

Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel Tel. +972 4628 8001 Fax. +972 4628 8277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47CFR part 15 subpart C §15.247 (DTS), RSS-247 Issue 2:2017, RSS-Gen Issue 5

FOR:

Maytronics Ltd. Wireless Robotic Pool Cleaner with Inductive Charger Model: Liberty FCC ID: WCHLIBERTY IC: 29982-LIBERTY

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	
2	Equipment under test attributes	
3	Manufacturer information	
4	Test details	
5	Tests summary	
6	EUT description	5
6.1	General information	5
6.2	Changes made in EUT	5
6.3	Test configuration	5
6.4	Transmitter characteristics	6
7	Transmitter tests according to 47CFR part 15 subpart C and RSS-247 requirements	7
7.1	Minimum 6 dB and 99% bandwidth	7
7.2	Peak output power	12
7.3	Field strength of spurious emissions	17
7.4	Band edge radiated emissions	
7.5	Peak spectral power density	
8	APPENDIX A Test equipment and ancillaries used for tests	
9	APPENDIX B Test equipment correction factors	47
10	APPENDIX C Measurement uncertainties	51
11	APPENDIX D Test laboratory description	
12	APPENDIX E Specification references	
13	APPENDIX F Abbreviations and acronyms	54

1 Applicant information

Client name:	Maytronics Ltd.
Address:	Kibbutz Yizre'el, 1935000, Israel
Telephone:	+972 4-6598113
Fax:	+972 4-6522485
E-mail:	Eugene.Plotnichenko@Maytronics.com
Contact name:	Mr. Eugene Plotnichenko

2 Equipment under test attributes

Product name:	Wireless Robotic Pool Cleaner with Inductive Charger
Product type:	Transceiver
Model(s):	Liberty
Serial number:	prototype
Hardware version:	02
Software release:	8_819
Receipt date	20-Dec-22

3 Manufacturer information

Manufacturer name:	Maytronics Ltd.
Address:	Kibbutz Yizre'el, 1935000, Israel
Telephone:	+972 4-6598113
Fax:	+972 4-6522485
E-Mail:	Eugene.Plotnichenko@Maytronics.com
Contact name:	Mr. Eugene Plotnichenko

4 Test details

Project ID:	49441
Location:	Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel
Test started:	26-Dec-22
Test completed:	29-Dec-22
Test specification(s):	FCC 47CFR part 15 subpart C §15.247 (DTS),
	RSS-247 Issue 2:2017, RSS-Gen Issue 5

5 Tests summary

Test	Status
Transmitter characteristics	
FCC Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth	Pass
FCC Section 15.247(b)3/ RSS-247 section 5.4(4), Peak output power	Pass
FCC Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions	Pass
FCC Section 15.247(d)/ RSS-247 section 5.5, Emissions at band edges	Pass
FCC Section 15.247(e) / RSS-247 section 5.2(2), Peak power density	Pass
FCC section 15.203 / RSS-Gen section 6.8, Antenna requirement	Pass
FCC section 15.203 / RSS-Gen section 6.8, Antenna requirement	Pass

This test report supersedes the previously issued test report identified by Doc ID: MAYRAD_FCC.49441_Rev1

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

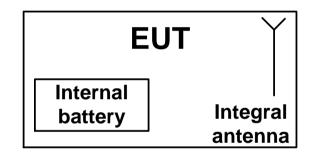
The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mrs. M. Evsuk, test engineer, EMC & Radio	11-Jan-23	EAuf
Reviewed by:	Mrs. S. Peysahov Sheynin, test engineer, EMC & Radio	28-Mar-23	1 miles
Approved by:	Mr. M. Nikishin, group leader, EMC & Radio	28-Mar-23	ft b

6 EUT description

Note: The following data in this clause is provided by the customer and represents his sole responsibility

6.1 General information


The EUT is a robot that is powered by an internal Li-Ion battery. The robot has a dedicated battery charger (inductive), that charges the battery when the robot is out of water. The charger can work in 100-240VAC range with 50/60Hz.

The robot has an embedded BLE transceiver (2.4GHz) with integral antenna, which operates during the robot's charging or idle state.

6.2 Changes made in EUT

No changes were performed in the EUT during testing.

6.3 Test configuration

6.4 Transmitter characteristics

Type o	Type of equipment										
V	V Stand-alone (Equipment with or without its own control provisions)										
								egrated within and	ther type	of equipment)	
	Plug-in card (Eq	uipment	intended for	a varie	ety of ho	st sys	stems)				
Assign	ed frequency rai	nge		2400	-2483.5	MHz					
Operat	ing frequencies			2402-	-2480 MI	Hz					
Maxim	um rated output	power		Peak	output p	ower	3.51 dE	3m			
				٧	No						
								continuous varial	ole		
Is trans	smitter output po	ower var	iable?		Vaa			stepped variable	with steps	size	dB
					res		ninimum	RF power			dBm
							naximur	n RF power			dBm
Antenn	Antenna connection										
			otor	darda	onnosto		v	Into anol	v	vith temporary I	RF connector
	unique coupling		Star	ndard connector		V Integral	V v	/ without temporary RF connector			
Antenn	a/s technical ch	aracteri	stics								
Туре			Manufac	turer			Model	number		Gain	
Internal			Maytroni	nics			N/A 1.95 dBi				
Transmitter aggregate data rate/s 1 Mbps											
Туре о	Type of modulation GFSK										
Modula	Modulating test signal (baseband)										
Transn	nitter power sour	rce									
V	Battery	Nomin	al rated vol	age	2	25 VD	С	Battery type	Lithiur	n Ion	
	DC		al rated vol					·			
	AC mains	Nomin	al rated vol	age				Frequency	Hz		

Test specification: Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth							
Test procedure:	ANSI C63.10 section 11.8.1	ANSI C63.10 section 11.8.1					
Test mode:	Compliance	Verdict: PASS					
Date(s): 29-Dec-22 Verd		verdict:	PASS				
Temperature: 22 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC				
Remarks:							

7 Transmitter tests according to 47CFR part 15 subpart C and RSS-247 requirements

7.1 Minimum 6 dB and 99% bandwidth

7.1.1 General

This test was performed to measure 6 dB bandwidth of the EUT carrier frequency. Specification test limits are given in Table 7.1.1.

Table 7.1.1 6 dB bandwidth limits

Assigned frequency, MHz	Modulation envelope reference points*, dBc	Minimum bandwidth, kHz
2400.0 - 2483.5	6.0	500.0

* - Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.

Table 7.1.2 The 99% bandwidth limits

Assigned frequency, MHz	Modulation envelope reference points	Limit, MHz
2400.0 – 2483.5	99%	NA

7.1.2 Test procedure

- **7.1.2.1** The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was set to transmit modulated carrier.
- **7.1.2.3** The transmitter minimum 6 dB bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.1.3 and associated plot.

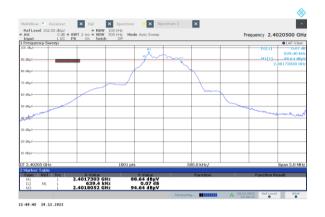
Figure 7.1.1 6 dB bandwidth test setup

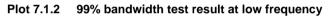
Test specification:	ication: Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth						
Test procedure:	ANSI C63.10 section 11.8.1						
Test mode:	Compliance	Verdict: PASS					
Date(s):	29-Dec-22						
Temperature: 22 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC				
Remarks:							

Table 7.1.3 6 dB bandwidth test results

ASSIGNED FREQUEN DETECTOR USED: SWEEP TIME: RESOLUTION BANDW VIDEO BANDWIDTH: MODULATION ENVEL MODULATION: MODULATING SIGNAL BIT RATE:	IDTH: OPE REFERENCE	Peak Auto			
Carrier frequency, MHz	99% bandwidth, kHz	6 dB bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
2402	1008.79	639.4	500	139.4	Pass
2440	1013.57	634.4	500	134.4	Pass
2480	1032.92	644.4	500	144.4	Pass

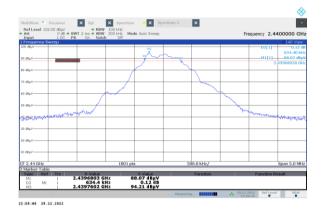
Reference numbers of test equipment used

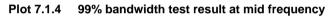

HL 4933	HL 5902	HL 3903	HL 7585			


Full description is given in Appendix A.

Test specification:	Section 15.247(a)2 / RSS-2	Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth					
Test procedure:	ANSI C63.10 section 11.8.1						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	29-Dec-22	verdict.	PASS				
Temperature: 22 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC				
Remarks:							

Plot 7.1.1 6 dB bandwidth test result at low frequency

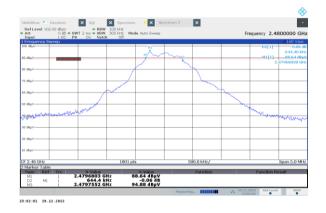


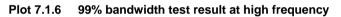

23:15:12 29.12.2022



Test specification:	Section 15.247(a)2 / RSS-2	Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth					
Test procedure:	ANSI C63.10 section 11.8.1						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	29-Dec-22	verdict.	PASS				
Temperature: 22 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC				
Remarks:							

Plot 7.1.2 6 dB bandwidth test result at mid frequency




23:13:23 29.12.2022

Test specification:	Section 15.247(a)2 / RSS-2	Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth					
Test procedure:	ANSI C63.10 section 11.8.1						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	29-Dec-22	verdict.	PASS				
Temperature: 22 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC				
Remarks:							

Plot 7.1.3 6 dB bandwidth test result at high frequency

23:10:35 29.12.2022

Test specification:	Section 15.247(b)3 / RSS-2	47 section 5.4(4), Maximum	n output power	
Test procedure:	ANSI C63.10 sections 11.9.2.2.	4		
Test mode:	Compliance	Verdict: PASS		
Date(s):	26-Dec-22	verdict:	PASS	
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC	
Remarks:				

7.2 Peak output power

7.2.1 General

This test was performed to measure the maximum peak output power radiated by transmitter. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Peak output power limits

Assigned frequency	Maximum antenna	Maximum antenna Peak outp		Equivalent field strength
range, MHz	gain, dBi	W	dBm	limit @ 3m, dB(μV/m)**
2400.0 – 2483.5	6.0	1.0	30.0	131.2

*- The limit is provided in terms of conducted RF power at the antenna connector. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value as follows:

by 1 dB for every 3 dB that the directional gain of antenna exceeds 6 dBi for fixed point-to-point transmitters operate in 2400-2483.5 MHz band;

without any corresponding reduction for fixed point-to-point transmitters operate in 5725-5850 MHz band; by the amount in dB that the directional gain of antenna exceeds 6 dBi for the rest of transmitters.

**- Equivalent field strength limit was calculated from the peak output power as follows: E=sqrt(30×P×G)/r, where P is peak output power in Watts, r is antenna to EUT distance in meters and G is transmitter antenna gain in dBi.

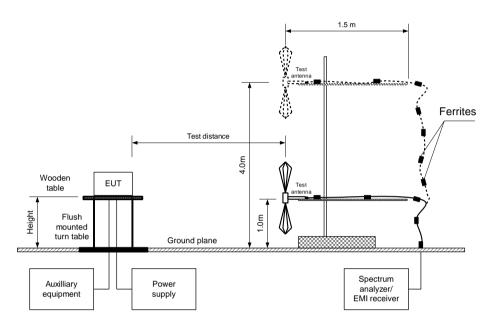
7.2.2 Test procedure

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- 7.2.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.2.2.3** The resolution bandwidth of spectrum analyzer was set wider than 6 dB bandwidth of the EUT and the field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 3600 and the measuring antenna height was swept in both vertical and horizontal polarizations.
- **7.2.2.4** The maximum field strength of the EUT carrier frequency was measured as provided in Table 7.2.2 and associated plots.
- **7.2.2.5** The maximum peak output power was calculated from the field strength of carrier as follows:

 $P = (E \times d)2 / (30 \times G),$

where P is the peak output power in W, E is the field strength in V/m, d is the test distance and G is the transmitter numeric antenna gain over an isotropic radiator.

The above equation was converted in logarithmic units for 3 m test distance:


Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi – 95.2 dB

7.2.2.6 The worst test results (the lowest margins) were recorded in Table 7.2.2.

Test specification:	Section 15.247(b)3 / RSS-2	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power					
Test procedure:	ANSI C63.10 sections 11.9.2.2	.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	26-Dec-22	verdict.	PASS				
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC				
Remarks:							

Figure 7.2.1 Setup for carrier field strength measurements

Test specification:	Section 15.247(b)3 / RSS-2	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power				
Test procedure:	ANSI C63.10 sections 11.9.2.2.	4				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	26-Dec-22	verdict.	PASS			
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC			
Remarks:						

Table 7.2.2 Peak output power test results

ASSIGNED FREQUENCY: TEST DISTANCE: TEST SITE: EUT HEIGHT: DETECTOR USED: TEST ANTENNA TYPE: TRANSMITTER OUTPUT POWER SETTINGS: DETECTOR USED: RESOLUTION BANDWIDTH: VIDEO BANDWIDTH: 2400.0 – 2483.5 MHz 3 m Semi anechoic chamber 1.5 m Peak Double ridged guide (above 1000 MHz) Maximum Peak 3 MHz 10 MHz GFSK

MODULATION: BITRATE:

Frequency, MHz	Field strength, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	EUT antenna gain, dBi	Peak output power, dBm**	Limit, dBm	Margin, dB***	Verdict
2402.0	100.66	Horizontal	1.70	-115	1.95	3.51	30	-26.49	Pass
2440.0	99.86	Vertical	1.52	-45	1.95	2.68	30	-27.32	Pass
2480.0	97.38	Horizontal	1.70	-165	1.95	0.20	30	-29.80	Pass

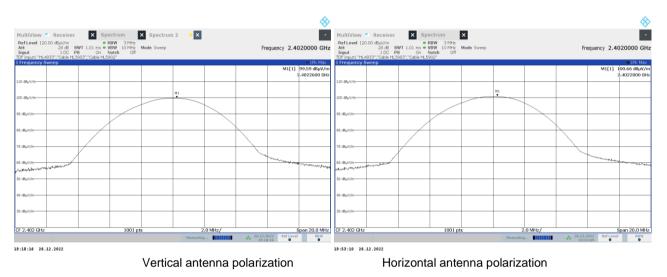
1 Mbps

*- EUT front panel refer to 0 degrees position of turntable.

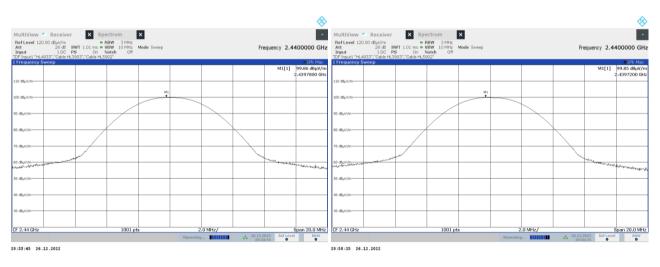
- Peak output power was calculated from the field strength of carrier as follows: $P = (E \times d)^2 / (30 \times G)$, where P is the peak output power in W, E is the field strength in V/m, d is the test distance in meters and G is the transmitter numeric antenna gain over an isotropic radiator. The above equation was converted in logarithmic units for 3 m test distance: *Peak output power in dBm* = *Field strength in dB*(μ V/m) - *Transmitter antenna gain in dBi* – 95.2 dB *- Margin = Peak output power – specification limit.

Note: Maximum peak output power was obtained at Unom (115%Unom, 85%Unom) input power voltage.

Reference numbers of test equipment used


[HL 3903	HL 4933	HL 5902	HL 7585		
_						

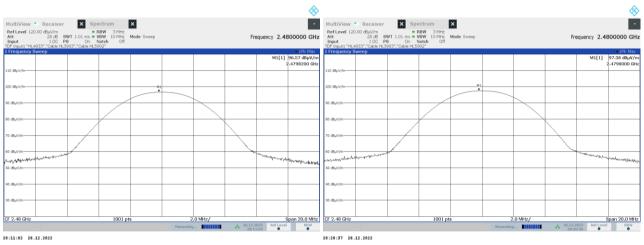
Full description is given in Appendix A.



Test specification:	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power				
Test procedure:	ANSI C63.10 sections 11.9.2.2.	4			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	26-Dec-22	verdict:	PASS		
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC		
Remarks:	•				

Plot 7.2.1 Field strength of carrier at low frequency

Plot 7.2.2 Field strength of carrier at mid frequency


Vertical antenna polarization

Horizontal antenna polarization

Test specification:	Section 15.247(b)3 / RSS-247 section 5.4(4), Maximum output power					
Test procedure:	ANSI C63.10 sections 11.9.2.2.	4				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	26-Dec-22	verdict:	PA33			
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC			
Remarks:	· · ·					

Plot 7.2.3 Field strength of carrier at high frequency

Vertical antenna polarization

Horizontal antenna polarization

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.1				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	29-Dec-22	verdict:	PASS		
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC		
Remarks:					

7.3 Field strength of spurious emissions

7.3.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.3.1.

Frequency, MHz	dB(μV/m)*** strength of s			Attenuation of field strength of spurious versus
Trequency, Milz	Peak	Quasi Peak	Average	carrier outside restricted bands, dBc***
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**	
0.090 - 0.110	NA	108.5 - 106.8**	NA	
0.110 - 0.490	126.8 – 113.8	NA	106.8 - 93.8**	
0.490 - 1.705		73.8 - 63.0**		
1.705 – 30.0*		69.5		20.0
30 - 88	NA	40.0	NA	20.0
88 – 216	INA	43.5	NA	
216 - 960		46.0		
960 - 1000		54.0		
1000 – 10 th harmonic	74.0	NA	54.0	

Table 7.3.1 Radiated spurious emissions limits

*- The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $\lim_{S_2} \lim_{S_1} \lim_{S_1} \lim_{S_1} \lim_{S_2} \lim_{S_1} \lim_{S_2} \lim_{S_2} \lim_{S_1} \lim_{S_2} \lim_{S_2$

where S_1 and S_2 – standard defined and test distance respectively in meters.

**- The limit decreases linearly with the logarithm of frequency.

*** - The field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

7.3.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

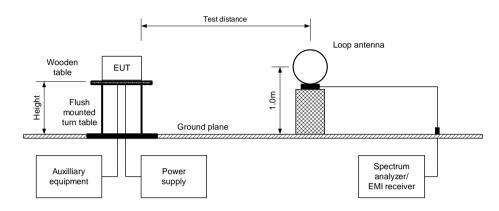
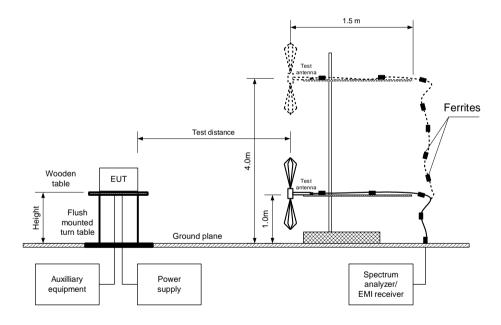
- 7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and the performance check was conducted.
- 7.3.2.2 The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find
- maximum radiation the turntable was rotated 360° and the measuring antenna was rotated around its vertical axis.
- 7.3.2.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

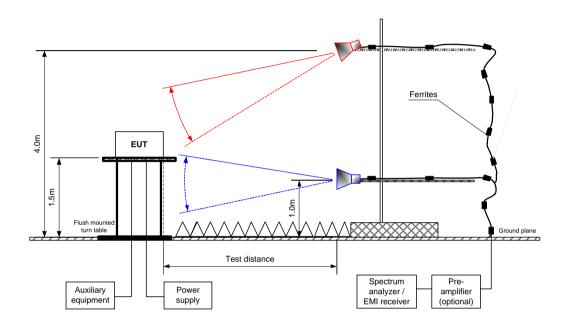
7.3.3 Test procedure for spurious emission field strength measurements above 30 MHz

- **7.3.3.1** The EUT was set up as shown in Figure 7.3.2, Figure 7.3.3, energized and the performance check was conducted.
- **7.3.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360[°], the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.3.3.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.1				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	29-Dec-22	verdict:	PASS		
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC		
Remarks:					

Figure 7.3.1 Setup for spurious emission field strength measurements below 30 MHz


Figure 7.3.2 Setup for spurious emission field strength measurements from 30 to 1000 MHz

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.1				
Test mode:	Compliance	- Verdict:	PASS		
Date(s):	29-Dec-22	verdict:	PASS		
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC		
Remarks:					

Figure 7.3.3 Setup for spurious emission field strength measurements above1000 MHz

Test specification:	Section 15.247(d) / RSS-24	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.1					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	29-Dec-22	verdict:	PA33			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC			
Remarks:						

Table 7.3.2 Field strength of emissions outside restricted bands

INVESTIG TEST DIST MODULAT BIT RATE: TRANSMIT DETECTO RESOLUT VIDEO BA	TION:	ENCY RANGE				ΛΗz			
Frequency, MHz	Field strength of spurious, dB(µV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	Field strength of carrier, dB(µV/m)	Attenuation below carrier, dBc	Limit, dBc	Margin, dB**	Verdict
Low carrier	frequency 2402	MHz							
7206	62.2	Vertical	1.40	20	100.56	38.36	20.0	1.41	Pass
Mid carrier	frequency 2442	MHz							
			No em	nissions were	e found				Pass
High carrier	frequency 2480	MHz							
			No em	nissions were	e found				Pass

*- EUT front panel refers to 0 degrees position of turntable. **- Margin = Attenuation below carrier – specification limit.

L

Test specification:	Section 15.247(d) / RSS-24	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.1					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	29-Dec-22	verdict:	PA33			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC			
Remarks:						

Table 7.3.3 Field strength of spurious emissions above 1 GHz within restricted bands

Frequency,	Heiaht.	Azimuth,	Measured,	Limit.	Margin,	Measured, Calculated, Limit,
Ante	nna	A	Peak	field stren	gth	Average field strength
				Do	ouble ridge	ed guide (above 1000 MHz)
		Biconilog (30 MHz – 1000 MHz)			0 MHz – 1000 MHz)	
TEST ANTENNA TYP	'E:					9 kHz – 30 MHz)
VIDEO BANDWIDTH:				3	MHz	
RESOLUTION BAND	WIDTH:			1	MHz	
DETECTOR USED:				Pe	eak	
BIT RATE:				1	Mbps	
MODULATION:				G	FSK	
TEST DISTANCE:				3	m	
INVESTIGATED FRE	QUENCY	RANGE:		10	00 - 2500	0 MHz
ASSIGNED FREQUE	NCY:			24	00.0 - 24	83.5 MHz

Frequency, MHz	Polarization	Height, m	Azimuth, degrees*	Measured, dB(µV/m)	Limit, dB(µV/m)	Margin, dB**	Measured, dB(μV/m)	Calculated, dB(μV/m)	Limit, dB(µV/m)	Margin, dB***	Verdict
Low carrie	Low carrier frequency 2402 MHz										
4804	Vertical	1.4	20	50.6	74	-23.4	50.6	33.4	54	-20.6	Pass
Mid carrier	frequency 24	442 MHz									
4880	Vertical	2.7	20	48.7	74	-25.3	48.7	31.5	54	-22.5	Pass
7320	Vertical	1.5	22	65.1	74	-8.9	65.1	47.9	54	-6.1	Pass
High carrie	High carrier frequency 2480 MHz										
4960	Vertical	1.4	18	45.4	74	-28.6	45.4	28.2	54	-25.8	Deee
7440	Vertical	1.3	18	65.6	74	-8.4	65.6	48.4	54	-5.6	Pass

*- EUT front panel refers to 0 degrees position of turntable. **- Margin = Measured field strength - specification limit.

***- Margin = Calculated field strength - specification limit,

where Calculated field strength = Measured field strength + average factor.

Table 7.3.4 Average factor calculation

	Transmiss	sion pulse	Transmis	sion burst	Transmission train	Average factor,	
	Duration, ms	Period, ms	Duration, ms	Period, ms	duration, ms	dB	
	0.086	0.628	NA	NA	NA	-17.2	
*_	for pulse train		Average factor $= 20 \times \log$	$\frac{Pulseduration}{Pulse period} \times \frac{Burstandown }{Trainadown }$	luration luration	within pulse train	
	for pulse train	longer than 100 ms:	Average factor = $20 \times \log$	$\frac{Pulseduration}{Pulseperiod} \times \frac{Burston}{10}$	duration Oms × Number of bursts	within 100ms)	

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10 section 11.12.1					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	29-Dec-22	verdict:	PA33			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC			
Remarks:	•					

Table 7.3.5 Field strength of spurious emissions below 1 GHz within restricted bands

TEST DISTA MODULATIO BIT RATE:	TED FREQU ANCE: DN: TER OUTPU USED:	Y: IENCY RANGE: T POWER SETTINGS): :	Biconilog (3) MHz)	lz)	
Frequency,	Peak emission,	Qua Measured emission,	asi-peak Limit,		Antenna	Antenna	Turn-table position**,	Verdict
MHz	dB(μV/m)	dB(μV/m)	dB(μV/m)	Margin, dB*	polarization	height, m	degrees	. c. alot

No emissions were found

Low, mid, high carrier frequency

*- Margin = Measured emission - specification limit. **- EUT front panel refer to 0 degrees position of turntable.

Pass

Test specification:	Section 15.247(d) / RSS-24	7 section 5.5, Radiated spu	rious emissions
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance		
Date(s):	29-Dec-22	Verdict:	PASS
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC
Remarks:			

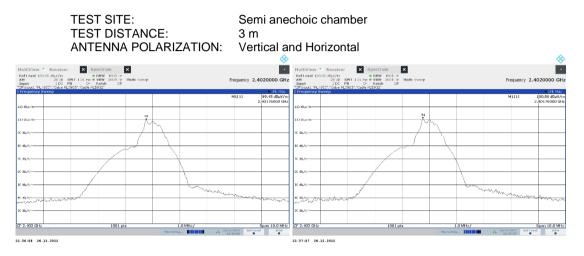
Table 7.3.6 Restricted bands according to FCC section 15.205

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2690 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 38.6
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	ADUVE 30.0

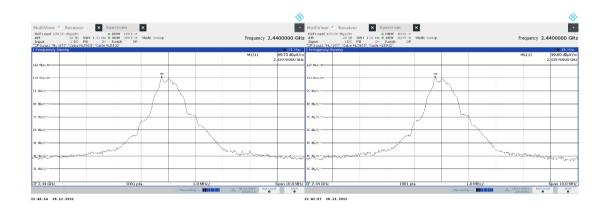
Table 7.3.7 Restricted bands according to RSS-Gen

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.291 - 8.294	16.80425 - 16.80475	399.9 - 410	3260 - 3267	10.6 - 12.7
2.1735 - 2.1905	8.362 - 8.366	25.5 - 25.67	608 - 614	3332 - 3339	13.25 - 13.4
3.020 - 3.026	8.37625 - 8.38675	37.5 - 38.25	960 – 1427	3345.8 - 3358	14.47 – 14.5
4.125 - 4.128	8.41425 - 8.41475	73 - 74.6	1435 – 1626.5	3500 - 4400	15.35 – 16.2
4.17725 - 4.17775	12.29 – 12.293	74.8 - 75.2	1645.5 – 1646.5	4500 - 5150	17.7 – 21.4
4.20725 - 4.20775	12.51975 – 12.52025	108 – 138	1660 - 1710	5350 - 5460	22.01 – 23.12
5.677 - 5.683	12.57675 - 12.57725	156.52475 - 156.52525	1718.8 - 1722.2	7250 - 7750	23.6 - 24
6.215 - 6.218	13.36 – 13.41	156.7 - 156.9	2200 - 2300	8025 - 8500	31.2 - 31.8
6.26775 - 6.26825	16.42 - 16.423	240 - 285	2310 - 2390	9000 - 9200	36.43 - 36.5
6.31175 - 6.31225	16.69475 - 16.69525	322 - 335.4	2655 - 2900	9300 - 9500	Above 38.6

Reference numbers of test equipment used


HL 0446	HL 3903	HL 4360	HL 4933	HL 4956	HL 5288	HL 4919	
				•	•		

Full description is given in Appendix A.


Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10 section 11.12.1					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	29-Dec-22	verdict.	PASS			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC			
Remarks:	•					

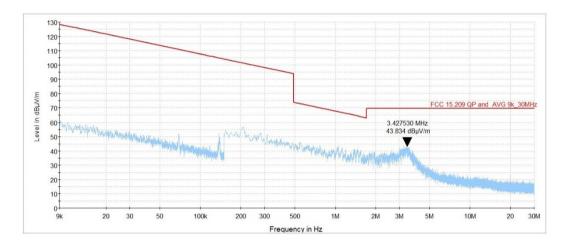
Plot 7.3.1 Radiated emission measurements at the low carrier frequency

Plot 7.3.2 Radiated emission measurements at the mid carrier frequency

TEST SITE:	anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

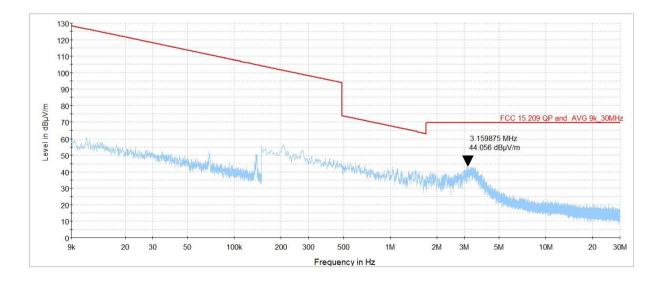
Test specification:	Section 15.247(d) / RSS-24	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions				
Test procedure:	ANSI C63.10 section 11.12.1					
Test mode:	Compliance	iance Verdict: PAS				
Date(s):	29-Dec-22	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC			
Remarks:						

Plot 7.3.3 Radiated emission measurements at the high carrier frequency


	TEST SITI TEST DIS ANTENNA	TANC		3 1	n	choic chai nd Horizoi							\$
MultiView Receiv Ref Level 120.00 dBjal/e Att 280 d Input 100 TDF Brout 1/H-1933' / Oble		X Mode Sweep		Frequency	2.4800000 GHz	Input 1 DC TOF Input1 "Hu1933"." Cable 1	BBW 100 k-iz SWI 101 ms VBW 300 k-iz PS D1 botch DE	X Mode Sworp			Frec	uency 2.48	800000 GHz
1 Frequency Sweep				M1[1]	0 1Pk Max 96.49 dBµV/m 2.47976000 GHz	1 Frequency Sweep					MI		● JPk Max 97.22 dDµV/m 47976000 GHz
11D dBut/m						110 dlav/m							
00 dbps/m		Å	5			00 db/////		Ň	5				
9C 0861/12						8C d8µ////			\rightarrow				
76 d8µ9/m						7C d8µ//~							
CC dBµV/m		N	<u> </u>			66 d8µV/m		\sim					
1C d8µ////					_	1C d8µ////				Lange and the second se			
4C BUI/ and Table	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			man har and so	moner	4C def. 11/2 www.han.of. 1. To ward a strain	and the state of the			for a second	and the second s	Verson Second	man
SC dBµV/m						SC d8µ4/m							
CF 2.48 GHz	1001 pt	s	1.0 MHz/	78.12.2022 Re	Span 10.0 MHz	CF 2.48 GHz	1001 p	IS		OMH2/	28.12.20		Span 10.0 MHz
22:50:09 26.12.2022				22:54:09		22:51:27 26.12.2022					28.915		_

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10 section 11.12.1					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	29-Dec-22	verdict:	PA35			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC			
Remarks:						

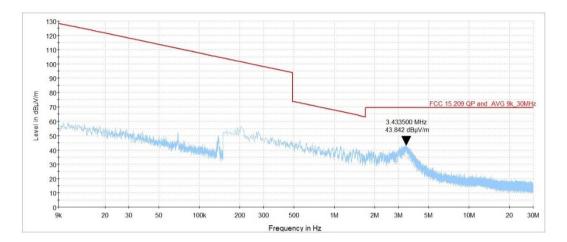
Plot 7.3.4 Radiated emission measurements from 9 kHz to 30 MHz at the low carrier frequency


TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical

Plot 7.3.5 Radiated emission measurements from 9 kHz to 30 MHz at the mid carrier frequency

TEST SITE: Semi and TEST DISTANCE: 3 m ANTENNA POLARIZATION: Vertical

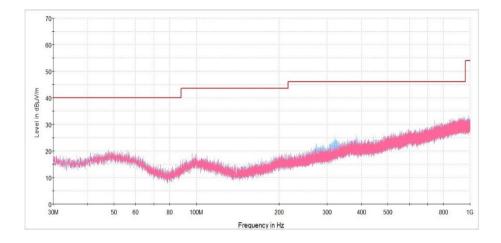
Semi anechoic chamber 3 m Vertical

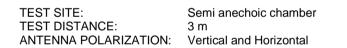


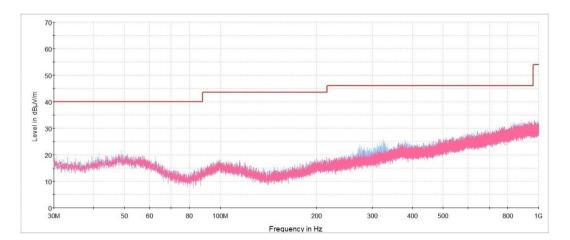
Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10 section 11.12.1					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	29-Dec-22	verdict:	PA33			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC			
Remarks:	-					

Plot 7.3.6 Radiated emission measurements from 9 kHz to 30 MHz at the high carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical

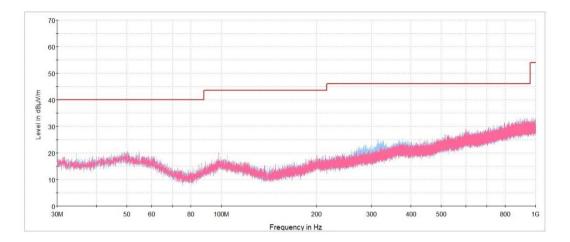



Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	29-Dec-22	verdict:	PA33
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC
Remarks:	-		


Plot 7.3.7 Radiated emission measurements from 30 to 1000 MHz at the low carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

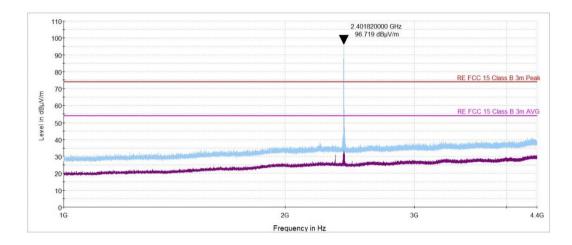
Plot 7.3.8 Radiated emission measurements from 30 to 1000 MHz at the mid carrier frequency

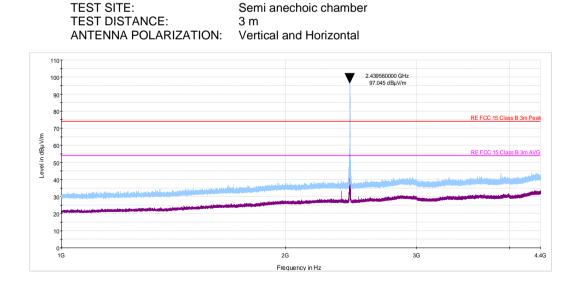


Test specification:	Section 15.247(d) / RSS-24	47 section 5.5, Radiated spι	urious emissions
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	29-Dec-22	verdict:	PA33
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC
Remarks:			

Plot 7.3.9 Radiated emission measurements from 30 to 1000 MHz at the high carrier frequency

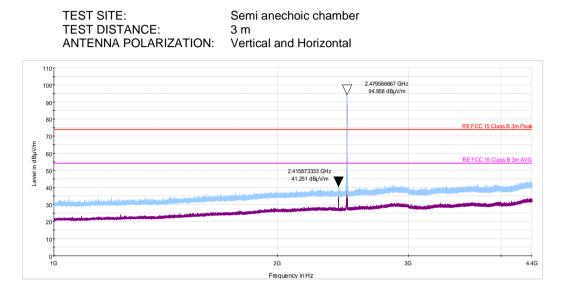
TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal




Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	29-Dec-22	verdict:	PASS
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC
Remarks:			

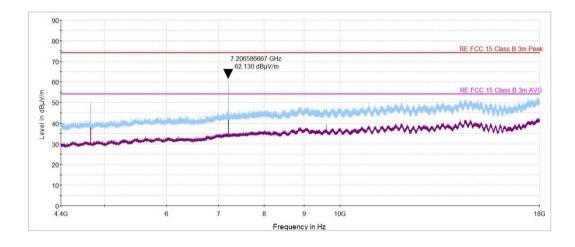
Plot 7.3.10 Radiated emission measurements from 1000 to 4400 MHz at the low carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

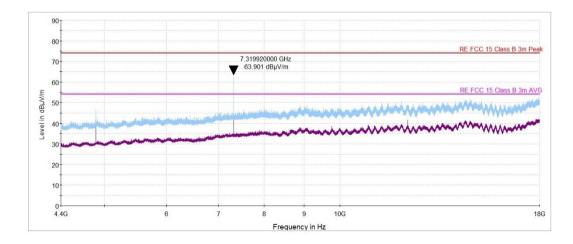

Plot 7.3.11 Radiated emission measurements from 1000 to 4400 MHz at the mid carrier frequency

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Vardiate	PASS
Date(s):	29-Dec-22	Verdict:	PA33
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC
Remarks:	-		

Plot 7.3.12 Radiated emission measurements from 1000 to 4400 MHz at the high carrier frequency

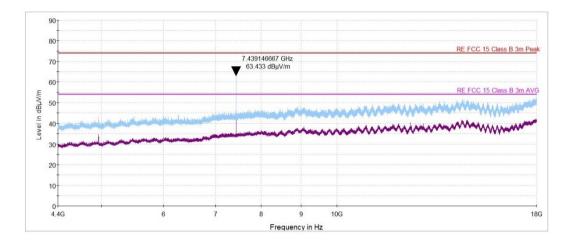


Test specification: Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	29-Dec-22	Verdict: PASS	
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC
Remarks:			


Plot 7.3.13 Radiated emission measurements from 4400 to 18000 MHz at the low carrier frequency

TEST SITE:Semi anechoic chamberTEST DISTANCE:3 mANTENNA POLARIZATION:Vertical and Horizontal

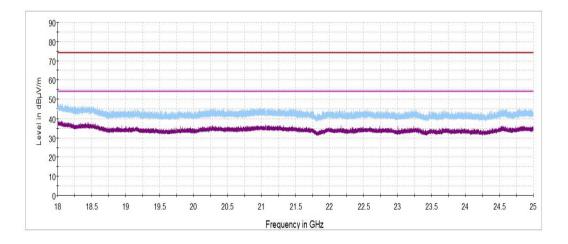
TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal



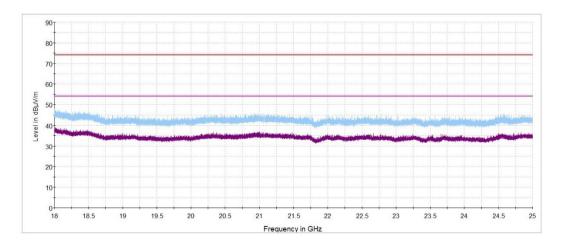
Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions		
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	29-Dec-22	verdict:	PASS
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC
Remarks:			

Plot 7.3.15 Radiated emission measurements from 4400 to 18000MHz at the high carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

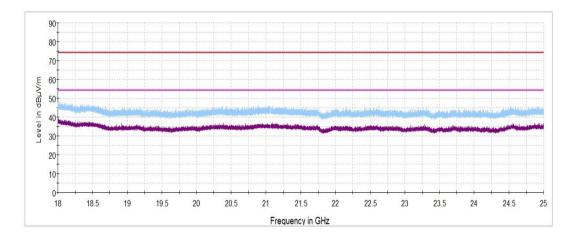


Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.1			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	29-Dec-22	verdict:	PA33	
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa	Power: 25 VDC	
Remarks:	· · ·		·	


Plot 7.3.16 Radiated emission measurements from 18 to 25 GHz at the low carrier frequency

TEST SITE:Semi anechoic chamberTEST DISTANCE:3 mANTENNA POLARIZATION:Vertical and Horizontal

TEST SITE:Semi anechoic chamberTEST DISTANCE:3 mANTENNA POLARIZATION:Vertical and Horizontal



Test specification:	Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10 section 11.12.1			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	29-Dec-22	verdict:	PASS	
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1012 hPa Power: 25 VDC		
Remarks:				

Plot 7.3.18 Radiated emission measurements from 18 to 25 GHz at the high carrier frequency

TEST SITE:Semi anechoic chamberTEST DISTANCE:3 mANTENNA POLARIZATION:Vertical and Horizontal

Plot 7.3.19 Transmission pulse period and duration

22:02:41 29.12.2022

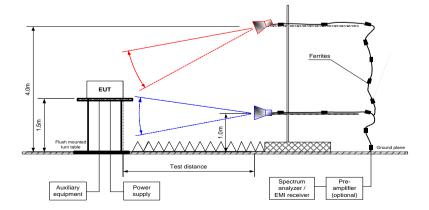
Test specification:	Section 15.247(d) / RSS-247 section 5.5, Band edge emissions			
Test procedure:	ANSI C63.10 section 11.12.1			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	26-Dec-22	veraici.	FA33	
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC	
Remarks:				

7.4 Band edge radiated emissions

7.4.1 General

This test was performed to measure emissions, radiated from the EUT at the assigned frequency band edges. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Band ed	ge emission limits
---------------------	--------------------


Output power	Output power Assigned frequency, MHz		Field strength at 3 m within restricted bands, dB(μV/m)	
	frequency, winz	carrier*, dBc	Peak	Average
Peak	2400.0 – 2483.5	20.0	74.0	54.0

* - Band edge emission limit is provided in terms of attenuation below the peak of modulated carrier measured with the same resolution bandwidth.

7.4.2 Test procedure

- 7.4.2.1 The EUT was set up as shown in Figure 7.4.1, energized normally modulated at the maximum data rate and its proper operation was checked.
- 7.4.2.2 The EUT was adjusted to produce maximum available to end user RF output power at the lowest carrier frequency.
- **7.4.2.3** The spectrum analyzer span was set to capture the carrier frequency and associated modulation products. The resolution bandwidth was set wider than 1 % of the frequency span.
- **7.4.2.4** The spectrum analyzer was set in max hold mode and allowed trace to stabilize. The highest emission level within the authorized band was measured.
- **7.4.2.5** The maximum band edge emission and modulation product outside of the band were measured as provided in Table 7.4.2 and associated plots and referenced to the highest emission level measured within the authorized band.
- **7.4.2.6** The above procedure was repeated with the EUT adjusted to produce maximum RF output power at the highest carrier frequency.

Figure 7.4.1 Band edge emission test setup

Test specification:	Section 15.247(d) / RSS-24	17 section 5.5, Band edge e	missions
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	26-Dec-22	verdict:	PASS
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC
Remarks:	•		

Table 7.4.2 Band edge emission outside restricted bands test results

MHz

ASSIGNED FREQUENCY RANGE:	2400.0 - 2483.5
DETECTOR USED:	Peak
TRANSMITTER OUTPUT POWER SETTINGS:	Maximum
RESOLUTION BANDWIDTH:	100 kHz
VIDEO BANDWIDTH:	≥ RBW

MODULATIC	N/BITRATE:	GFS	SK / 1 Mbps			_
Frequency, MHz	Band edge emission, dB(μV/m)	Emission at carrier, dB(μV/m)	Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict
2400.000	61.92	100.59	38.67	20.0	18.67	Pass

*- Margin = Attenuation below carrier – specification limit.

Table 7.4.3 Band edge emission inside restricted bands test results

ASSIGNED FREQUENCY RANGE: DETECTOR USED: TRANSMITTER OUTPUT POWER SETTINGS: VIDEO BANDWIDTH:

2400.0 - 2483.5 MHz Peak Maximum ≥ RBW

MODULATION/BITRATE:			GFSK / 1 Mbp	S			
	Peak field	l strength(VB	W=3 MHz)	Average field	d strength(VBW	/=1 kHz)	
Frequency, MHz	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB**	Verdict
2388.41	43.65	74.0	-30.35	NA	54.0	-10.35	Pass
2482.70	52.14	74.0	-21.86	NA	54.0	-1.86	Pass

Reference numbers of test equipment used

HL 3903	HL 4933	HL 5902	HL 7585		

Full description is given in Appendix A.

Test specification:	Section 15.247(d) / RSS-24	17 section 5.5, Band edge e	missions
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	26-Dec-22	verdict:	PASS
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC
Remarks:			

Plot 7.4.1 The highest emission level within restricted band at low carrier frequency

MultiView	Receiver	× Spe	ectrum	×					
Ref Level 110.0 Att Input IDF Input1 "HL493	18 dB 51 1 DC P1	WT 1.01 ms ● V S On N	Votch Off	1ode Sweep			Fre	equency 2.24	450000 GH
Frequency Sw									1Pk Max
								M1[1]	43.65 dBµV/r 2.388410 GH
00 dBµV/m									
10 dBµV/m									
0 dBµV/m									
0 dBµV/m	H1 74.000 dBµ	1/m							
0 dBµV/m									-
50 dBµV/m									
0 dBµV/m				an and a second and			Mr. water-shares	and an announce	
	hand and and and and and a state of the second s	the second	and marked and a state of the second	an president and a second s	\$*1,*14,J\$0,#1691~4*67~4	ar create to react and			
10 dBµV/m									
:0 dBµV/m									
2.1 GHz			1001 pt	s		9.0 MHz/			2.39 GH
					· Measuring)	26.12.2	022 Ref Level	RBW

Plot 7.4.2 The highest emission level outside restricted band at low carrier frequency

MultiView 🐂 R			×					•
	28 dB SWT 1.04 m 1 DC PS 0	RBW 100 kHz s VBW 300 kHz Notch Off HI 5902*	Mode Sweep			Free	quency 2.3	970000 GH
1 Frequency Sweep								●1Pk Max
						M2	[1]	61.92 dBµV/
								2.4000000 G 100.59 dBµV/
110 dBµV/m						M1		2.4017550 G
							M1	
100 dBµV/m							M	
90 dBµV/m							/	
80 dBµV/m]	<u> </u>
70 dBµV/m								
						M2		
60 dBµV/m								
50 dBµV/m								-
40 dBuV/m				0	marored			
	man and man	n Marine Marine	mannen	had how have a second				
30 dBµV/m								
30 06µ*/m								
2.39 GHz		1001 pt		·	.4 MHz/			2.404 Gł

22:03:28 26.12.2022

Test specification:	Section 15.247(d) / RSS-24	7 section 5.5, Band edge ei	missions
Test procedure:	ANSI C63.10 section 11.12.1		
Test mode:	Compliance	Verdict:	PASS
Date(s):	26-Dec-22	verdict:	PASS
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC
Remarks:			

Plot 7.4.3 The highest emission level within restricted band at high carrier frequency

								~
MultiView 📒 Rec	eiver 🗙 Spe	ectrum	×					
Input 1 IDF Input1 "HL4933","Ca	/m dB SWT 1.01 ms • DC PS On f ble HL3903","Cable HL59	Notch Off	1ode Sweep			Fre	equency 2.74	
Frequency Sweep						N	1[1]	●1Pk Max 52.14 dBµV/
								2.484270 G
.00 dBµV/m								
10 dBµV/m								
o oppy/m								
0 dBµV/m								
H1 7	1.000 dBuV/m							
0 dBµV/m								
0 dBµV/m								
1								
0 dBµV/m-								
e asprijin								
\.								
AldBuv/m	Malla the post in all of the Market	moun	were work with the	wathrown	ward have an	harmon	an march and	www.servallaberov
0 dBµV/m								
0 dBµV/m								
.4835 GHz		1001 pt	s	51	.65 MHz/			3.0 G
		1001 p.	-			26.12.2	022 Ref Level	RBW

22:14:18 26.12.2022

Test specification:	Section 15.247(e) / RSS-247	7 section 5.2(2), Maximum	power spectral density
Test procedure:	ANSI C63.10 section 11.10.2		
Test mode:	Compliance	Verdict:	PASS
Date(s):	26-Dec-22	verdict:	PASS
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC
Remarks:			

7.5 Peak spectral power density

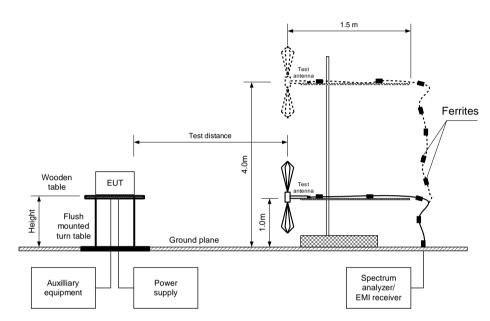
7.5.1 General

This test was performed to measure the peak spectral power density radiated by the transmitter RF antenna. Specification test limits are given in Table 7.5.1.

Table 7.5.1 Peak spectral power density limits
--

Assigned frequency range, MHz	Measurement bandwidth, kHz	Peak spectral power density, dBm	Equivalent Peak spectral power density limit @ 3m, dB(μV/m)*
902.0 - 928.0			
2400.0 - 2483.5	3.0	8.0	103.2
5725.0 - 5850.0			

* - Equivalent Peak spectral power density limit was calculated from the peak spectral power density as follows: E=sqrt(30×P)/r, where P is peak spectral power density and r is antenna to EUT distance in meters.


7.5.2 Test procedure for field strength measurements

- **7.5.2.1** The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- 7.5.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.5.2.3** The Peak spectral power density of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360^o and the measuring antenna height was swept in both vertical and horizontal polarizations.
- **7.5.2.4** The frequency span of spectrum analyzer was set to capture the entire 6 dB band of the transmitter, in peak hold mode with resolution bandwidth set to 3.0 kHz, video bandwidth wider than resolution bandwidth, auto sweep time and sufficient number of sweeps was allowed for trace stabilization. The spectrum lines spacing was verified to be wider than 3 kHz. Otherwise the resolution bandwidth was reduced until individual spectrum lines were resolved and the power of individual spectrum lines was integrated over 3 kHz band.
- **7.5.2.5** The peak of emission was zoomed with span set just wide enough to capture the emission peak area and sweep time was set equal to span width divided by resolution bandwidth. Spectrum analyzer was set in peak hold mode, sufficient number of sweeps was allowed for trace stabilization and peak spectral power density was measured as provided in Table 7.5.2 and associated plots.

Test specification:	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density						
Test procedure:	ANSI C63.10 section 11.10.2						
Test mode:	Compliance	Vardiate	DASS				
Date(s):	26-Dec-22	Verdict: PASS					
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC				
Remarks:							

Figure 7.5.1 Setup for carrier field strength measurements

Test specification:	Section 15.247(e) / RSS-24	7 section 5.2(2), Maximum	power spectral density			
Test procedure:	ANSI C63.10 section 11.10.2					
Test mode:	Compliance	Vardiate				
Date(s):	26-Dec-22	Verdict: PASS				
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC			
Remarks:	-					

Table 7.5.2 Field strength measurement of peak spectral power density

ASSIGNED FREQUENCY: TEST DISTANCE: TEST SITE: EUT HEIGHT: DETECTOR USED: RESOLUTION BANDWIDTH: VIDEO BANDWIDTH: TEST ANTENNA TYPE: TRANSMITTER OUTPUT POWER SETTINGS: 2400.0 – 2483.5 MHz 3 m Semi anechoic chamber 1.5 m Peak 100 kHz 1 MHz Double ridged guide (above 1000 MHz) Maximum

MODULATION/BITRATE:

GFSK / 1 Mbps

	Frequency, MHz	Peak spectral power density, dB(μV/m)	EUT antenna gain, dBi	Limit, dB(µV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees	Verdict
ſ	2402.0	100.64	0	103.2	-2.56	Horizontal	1.70	-115	Pass
	2442.0	99.81	0	103.2	-3.39	Vertical	1.52	45	Pass
	2480.0	97.22	0	103.2	-5.98	Horizontal	1.70	-165	Pass

*- Margin = Peak spectral power density - EUT antenna gain - 95.2 - calculated Peak spectral power density limit. **- EUT front panel refer to 0 degrees position of turntable.

Reference numbers of test equipment used

	HL 3903	HL 4933	HL 5902	HL 7585		
_						

Full description is given in Appendix A.

Test specification:	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density						
Test procedure:	ANSI C63.10 section 11.10.2						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	26-Dec-22	verdict:	PA33				
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC				
Remarks:							

Plot 7.5.1 Peak spectral power density of carrier at low frequency

							4
MultiView 📍 Receiver	× Spectrum	×					
Input 1 DC PS DF Input1 "HL4933","Cable HL390	On Notch Off	Mode Sweep			Fre	equency 2.40	
Frequency Sweep		1				M1[1]	●1Pk Ma: 00.64 dBµV/
							40176000 G
10 dBµV/m							
		M1					
00 dBµV/m			h				
			5				
0 dBµV/m			<u> </u>				
0 dBµV/m							
0 dBµV/m	/		\\				
	La contra c						
0 dBµV/m	1			\langle			
0 dBµV/m				Lan			
	N I			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m		
HO dBuv/m	~~				Mushing	- Maria	www.
0 dBµV/m							
F 2,402 GHz	1001 pt			.0 MHz/			span 10.0 Mł
F 2,402 0F12	1001 pt	5		.0 MHZ/	26.12.2		RBW
			measuring		19:55	5:56	•

		spectrum RBW 100 kHz	×					
tef Level 120.00 dBµV/ tt 28 nput 1 l IF Input1 "HL4933","Cal	dB SWT 1.01 ms DC PS On	 VBW 1 MHz Notch Off 	Mode Sweep			Fre	equency 2.	4020000 GH
Frequency Sweep								⊜1Pk Max
							M1[1]	100.53 dBµV/n 2.40176320 GH
0 dBµV/m								2110170020 011
			м1					
) dBµV/m			Ä					
			$r \sim$	~~~				
dBµV/m-					~			
					~			
dBµV/m-								
dBµV/m-							~	
							n n n	
I dBµV/m							,	W.
								No.
I dBµV/m								John Martin
dBµV/m								
dBµV/m								
2.402 GHz		1001 pt	s	30	0.0 kHz/	26.12.2	022 Ref Le	Span 3.0 MHz

19:55:07 26.12.2022

Test specification:	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density						
Test procedure:	ANSI C63.10 section 11.10.2						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	26-Dec-22	verdict:	PASS				
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC				
Remarks:		·					

Plot 7.5.2 Peak spectral power density of carrier at mid frequency

MultiView 🍍 Receiver	× Spectrum	×					4
Ref Level 120.00 dBµV/m Att 28 dB SWT Input 1 DC PS DF Input1 "HL4933","Cable HL3903 DF	■ RBW 100 kHz 1.01 ms ■ VBW 1 MHz On Notch Off 3","Cable HL5902"	Mode Sweep			Fn	equency 2.4	400000 GH
Frequency Sweep						M1[1]	99.79 dBμV/
							43976000 G
10 dBµV/m							
		M1					
10 dBµV/m		M	2				
) dBµV/m							
, app 7/11							
) dBµV/m							
			L.				
) dBµV/m		and a		N			
D dBµV/m	(1		h			
	- Marine -						
0 dBµV/m	w l			,			
aller market and a second second	manna				mann	A	
www.www.www.www.					man	www	mm
D dBµV/m							
F 2.44 GHz	1001 pt	s	1	.0 MHz/			Span 10.0 Mł
			Measuring		26.12.2	022 Ref Level	RBW

1ultiView 🍍 R				×					•
tef Level 120.00 d att nput IF Input1 "HL4933",	28 dB SV 1 DC PS	NT 1.01 ms ● N S On N	Jotch Off	Mode Sweep			Fre	equency 2.4	400000 GH
requency Sweet)	, cable ries.							⊜1Pk Max
									99.71 dBµV/r 43976320 GH
0 dBµV/m									
) dBµV/m				M1					
				\sim	\sim				
dBµV/m						<u> </u>			
dBµV/m			/						
dBµV/m		want					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mer	
dBµV/m								~~~	
manne									
, dBμV/m									
dBµV/m									
dBµV/m									
2.44 GHz			1001 pt	<u> </u>	30	0.0 kHz/			Span 3.0 MH

20:52:42 26.12.2022

Test specification:	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density						
Test procedure:	ANSI C63.10 section 11.10.2						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	26-Dec-22	verdict:	PA33				
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1005 hPa	Power: 25 VDC				
Remarks:							

Plot 7.5.3 Peak spectral power density of carrier at high frequency

MultiView - Receiver ×	Spectrum	×					
Ref Level 120.00 dBµV/m Att 28 dB SWT 1.01 r Input 1 DC PS 1 DF Input1 "HL4933","Cable HL3903","Cable HL3903","Cable HL390","Cable HL390",	On Notch Off	Mode Sweep			Fre	equency 2.4	800000 GH
Frequency Sweep		1					1Pk Max
						M1[1]	97.22 dBµV/ 2.47976000 GF
10 dBµV/m-							
00 dBµV/m		M1					
0 dBµV/m		M	Γ _γ				
ruspv/m							
0 dBµV/m							
D dBµV/m		/					
		h	- V	h			
0 dBµV/m-				1			
I dBµV/m	N			- L.			
) dBµV/m	American			www	m		
) dBµV/m					Martin and and a start and a start a st	mm	mm
) dBµV/m							+
F 2.48 GHz	1001 pt	s	1	.0 MHz/			Span 10.0 MF
			· Measuring		26.12.2	2022 Ref Leve	el RBW

									-
MultiView	Receiver	× Spe	ctrum	×					•
Ref Level 120.0 Att Input TDF Input1 "HL493	28 dB SV 1 DC PS	NT 1.01 ms ● N S On N	Jotch Off	Mode Sweep			Fre	equency 2.4	800000 GH;
l Frequency Sw									1Pk Max
									97.12 dBµV/n 47976320 GH
10 dBµV/m									
100 dBµV/m				M1	~				
90 dBµV/m				\sim	~				
50 GBp #/11						~			
30 dBµV/m									
		/	/						
70 dBµV/m									
	m	my -					har		
50 dBµV/m	~~							h h	
50,dBµW/m									h
									mound
10 dBµV/m									
30 dBµV/m									
CF 2.48 GHz			1001 pt	s	30	0.0 kHz/			Span 3.0 MHz
~							26.12.2	022 Ref Level	

20:22:24 26.12.2022

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 10 (9) kHz - 30 MHz	EMCO	6502	2857	28-Feb-22	28-Feb-23
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1226/2A	07-Apr-22	07-Apr-23
4360	EMI Test Receiver, 20 Hz to 40 GHz.	Rohde & Schwarz	ESU40	100322	13-Jan-22	13-Jan-23
4919	High Pass Filter, 50 Ohm, 3900 to 9800 MHz, SMA-FM / SMA-M	Mini-Circuits	VHF- 3500+	NA	15-Jun-21	15-Jun-23
4933	Active Horn Antenna, 1 GHz to 18 GHz	COM-POWER CORPORATI ON	AHA-118	701046	13-Jan-22	13-Jan-23
4956	Active horn antenna, 18 to 40 GHz	COM-POWER CORPORATI ON	AHA-840	105004	07-Mar-22	07-Mar-23
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX- 8000E	00809	24-Mar-22	24-Apr-25
5902	RF cable, 18 GHz, 6.0m, N-type	Huber-Suhner	SF126EA/ 11N/11N/ 6000	NA	08-Dec-22	08-Dec-23
7585	EMI Test Receiver, 1 Hz to 44 GHz	Rohde & Schwarz	ESW44	103130	19-May-22	19-May-23

9 APPENDIX B Test equipment correction factors

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
10	-33.4	±1.0
20	-37.8	±1.0
50	-40.5	±1.0
75	-41.0	±1.0
100	-41.2	±1.0
150	-41.2	±1.0
250	-41.1	±1.0
500	-41.2	±1.0
750	-41.3	±1.0
1000	-41.3	±1.0

HL 0446: Active Loop Antenna EMCO, model: 6502, s/n 2857

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
2000	-41.4	±1.0
3000	-41.4	±1.0
4000	-41.5	±1.0
5000	-41.5	±1.0
10000	-41.7	±1.0
15000	-42.1	±1.0
20000	-42.7	±1.0
25000	-44.2	±1.0
30000	-45.8	±1.0

The antenna factor shall be added to receiver reading in $dB\mu V$ to obtain field strength in $dB\mu A/m$.

HL 4933: Active Horn Antenna COM-POWER CORPORATION, model: AHA-118, s/n 701046

	Maggurad antenna factor
Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
1000	-16.1
1500	-15.1
2000	-10.9
2500	-11.9
3000	-11.1
3500	-10.6
4000	-8.6
4500	-8.3
5000	-5.9
5500	-5.7
6000	-3.3
6500	-4.0
7000	-2.2
7500	-1.7
8000	1.1
8500	-0.8
9000	-1.5
9500	-0.2

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
10000	1.8
10500	1.0
11000	0.3
11500	-0.5
12000	3.1
12500	1.4
13000	-0.3
13500	-0.4
14000	2.5
14500	2.2
15000	1.9
15500	0.5
16000	2.1
16500	1.2
17000	0.6
17500	3.1
18000	4.2

The antenna factor shall be added to receiver reading in dB_{μ}V to obtain field strength in dB_{μ}V/m.

Antenna factor, HL 4956

Active Horn Antenna Factor Calibration

18 GHz to 40 GHz

Equipment: Model:				ACTIVE HO	ORN ANTENNA AHA-840
Serial Number					105004
Calibration Dis	tance:				3 meter
Polarization:					Horizontal
Calibration Da					
Calibration Da	Preamplifier	Antenna Factor		Data annualificar	1/26/2015 Antenna Factor
Frequency	Gain	with pre-amp	Frequency	Preamplifier Gain	with pre-amp
(GHz)	(dB)	(dB/m)	(GHz)	(dB)	(dB/m)
18	38.83	-1.06	29.5	42.47	-5-33
18.5	39.34	-2.65	30	41.91	-4.86
19	39.71	-3.88	30.5	41.60	-4.64
19.5	39.87	-4.35	31	41.52	-4.60
20	39.98	-3-97	31.5	41.56	-4-79
20.5	40.42	-3.68	32	41.80	-5.21
21	41.12	-4.06	32.5	42.29	-5-54
21.5	41.74	-5.46	33	42.79	-5.63
22	42.14	-6.22	33-5	42.88	-5.38
22.5	42.35	-6.42	34	42.62	-4.76
23	42.50	-6.59	34.5	42.63	-4.84
23.5	42.65	-6.82	35	43.15	-5.13
24	42.81	-7.01	35.5	43.91	-5.83
24.5	42.86	-7.37	36	44.59	-6.39
25	42.73	-7.53	36.5	45.04	-6.64
25.5	42.77	-7.45	37	45.08	-6.40
26	42.85	-7.21	37.5	44.82	-5.75
26.5	42.98	-7.17	38	44.16	-4.58
27	43.14	-7.22	38.5	42.90	-2.66
27.5	43.18	-7.32	39	42.39	-1.71
28	43.04	-7.10	39.5	43.76	-2.49
28.5	43.01	-6.73	40	45.98	-5.21

Standard Site Method, Equations 1-6 (3-antenna)

Corrected Reading $(dB\mu V/m) = Meter Reading (dB\mu V) + AFE(dB/m)$

HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809 30-1000 MHz

Frequency, MHz	Antenna factor, dB/m
30	14.96
35	15.33
40	16.37
45	17.56
50	17.95
60	16.87
70	13.22
80	10.56
90	13.61
100	15.46
120	14.03
140	12.23

Frequency, MHz	Antenna factor, dB/m
160	12.67
180	13.34
200	15.40
250	16.42
300	17.28
400	19.98
500	21.11
600	22.90
700	24.13
800	25.25
900	26.35
1000	27.18

The antenna factor shall be added to receiver reading in dB μ V to obtain field strength in dB μ V/m. above 1000 MHz

	e vods
Frequency, MHz	Antenna factor, dB/m
1000	26.9
1100	28.1
1200	28.4
1300	29.6
1400	29.1
1500	30.4
1600	30.7
1700	31.5
1800	32.3
1900	32.6
2000	32.5
2100	32.9
2200	33.5
2300	33.2
2400	33.7
2500	34.6
2600	34.7
2700	34.6
2800	35.0
2900	35.5
3000	36.2
3100	36.8
3200	36.8
3300	37.0
3400	37.5
3500	38.2

Frequency, MHz	Antenna factor, dB/m
3600	38.9
3700	39.4
3800	39.4
3900	39.6
4000	39.7
4100	39.8
4200	40.5
4300	40.9
4400	41.1
4500	41.4
4600	41.3
4700	41.6
4800	41.9
4900	42.3
5000	42.7
5100	43.0
5200	42.9
5300	43.5
5400	43.6
5500	44.3
5600	44.7
5700	45.0
5800	45.0
5900	45.3
6000	45.9

The antenna factor shall be added to receiver reading in dB_µV to obtain field strength in dB_µV/m.

10 APPENDIX C Measurement uncertainties

Test description	Expanded uncertainty
Conducted carrier power at RF antenna connector	Below 12.4 GHz: ± 1.7 dB
	12.4 GHz to 40 GHz: ± 2.3 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Occupied bandwidth	± 8.0 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
	Double ridged horn antenna: \pm 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

11 APPENDIX D Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for relevant parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; Recognized by Innovation, Science and Economic Development Canada for wireless and terminal testing (ISED), ISED #2186A, CAB identifier is IL1001; Certified by VCCI, Japan (the registration numbers for OATS are R-10808 for RE measurements below 1 GHz, G-20112 for RE measurements above 1 GHz, R-11082 for anechoic chamber for RE measurements below 1 GHz, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address:	P.O. Box 23, Binyamina 3055001, Israel.
Telephone:	+972 4628 8001
Fax:	+972 4628 8277
e-mail:	mail@hermonlabs.com
website:	www.hermonlabs.com

Person for contact: Mr. Michael Nikishin, EMC&Radio group manager

12 APPENDIX E Specification references

FCC 47CFR part 15: 2020	Radio Frequency Devices
ANSI C63.10: 2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
RSS-247 Issue 2: 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence- Exempt Local Area Network (LE-LAN) Devices
RSS-Gen Issue 5: 2018	General Requirements and Information for the Certification of Radiocommunication Equipment

13 APPENDIX F Abbreviations and acronyms

AC A/m AM AVRG cm dB dBm dB(μ V) dB(μ V) dB(μ V) dB(μ A) DC EUT F GHz GND H HL Hz k kHz LO m MHz min mm ms μ s NA OATS Ω PS QP RE RF rms Rx s T	alternating current ampere per meter amplitude modulation average (detector) centimeter decibel decibel referred to one milliwatt decibel referred to one microvolt decibel referred to one microvolt per meter decibel referred to one microampere direct current equipment under test frequency gigahertz ground height Hermon laboratories hertz kilo kilohertz local oscillator meter megahertz minute millimeter millisecond not applicable open area test site Ohm power supply quasi-peak radiated emission radio frequency root mean square receive second temperature
T Tx	temperature transmit
V	volt

END OF DOCUMENT