V	273.0	13
36.040	8.93	30.0	21.07	1000	120	100.0	н	3.0	14
45.999	10.86	30.0	19.14	1000	120	101.0	v	142.0	15
63.988	5.53	30.0	24.47	1000	120	98.0	v	21.0	12
223.984	15.66	36.0	20.34	1000	120	160.0	V	64.0	13
479.145	12.99	36.0	23.01	1000	120	160.0	v	355.0	18

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.797	9.50	30.0	20.50	1000	120	98.0	V	35.0	15
45.987	10.53	30.0	19.47	1000	120	101.0	Н	86.0	15
50.637	9.24	30.0	20.76	1000	120	160.0	v	346.0	15
61.479	7.06	30.0	22.94	1000	120	101.0	v	14.0	13
462.459	12.61	36.0	23.39	1000	120	160.0	Н	159.0	18
692.592	16.92	36.0	19.08	1000	120	101.0	Н	1.0	21

11.12 Spurious emissions radiated above 1 GHz

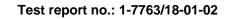
Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters						
Detector	Peak / RMS					
Sweep time	Auto					
Resolution bandwidth	1 MHz					
Video bandwidth	3 x RBW					
Span	1 GHz to 26 GHz					
Trace mode	Max hold					
Measured modulation	⊠ GFSK					
Test setup	See sub clause 7.2 A (1 GHz - 18 GHz) See sub clause 7.3 A (18 GHz - 26 GHz)					
Measurement uncertainty	See sub clause 8					

Limits:

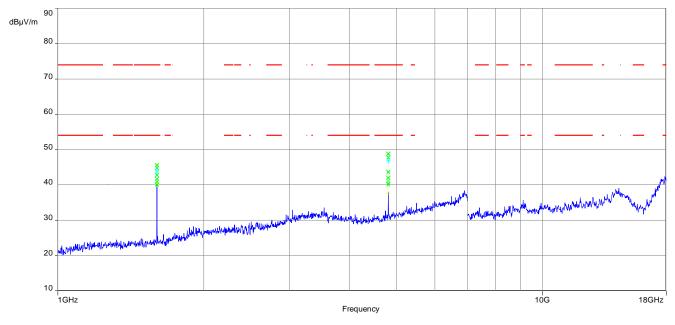
FCC IC							
TX spurious emissions radiated							
radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement. A In addition, radiated emissions which f	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).						
	§15	.209					
Frequency (MHz) Field strength (dBµV/m) Measurement distance							
Above 960	54	l.0	3				

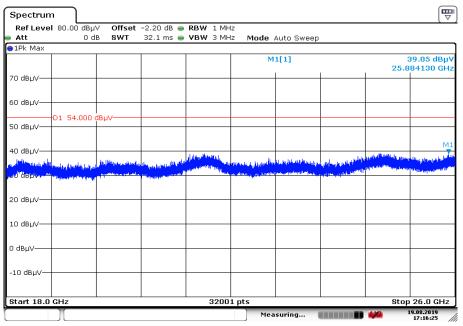

<u>Results:</u> Transmitter mode

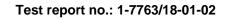
	TX spurious emissions radiated [dBµV/m]												
2402 MHz 2441 MHz						2480 MHz							
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]					
1602	Peak	45.5	1628	Peak	48.5	1654	Peak	48.4					
1002	AVG	42.8	1020	AVG	46.5	1054	AVG	47.5					
4804	Peak	48.9	4000	Peak	48.7	4060	Peak	47.0					
4804	AVG	43.7	4882	AVG	43.2	4960	AVG	40.0					
/	Peak	-/-	1	Peak	-/-	1	Peak	-/-					
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-					

Results: Receiver mode

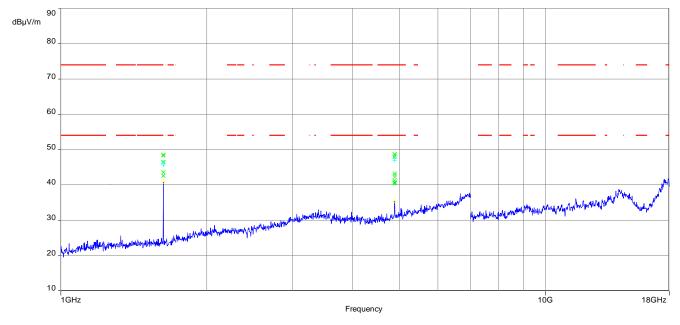
RX spurious emissions radiated [dBµV/m]								
F [MHz]	Detector Level [dBµV/m]							
1602	Peak	45.5						
1002	AVG	42.8						


Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

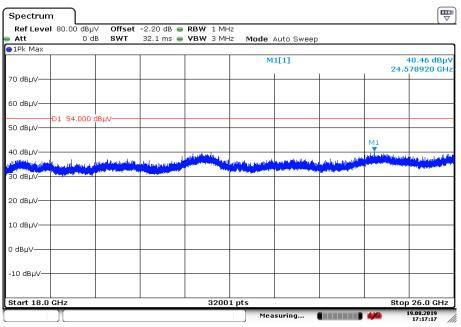

Plots: Transmitter mode

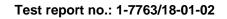


The carrier signal is notched with a 2.4 GHz band rejection filter.

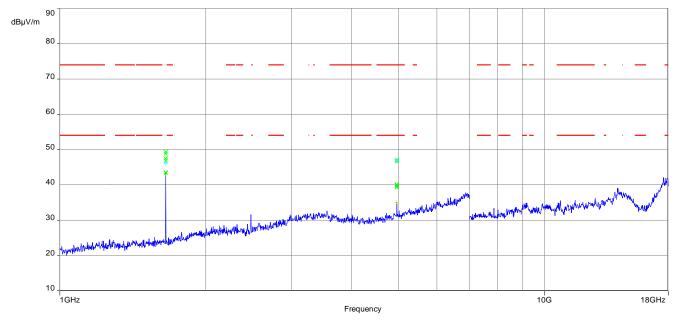

Plot 2: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization

Date:19AUG.2019 17:16:25

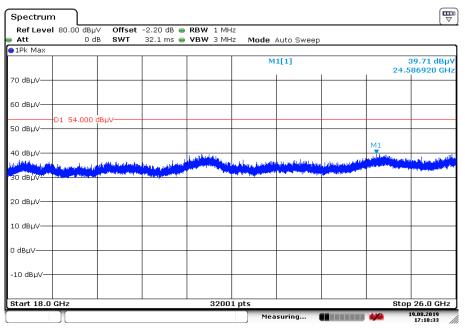


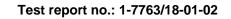

Plot 3: 1 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 4: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization

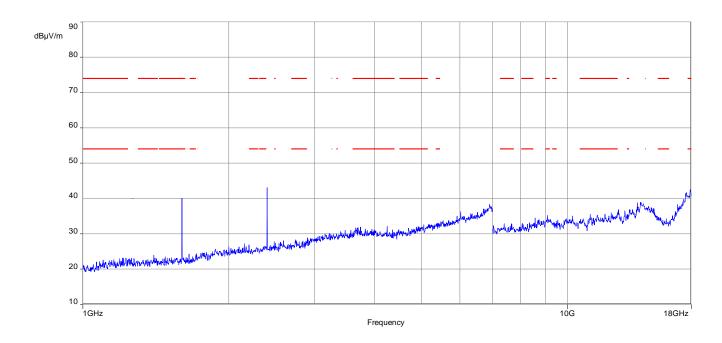
Date:19AUG.2019 17:17:17




Plot 5: 1 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: 18 GHz to 26 GHz, TX mode, channel 78, vertical & horizontal polarization


Date:19.AUG .2019 17:18:34

Plots: Receiver mode

Plot 1: 1 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

Plot 2: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

	n I 80.00 dBµ'	Offcot	-2.20 dB 👄		-				(🛛
Att	0 di			VBW 3 MH		Auto Sweep			
∋1Pk Max									
					м	1[1]			39.31 dBµ\ 588920 GH:
70 dBµV									
60 dBµV									
50 dBµV	D1 54.000 a	dBµV−−−−							
								M1	
40 dBµV سارىي ما ^{مارى} تىن	وروبا ووللم وحور ورجوا	والاراد والأواد أمتقدتهم	a bade is a felix division	and the state	فالمطالح إرزوالهما			and a state of the	The second se
ະບໍ dBps	The sector of the sector	and following a state	a particular and a second second	and the state of t	<mark>ili, boun, _{stat}tabb</mark>	halssia Kashini ang	terre di neri den del di		- Albertana -
20 dBµV									
10 dBµV									
0 dBuV									
o dopt									
-10 dBµV—		l i				1	1	1	1
·				3200					p 26.0 GHz

Date:19.AUG .2019 17:18:48

Annex A Glossary

EUT	Fauinment under test
EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz
0/110	

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2020-04-03

Annex C Accreditation Certificate – D-PL-12076-01-04

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

Annex D Accreditation Certificate – D-PL-12076-01-05

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf