

FCC 47 CFR PART 15 SUBPART C TEST REPORT

For

Applicant: Wonders Technology Co., Ltd.

- Address: DOSS Industrial Zone, Qiping Kengdu Industrial Area Guihua Village, Guanlan Town Baoan District, ShenZhen, China
- Product Name: Bluetooth Wireless Speaker
 - Model Name: HX-P200, DS-1112
 - Brand Name: N/A
 - FCC ID: WC2HX-P200
 - Report No.: MTE/AYG/D12091280
 - Date of Issue: Sep. 27, 2012
 - Issued by: Most Technology Service Co., Ltd.
 - Address : No.5, Langshan 2nd Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China
 - Tel: 86-755-8617 0306
 - Fax: 86-755-8617 0310

The report consists 45 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by MOST. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	. 4
2. GENERAL INFORMATION	. 5
2.1 Product Information	. 5
2.2 Objective	. 6
2.3 Test Standards and Results	. 6
2.4 Environmental Conditions	. 6
2.5 MEASUREMENT UNCERTAINTY	. 6
3. TEST FACILITY	. 7
3.1TEST FACILITY	. 7
3.2 Test Conditions	. 7
3.3 Channel List	. 8
3.4 Description of Test Modes	. 8
3.5 Table of Parameters of Text Software Setting	. 9
3.6 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	10
4. SETUP OF EQUIPMENT UNDER TEST	11
4.1 SUPPORT EQUIPMENT	11
4.2 TEST EQUIPMENT LIST	12
5. 47 CFR Part 15C 15.249 Requirements	13
5.1 Spurious Emission Test	13
5.1.1 Requirement	13
5.1.2 Test Description	14
5.1.3 Test Description	15
5.1.5 Test Result	16
5.2 Band Edge	28
5.2.1 Requirement	28
5.2.2 Test Description	28
5.2.3Test Result	28
5.3 LINE CONDUCTED EMISSION TEST	34
5.3.1. LIMITS OF LINE CONDUCTED EMISSION TEST	34
5.3.2. BLOCK DIAGRAM OF TEST SETUP	34
5.3.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	35
5.3.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	35
5.3.5. Test result	35
5.3.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	36

5.4 20 dB Bandwidth	38
5.4.1 Definition	38
5.4.2 Block Diagram Of Test Setup	38
5.4.3 Test Result	38
APPENDIX 1	43
PHOTOGRAPHS OF TEST SETUP	43

1. VERIFICATION OF CONFORMITY

Equipment Under Test:	Bluetooth Wireless Speaker
Brand Name:	N/A
Model Number:	HX-P200
Series Number:	DS-1112
Description of Differences:	The series numbers are different in model names with the same functions.
FCC ID:	WC2HX-P200
Applicant:	Wonders Technology Co., Ltd.
	DOSS Industrial Zone, Qiping Kengdu Industrial Area Guihua Village, Guanlan Town Baoan District, ShenZhen, China
Manufacturer:	Wonders Technology Co., Ltd.
	DOSS Industrial Zone, Qiping Kengdu Industrial Area Guihua Village, Guanlan Town Baoan District, ShenZhen, China
Technical Standards:	47 CFR Part 15 Subpart C
File Number:	MTE/AYG/D12091280
Date of test:	Sep. 05-27, 2012
Deviation:	None
Condition of Test Sample:	Normal
Test Result:	PASS

The above equipment was tested by MOST for compliance with the requirements set forth in FCC rules and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

Prepare by (+ signature):		Anny
	Anny Gong	Sep. 09, 2012
Review by (+ signature):		Approved
	Elva Wong	Sep. 27, 2012
Approved by (+ signature):		'A
	Yvette Zhou	Sep. 27, 2012

2. GENERAL INFORMATION

2.1 Product Information

Product:	Bluetooth Wireless Speaker
Trade Name:	N/A
Model Number:	HX-P200
Series Number:	DS-1112
Description of Differences:	The series numbers are different in model names with the same functions.
Power Supply:	Input: 100-127V~ 50-60Hz,1.8A Output: 5V dc
Frequency Range:	2402MHz -2480MHz
Modulation Type:	GFSK, π / 4-DQPSK, 8-DPSK
Modulation Technique:	FHSS
Antenna Type:	Internal Fixed
Antenna Gain:	0.85dBi
Channel Spacing:	1MHz
Channel Number:	79
Temperature Range:	-20°C ~ 50°C

NOTE:

1. For a more detailed features description about the EUT, please refer to User's Manual.

2.2 Objective

Perform FCC Part 15 Subpart C tests for FCC Marking.

2.3 Test Standards and Results

Test items and the results are as bellow:

No.	Section	Description	Result	Date of Test
1	15.249(a)	Spurious Emission	PASS	2012-09-07
2	15.249(a)	Band Edge	PASS	2012-09-08
3	15.207	Power Line Conducted Emission Test	PASS	2012-09-07
4	15.249	20dB Bandwidth	PASS	2012-09-27

Note: 1. The test result judgment is decided by the limit of measurement standard 2. The information of measurement uncertainty is available upon the customer's request.

2.4 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

2.5 MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

The report uncertainty of measurement $y\pm U$, where expended uncertainly U is based on a standard uncertainty multiplied by a coverage factor of k=2,Providing a level of confidence of approximately 95%

- Uncertainty of Conducted Emission, Uc = ±1.8dB

- Uncertainty of Radiated Emission, Uc = ±3.2dB

3. TEST FACILITY 3.1TEST FACILITY

Test Site: Location:	Most Technology Service Co., Ltd. No.5, Langshan 2nd Rd., North Hi-Tech Industrial park, Nanshan, Shenzhen, Guangdong ,China
Description:	There is one 3m semi-anechoic an area test sites and two line conducted labs for final
	test. The Open Area Test Sites and the Line Conducted labs are constructed and
	calibrated to meet the FCC requirements in documents ANSI C63.4:2009 and CISPR
	16 requirements.
	The FCC Registration Number is 490827.
	The IC Registration Number is 46405-7103.
	The CNAS Registration Number is CNAS L3573.
Site Filing:	The site description is on file with the Federal Communications
	Commission, 7435 Oakland Mills Road, Columbia, MD 21046.
Instrument Tolerance:	All measuring equipment is in accord with ANSI C63.4:2009 and CISPR 16
	requirements that meet industry regulatory agency and accreditation agency
	requirement.
Ground Plane:	Two conductive reference ground planes were used during the Line Conducted
	Emission, one in vertical and the other in horizontal. The dimensions of these ground
	planes are as below. The vertical ground plane was placed distancing 40 cm to the
	rear of the wooden test table on where the EUT and the support equipment were
	placed during test. The horizontal ground plane projected 50 cm beyond the footprint
	of the EUT system and distanced 80 cm to the wooden test table. For Radiated
	Emission Test, one horizontal conductive ground plane extended at least 1m beyond
	the periphery of the EUT and the largest measuring antenna, and covered the entire
	area between the EUT and the antenna.

3.2 Test Conditions

The EUT has been tested under normal operating (TX) and standby (RX) condition.

The field strength of radiation emission was measured in the following position: EUT stand-up position (Y axis), lie-down position (X, Z axis).

The following data show only with the worst case setup.

The worst case of Y axis was reported.

Based on client request, all normal using modes of the normal function were tested but only the worst test data of the worst mode is reported by this report.

3.3 Channel List

Channel List for GFSK, Pi/4-DQPSK, 8-DPSK Mode						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2402MHz	28	2429MHz	55	2456MHz	
02	2403MHz	29	2430MHz	56	2457MHz	
03	2404MHz	30	2431MHz	57	2458MHz	
04	2405MHz	31	2432MHz	58	2459MHz	
05	2406MHz	32	2433MHz	59	2460MHz	
06	2407MHz	33	2434MHz	60	2461MHz	
07	2408MHz	34	2435MHz	61	2462MHz	
08	2409MHz	35	2436MHz	62	2463MHz	
09	2410MHz	36	2437MHz	63	2464MHz	
10	2411MHz	37	2438MHz	64	2465MHz	
11	2412MHz	38	2439MHz	65	2466MHz	
12	2413MHz	39	2440MHz	66	2467MHz	
13	2414MHz	40	2441MHz	67	2468MHz	
14	2415MHz	41	2442MHz	68	2469MHz	
15	2416MHz	42	2443MHz	69	2470MHz	
16	2417MHz	43	2444MHz	70	2471MHz	
17	2418MHz	44	2445MHz	71	2472MHz	
18	2419MHz	45	2446MHz	72	2473MHz	
19	2420MHz	46	2447MHz	73	2474MHz	
20	2421MHz	47	2448MHz	74	2475MHz	
21	2422MHz	48	2449MHz	75	2476MHz	
22	2423MHz	49	2450MHz	76	2477MHz	
23	2424MHz	50	2451MHz	77	2478MHz	
24	2425MHz	51	2452MHz	78	2479MHz	
25	2426MHz	52	2453MHz	79	2480MHz	
26	2427MHz	53	2454MHz			
27	2428MHz	54	2455MHz			

3.4 Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level, Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively

Pre-test Mode	Description
Mode 1	GFSK CH01/CH41/CH79
Mode 2	Pi/4-DQPSK CH01/CH41/CH79
Mode 3	8-DPSK CH01/CH41/CH79

Note:

The measurements are performed at the highest, middle, lowest available channels.

The measurements are performed at all bit rate of transmitter, the worst data was reported.

3.5 Table of Parameters of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level, the RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth.

Test software Version	Test program:N/A			
GFSK Mode	2402MHz	2442MHz	2480MHz	
π/4-DQPSK	2402MHz	2442MHz	2480MHz	
8-DPSK	2402MHz	2442MHz	2480MHz	

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4:2009,Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4:2009.

3.6 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$(^{2})$
13.36 - 13.41			

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

4. SETUP OF EQUIPMENT UNDER TEST 4.1 SUPPORT EQUIPMENT

Device Type	Manufacturer	Model Name	Serial No.	Data Cable	Power Cable

Remark:

All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.2 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipment used at Most for testing. The equipment conforms to the CISPR 16-1 / ANSI C63.2 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 10 kHz to 1.0 GHz or above.

No.	Equipment	Manufacturer	Model No.	S/N	Calculator date	Calculator Interval
1	Test Receiver	Rohde & Schwarz	ESCI	100492	2013/03/14	1 Year
2	L.I.S.N.	Rohde & Schwarz	ENV216	100093	2013/03/14	1 Year
3	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2013/03/14	1 Year
4	Terminator	Hubersuhner	50_	No.1	2013/03/14	1 Year
5	RF Cable	SchwarzBeck	N/A	No.1	2013/03/14	1 Year
6	Test Receiver	Rohde & Schwarz	ESPI	101202	2013/03/14	1 Year
7	Bilog Antenna	SCHWARZBECK	BBHA9120D	D69250	2013/03/14	1 Year
8	Cable	Resenberger	N/A	NO.1	2013/03/14	1 Year
9	Cable	SchwarzBeck	N/A	NO.2	2013/03/14	1 Year
10	Cable	SchwarzBeck	N/A	NO.3	2013/03/14	1 Year
11	DC Power Filter	DuoJi	DL2×30B	N/A	2013/03/14	1 Year
12	Single Phase Power Line Filter	DuoJi	FNF 202B30	N/A	2013/03/14	1 Year
13	3 Phase Power Line Filter	DuoJi	FNF 402B30	N/A	2013/03/14	1 Year
14	Test Receiver	Rohde & Schwarz	ESCI	100492	2013/03/14	1 Year
15	Absorbing Clamp	Luthi	MDS21	3635	2013/03/14	1 Year
16	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2013/03/14	1 Year
17	AC Power Source	Kikusui	AC40MA	LM003232	2013/03/14	1 Year
18	Test Analyzer	Kikusui	KHA1000	LM003720	2013/03/14	1 Year
19	Line Impendence Network	Kikusui	LIN40MA- PCR-L	LM002352	2013/03/14	1 Year
20	ESD Tester	Kikusui	KES4021	LM003537	2013/03/14	1 Year
21	EMCPRO System	EM Test	UCS-500-M4	V0648102026	2013/03/14	1 Year
22	Signal Generator	IFR	2032	203002/100	2013/03/14	1 Year
23	Amplifier	A&R	150W1000	301584	2013/03/14	1 Year
24	CDN	FCC	FCC-801-M2-25	47	2013/03/14	1 Year
25	CDN	FCC	FCC-801-M3-25	107	2013/03/14	1 Year
26	EM Injection Clamp	FCC	F-203I-23mm	403	2013/03/14	1 Year
27	RF Cable	MIYAZAKI	N/A	No.1/No.2	2013/03/14	1 Year
28	Universal Radio Communication Tester	ROHDE&SCHWARZ	CMU200	0304789	2013/03/14	1 Year
29	Telecommunication Antenna	European Antennas	PSA 75301R/170	0304213	2013/03/14	1 Year
30	Telecommunication Test Equipment	R&S	CMU200	CMU200 N/A		1 Year
31	8 Loop Antenna	ARA	PLA-1030/B	1029	2013/02/19	1 Year

NOTE: Equipments listed above have been calibrated and are in the period of validation.

5. 47 CFR Part 15C 15.249 Requirements 5.1 Spurious Emission Test 5.1.1 Requirement

According to FCC section 15.249(a):

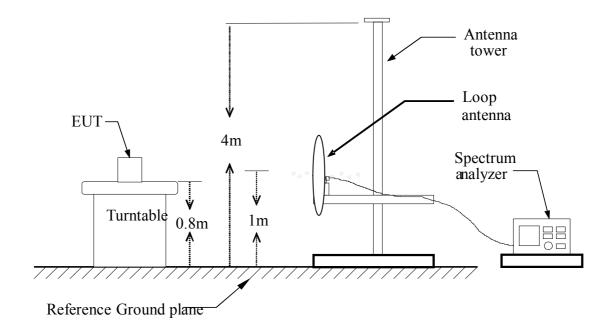
Except as provided in paragraph (a) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (mV/m)	Field Strength of Harmonics (µV/m)		
902-928	50	500		
2400-2483.5	50	500		
5725-5875	50	500		
24000-24250	250	2500		

According to FCC section 15.109 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)		
1.705 – 30.0	30	30		
30 - 88	100	3		
88 – 216	150	3		
216 – 960	200	3		
Above 960	500	3		

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

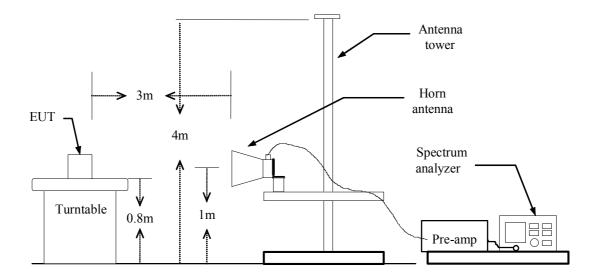

In the above emission table, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)		
30 – 88	100	3		
88 – 216	150	3		
216 – 960	200	3		
Above 960	500	3		


5.1.2 Test Description

Test Setup:

From 9KHz to 30MHz:



From 30MHz to 1GHz:

FCC ID: WC2HX-P200

Above 1GHz:

5.1.3 Test Description

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz \otimes a) PEAK: RBW=VBW=1MHz / Sweep=AUTO 5.1.4 AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

5.1.5 Test Result

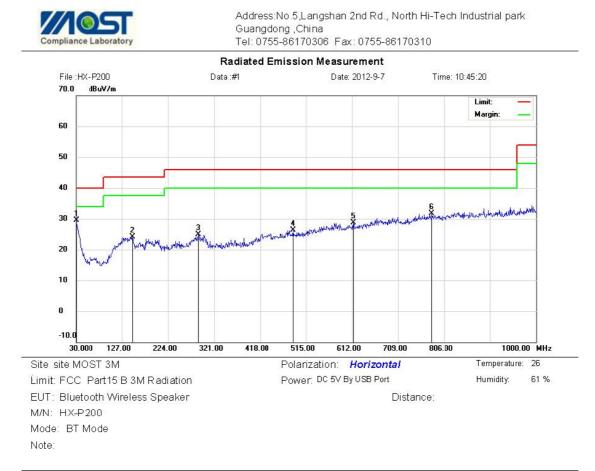
From 9 KHz to 30MHz:

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actual Fs		Peak Limit	AV Limit	AV Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
N/A	Н								>20
N/A	V								>20

-Note: No test data was detected in below 30MHz.

From 30MHz to 1GHz:

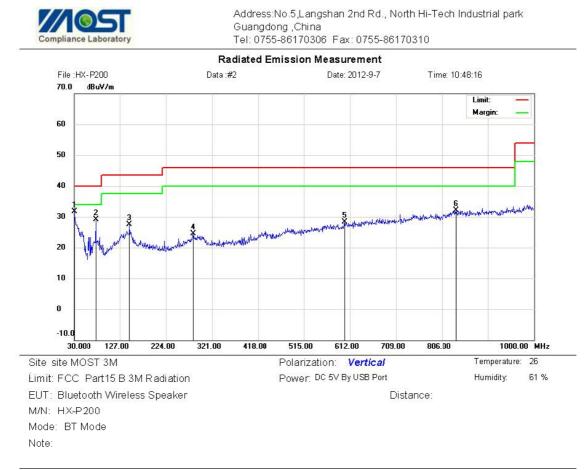
The following test mode(s) were scanned during the preliminary test:


Preliminary Radiated Emission Test										
Frequency Range Inv	vestigated	9KHz TO 26 GHz								
Mode of operation	Mode of operation Date		Data#	Worst Mode						
Bluetooth Mode	Bluetooth Mode 2012-09-07		1_(V, H)	\square						
LINE INPUT Mode	2012-09-07	MTE/AYG/D12091280	1_(V, H)							

Note:

The Bluetooth model was carried out for GFSK, π / 4-DQPSK and 8-DPSK modulation types, GFSK Low channel modulation type was the worst case condition, The test data was shown on the summary data page.

FCC ID: WC2HX-P200


From 30MHz to 1GHz

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBu∨/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	30.0000	4.66	24.80	29.46	40.00	-10.54	QP			
2		149.3100	7.48	16.56	24.04	43.50	-19.46	QP			
3		288.0200	5.58	19.42	25.00	46.00	-21.00	QP			
4		487.8400	4.49	21.74	26.23	46.00	-19.77	QP			
5		614.9100	5.34	23.35	28.69	46.00	-17.31	QP			
6		779.8099	5.50	26.20	31.70	46.00	-14.30	QP			

*:Maximum data x:Over limit !:over margin

Engineer Signature: Sky

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBu∨/m	dBu∨/m	dB	Detector	cm	degree	Comment
1	*	30.0000	6.85	24.80	31.65	40.00	-8.35	QP			
2		76.5600	17.49	11.57	29.06	40.00	-10.94	QP			
3		147.3700	10.80	16.71	27.51	43.50	-15.99	QP			
4		281.2300	5.14	19.41	24.55	46.00	-21.45	QP			
5		600.3600	5.26	23.01	28.27	46.00	-17.73	QP			
6		836.0700	4.94	27.10	32.04	46.00	-13.96	QP			

*:Maximum data x:Over limit !:over margin

Engineer Signature: Sky

Above 1 GHz

Operation Mode:	GFSK Mode/CH Low	Test Date:	Sep. 07, 2012
Temperature:	20°C	Tested by:	Sky Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actual Fs		Peak Limit	AV Limit	AV Margin	
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)	
					(dBuV/m)	(dBuV/m)				
2402.00	Н	88.43	65.27	16.25	104.68	81.52	114.00	94.00	-12.48	
4804.00	Н	47.19	24.65	20.18	67.37	44.83	74.00	54.00	-9.17	
N/A									>20	
2402.00	V	89.24	66.55	16.25	105.49	82.80	114.00	94.00	-11.20	
4804.00	V	45.26	24.06	20.18	65.44	44.24	74.00	54.00	-9.76	
N/A									>20	

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.

4. Spectrum setting:

a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.

FCC ID: WC2HX-P200

Operation Mode:	GFSK Mode/CH Mid	Test Date:	Sep. 07, 2012
Temperature:	20°C	Tested by:	Sky Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actual Fs		Peak Limit	AV Limit	AV Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
2441.00	Н	87.28	62.41	17.01	104.29	79.42	114.00	94.00	-14.58
4882.00	Н	46.06	24.53	21.57	67.63	46.10	74.00	54.00	-7.90
N/A									>20
2441.00	V	87.46	63.08	17.01	104.47	80.09	114.00	94.00	-13.91
4882.00	V	45.31	22.19	21.57	66.88	43.76	74.00	54.00	-10.24
N/A									>20

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:

a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.

Operation Mode:	GFSK Mode/CH High	Test Date:	Sep. 07, 2012
Temperature:	20°C	Tested by:	Sky Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	AV Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
2480.00	Н	88.02	63.44	17.24	105.26	80.68	114.00	94.00	-13.32
4960.00	Н	46.20	23.67	22.64	68.84	46.31	74.00	54.00	-7.69
N/A									>20
2480.00	V	87.41	63.80	17.24	104.65	81.04	114.00	94.00	-12.96
4960.00	V	45.16	24.09	22.64	67.80	46.73	74.00	54.00	-7.27
N/A									>20

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.

4. Spectrum setting:

a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.

Operation Mode:	π / 4-DQPSK/CH Low	Test Date:	Sep. 07, 2012
Temperature:	20°C	Tested by:	Sky Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	AV Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
2402.00	Н	87.54	64.17	16.25	103.79	80.42	114.00	94.00	-13.58
4804.00	Н	47.19	23.61	20.18	67.37	43.79	74.00	54.00	-10.21
N/A									>20
2402.00	V	86.57	63.79	16.25	102.82	80.04	114.00	94.00	-13.96
4804.00	V	46.84	24.01	20.18	67.02	44.19	74.00	54.00	-9.81
N/A									>20

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.

4. Spectrum setting:

- a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.

FCC ID: WC2HX-P200

Operation Mode:	π / 4-DQPSK/CH Mid	Test Date:	Sep. 07, 2012
Temperature:	20°C	Tested by:	Sky Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	AV Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
2441.00	Н	86.13	63.48	17.01	103.14	80.49	114.00	94.00	-13.51
4882.00	Н	45.12	23.45	21.57	66.69	45.02	74.00	54.00	-8.98
N/A									>20
2441.00	V	86.77	64.23	17.01	103.78	81.24	114.00	94.00	-12.76
							-		
4882.00	V	44.10	23.04	21.57	65.67	44.61	74.00	54.00	-9.39
N/A									>20

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.

Operation Mode:	π / 4-DQPSK Mode /CH High	Test Date:	Sep. 07, 2012
Temperature:	20°C	Tested by:	Sky Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	ial Fs	Peak Limit	AV Limit	AV Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
2480.00	Н	87.46	62.41	17.24	104.70	79.65	114.00	94.00	-14.35
4960.00	Н	47.20	24.00	22.64	69.84	46.64	74.00	54.00	-7.36
N/A									>20
						-			
2480.00	V	88.16	64.07	17.24	105.40	81.31	114.00	94.00	-12.69
4960.00	V	46.13	23.46	22.64	68.77	46.10	74.00	54.00	-7.90
N/A									>20

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:

a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.

Operation Mode:	8-DPSK Mode /CH Low	Test Date:	Sep. 07, 2012
Temperature:	20°C	Tested by:	Sky Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actual Fs		Peak Limit	AV Limit	AV Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
2402.00	Н	87.51	63.44	16.25	103.76	79.69	114.00	94.00	-14.31
4804.00	Н	47.24	24.06	20.18	67.42	44.24	74.00	54.00	-9.76
N/A									>20
2402.00	V	87.24	63.96	16.25	103.49	80.21	114.00	94.00	-13.79
4804.00	V	47.42	25.25	20.18	67.60	45.43	74.00	54.00	-8.57
N/A									>20

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.

4. Spectrum setting:

a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.

FCC ID: WC2HX-P200

Operation Mode:	8-DPSK Mode /CH Mid	Test Date:	Sep. 07, 2012
Temperature:	20°C	Tested by:	Sky Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actual Fs		Peak Limit	AV Limit	AV Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
2441.00	Н	87.27	64.09	17.01	104.28	81.1	114.00	94.00	-12.90
4882.00	Н	45.43	22.85	21.57	67.00	44.42	74.00	54.00	-9.58
N/A									>20
2441.00	V	87.64	62.19	17.01	104.65	79.20	114.00	94.00	-14.80
4882.00	V	46.24	23.10	21.57	67.81	44.67	74.00	54.00	-9.33
N/A									>20

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

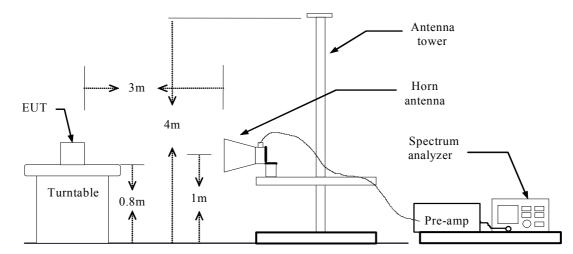
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.

Operation Mode:	8-DPSK Mode /CH High	Test Date:	Sep. 07, 2012
Temperature:	20°C	Tested by:	Sky Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading			Actual Fs		AV Limit	AV Margin		
		(dBuV)	(dBuV)	(dB)	Peak AV		(dBuV/m)	(dBuV/m)	(dB)		
					(dBuV/m)	(dBuV/m)					
2480.00	Н	86.17	64.18	17.24	103.41	81.42	114.00	94.00	-12.58		
4960.00	Н	46.34	23.04	22.64	68.98	45.68	74.00	54.00	-8.32		
N/A									>20		
						-	-				
2480.00	V	86.49	63.55	17.24	103.73	80.79	114.00	94.00	-13.21		
4960.00	V	45.27	23.19	22.64	67.91	45.83	74.00	54.00	-8.17		
N/A									>20		

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.


- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:

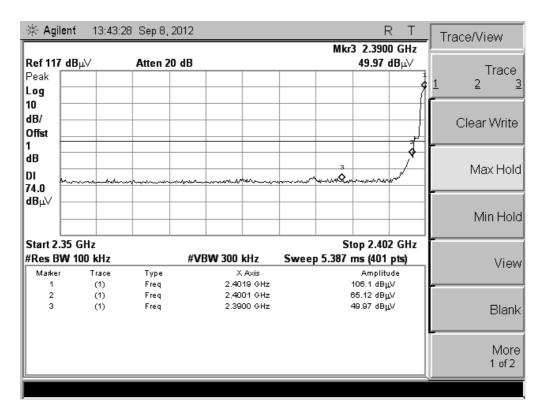
a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.

5.2 Band Edge 5.2.1 Requirement

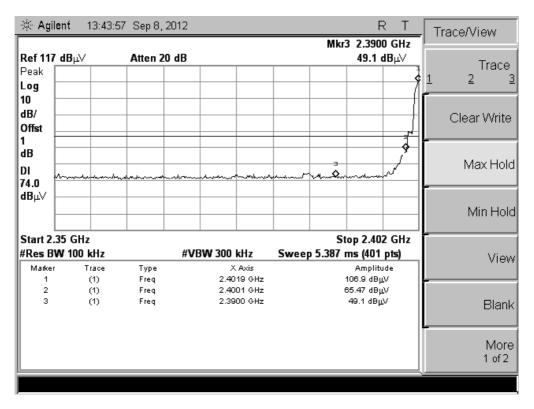
According to FCC section 15.249(a), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2.2 Test Description

5.2.3Test Result

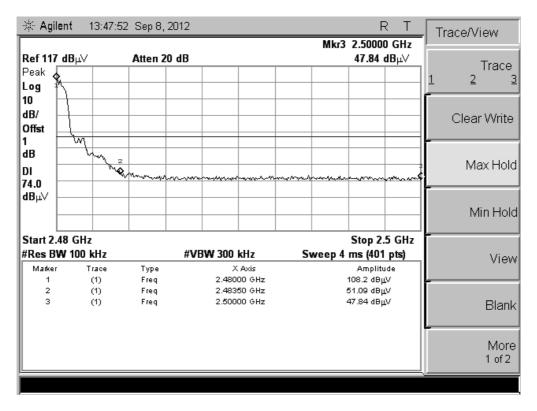

The EUT operates at hopping-off test mode. The lowest and highest channels are tested to verify the band edge emissions.

GFSK Modulation Mode:


				Test Result Highest Emission (dBuv/m)				
Test	Mode	Channel Marked Frequency	Limit (dBuv/m)	Ver	tical	Horizontal		
				Peak	Average	Peak	Average	
	Low Channel	2390MHz		49.10	28.47	49.97	28.47	
Bluetooth		2400MHz	74(Peak)	65.47	33.42	65.12	33.42	
Bidelootii	High Channel	2483.5MHz	54(Average)	51.09	29.74	52.66	30.98	
		2500MHz		47.84	28.10	48.59	28.51	

FCC ID: WC2HX-P200

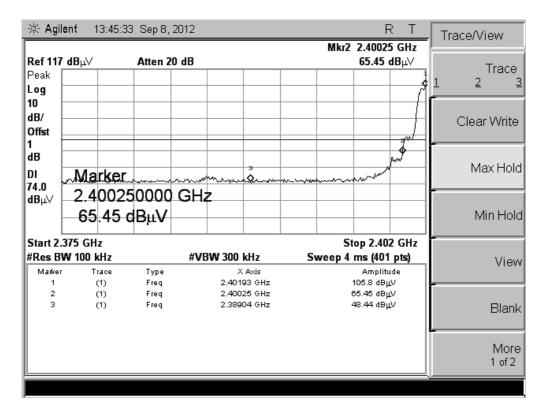
Test Plot:


(CH Low, Horizontal, Peak)

(CH Low, Vertical, Peak)

🔆 Agi	ilent 13:47:3	8 Sep 8, 20	012			RT	Trace/View
					Mkr3	2.50000 GHz	
Ref 11 Peak	7 dBμ∨ ₄	Atten 20	dB			48.59 dBµ∨	Trace
Log	¢. —						1 2 3
10 dB/ Offst							Clear Write
dB DI 74.0	hay 2	1 1	Murana	rMarana	the second second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Max Hold
dBµ∨							Min Hold
	.48 GHz					Stop 2.5 GHz	
	3W 100 kHz		#VBW 300		Sweep 4	ms (401 pts)	View
Marke 1	r Trace (1)	Type Freq		Axis)0 GHz		Amplitude 106.7 dBµV	
2	(1) (1)	Freq Freq	2.4835	50 GHz 50 GHz 30 GHz		52.66 dBµV 48.59 dBµV	
Ĵ	0	rieg	2.000	0 012		ю.08 ардо	Blank
							More 1 of 2

(CH High, Horizontal, Peak)

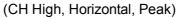


FCC ID: WC2HX-P200

8DPSK Modulation Mode:

				Test Result Highest Emission (dBuv/m)				
Test	Mode	Channel Marked Frequency	Limit (dBuv/m)	Ver	tical	Horizontal		
				Peak	Average	Peak	Average	
	Low Channel	2390MHz		48.47	26.52	48.44	27.53	
Dluctooth		2400MHz	74(Peak)	66.72	34.55	65.45	31.79	
Bluetooth	High Channel	2483.5MHz	54(Average)	52.29	28.72	52.68	32.78	
		2500MHz		48.41	27.53	48.95	31.42	

Test Plot:



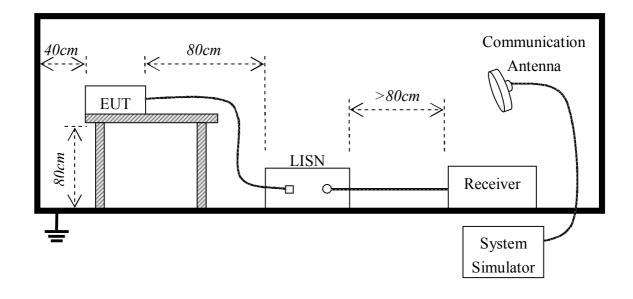
(CH Low, Horizontal, Peak)

No. 6 at	10.45.	40 0	14:1		р т	
🔆 Agi	ient 13(45)	46 Sep 8,20	JI2	ML-3	R T	Trace/View
Ref 117	′ dBµ∨	Atten 20	dB	MKIZ	2.40025 GHz 66.72 dBµ∀	, Trace
Peak Log						<u>1 2 3</u>
10 dB/ Offst 1						Clear Write
dB DI 74.0	and and a second se	where an an and the second sec			m.m.	Max Hold
dBµ∨						Min Hold
Start 2.	.375 GHz			St	top 2.402 GHz	F
#Res B	W 100 kHz		#VBW 300 kHz	Sweep 4	ms (401 pts)	View
Marker 1	Trace (1)	Type Freg	X Axis 2.40193 GH	z	Amplitude 107.2 dBµV	
2 3	(1) (1)	Freq Freq	2.40025 GH 2.38904 GH	z	66.72 авцу 48.47 авцу	Blank
						More 1 of 2

(CH Low, Vertical, Peak)

🔆 Agilen	t 13:47:08	3 Sep 8.	2012					F	₹Т		n //
				_			Mkr3	2.5000	0 GHz		
Peak Log										<u>1</u>	Trace <u>2 3</u>
10 dB/ Offst 1										Cle	ear Write
dB DI 74.0	W 2 WQ	manne	mm	maria		han the state of the					Max Hold
dBµ∨											Min Hold
#Res BW Marker	100 kHz Trace	Туре	#VBV	X	Axis	Sv		ms (401 Amplite	pts) Jde		View
2 3	(1) (1) (1)	Freq Freq		2.4835	50 GHz		e	52.29 dBj	uv		Blank
											More 1 of 2
	Ref 117 d Peak Log 1 10 dB/ Offst 1 dB DI 74.0 dBµ√ Start 2.48 #Res BW Marker 1 2	Ref 117 dBμ√ Peak Log 10 dB/ Offst 1 dB 74.0 dBμ√ Start 2.48 GHz #Res BW 100 kHz Marker Trace 1 (1) 2 (1)	Ref 117 dBµ√ Atten 2 Peak	Ref 117 dBµ√ Atten 20 dB Peak	Ref 117 dBµ√ Atten 20 dB Peak	Ref 117 dBµ√ Atten 20 dB Peak	Ref 117 dBµ√ Atten 20 dB Peak	Mkr3 Ref 117 dBµ√ Atten 20 dB Peak	Mkr3 2.5000 Ref 117 Bµ√ Atten 20 dB 48.41 Peak 48.41 Log 1 1 10 dB/ 1 1 0ffst 1 1 1 10 2 1 1 11 2 1 1 12 2 1 1 13 48 48.41 1 14 14 14 14 14 16 2 16 17 16 17 14 48 47 16 16 17 16 74.0 48 17 16 17 16 16 16 16 16 16 17 16 17 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 <	Mkr3 2.50000 GHz Ref 117 dBµ√ Atten 20 dB 48.41 dBµ√ Peak 48.41 dBµ√ Log 1 1 10 dB/ 1 1 0ffst 1 1 1 10 2 1 1 1 10 2 1 1 1 11 2 2 1 1 11 2 2 1 1 11 2 2 1 1 12 2 1 1 1 13 3 3 3 3 14 4B 2 2 1 1 14 1 1 1 1 2 5 2 2 4 3 3 3 3 4 4 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>	Mkr3 2.50000 GHz Hate Ref 117 dBµ√ Atten 20 dB 48.41 dBµ√ 1 Peak 48.41 dBµ√ 1 1 10 dB/ 1 1 1 0ffst 1 1 1 1 1 10 1 1 1 1 1 1 0ffst 1

(CH High, Vertical, Peak)


5.3 LINE CONDUCTED EMISSION TEST 5.3.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Frequency	Maximum RF Line Voltage						
Frequency	Q.P.(dBuV)	Average(dBuV)					
150kHz-500kHz	66-56	56-46					
500kHz-5MHz	56	46					
5MHz-30MHz	60	50					

**Note: 1. the lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

5.3.2. BLOCK DIAGRAM OF TEST SETUP

5.3.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per FCC Part 15 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per FCC Part 15.
- 3) All I/O cables were positioned to simulate typical actual usage as per FCC Part 15.
- 4) The EUT received DC 22V by Adapter which received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5) All support equipments received power from a second LISN supplying power of AC 120V/60Hz, if any.
- 6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7) Analyzer / Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.

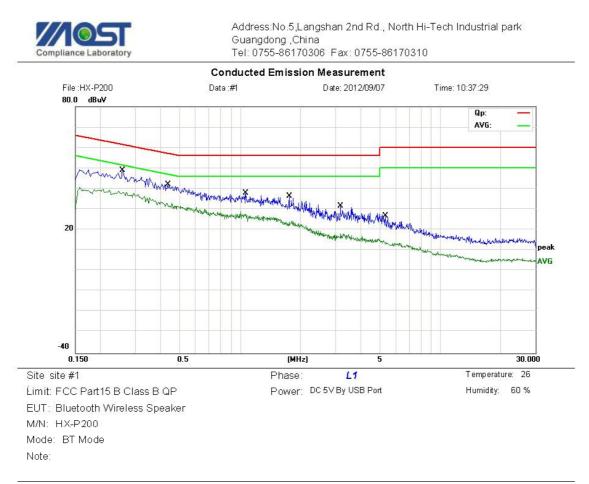
5.3.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

EUT and support equipment was set up on the test bench as per step 9 of the preliminary test.

A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.

5.3.5. Test result

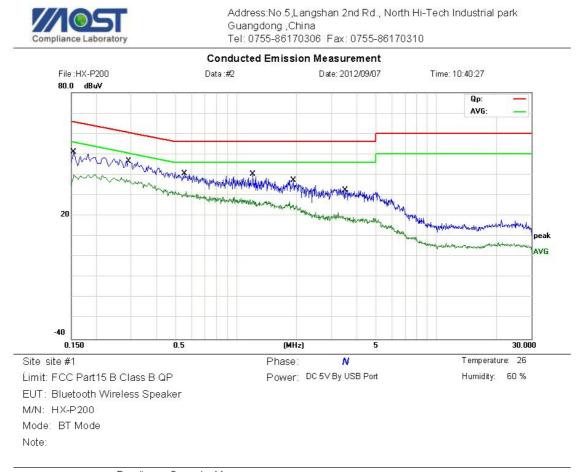
	Preliminary Conducted Emission Test										
Frequency Range In	vestigated	150KHz TO 30 MHz									
Mode of operation Date		Report No.	Data#	Worst Mode							
Bluetooth Mode	2012-09-07	MTE/AYG/D12091280	1_(V, H)								
LINE INPUT Mode	2012-09-07	MTE/AYG/D12091280	1_(V, H)								


The following test mode(s) were scanned during the preliminary test:

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

Note:

The Bluetooth model was carried out for GFSK, π / 4-DQPSK and 8-DPSK modulation types, GFSK Low channel modulation type was the worst case condition, The test data was shown on the summary data page.


5.3.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.2580	37.24	11.61	48.85	61.50	-12.65	QP	
2	0.4380	31.72	10.41	42.13	57.10	-14.97	QP	
3	1.0700	28.00	9.93	37.93	56.00	-18.07	QP	
4	1.7620	27.13	9.24	36.37	56.00	-19.63	QP	
5	3.1860	21.39	10.19	31.58	56.00	-24.42	QP	
6	5.3460	14.84	11.79	26.63	60.00	-33.37	QP	

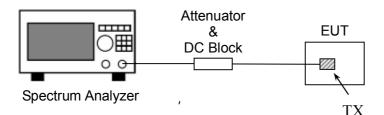
*:Maximum data x:Over limit !:over margin

Engineer Signature: Sky

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
	1		0.1540	41.77	9.24	51.01	65.78	-14.77	QP	
	2	*	0.2900	35.21	11.40	46.61	60.52	-13.91	QP	
-	3		0.5540	30.41	10.00	40.41	56.00	-15.59	QP	
-	4		1.2100	30.48	9.79	40.27	56.00	-15.73	QP	
-	5		1.9380	28.19	9.06	37.25	56.00	-18.75	QP	
	6		3.5220	21.93	10.52	32.45	56.00	-23.55	QP	
-										

*:Maximum data x:Over limit I:over margin

Engineer Signature: Sky


5.4 20 dB Bandwidth

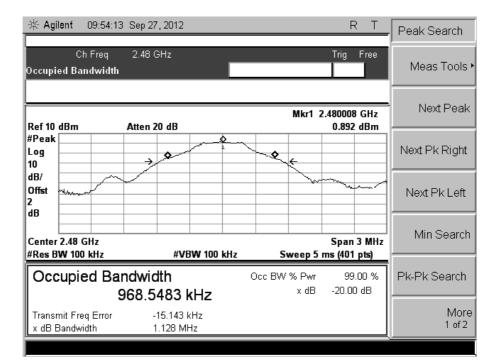
5.4.1 Definition

Intentional radiators operating under the alternative provisions to the general emission limits, as Contained in §§15.217 through 15.257 and in sub-part E of this part, must be designed to ensure that the 20 dB Bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific Rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

5.4.2 Block Diagram Of Test Setup

The EUT is powered by the Battery, is coupled to the Spectrum Analyzer (SA) through the Attenuator/DC Block. The path loss as the factor is calibrated to correct the reading. During the measurement, the EUT is activated and is set to operate at maximum power. The RF load attached to the EUT antenna terminal is 500hm.

5.4.3 Test Result

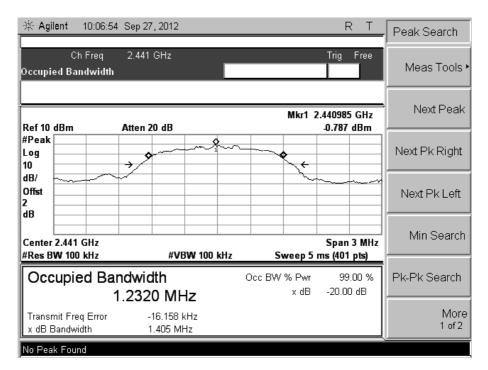

GFSK Modulation test result:

🔆 Agilent 🛛 09	9:40:19 Sep 27, 2012		RT	Peak Search
Ch F Occupied Band			Trig Free	Meas Tools •
Ref 10 dBm	Atten 20 dB	Mkr1 2	2.402158 GHz 0.212 dBm	Next Peak
#Peak Log	, 0			Next Pk Right
dB/ Offst 2 dB				Next Pk Left
Center 2.402 GI #Res BW 100 kl		kHz Sweep 5	Span 3 MHz ms (401 pts)	Min Search
	I Bandwidth 971.4255 kHz	Occ BW % Pwr x dB	99.00 % -20.00 dB	Pk-Pk Search
Transmit Freq E x dB Bandwidth				More 1 of 2

CH Low

₩ Agilent 09:49:37 Sep 27, 2012 R T	Peak Search
Ch Freq 2.441 GHz Trig Free Occupied Bandwidth	Meas Tools •
Mkr1 2.441000 GHz Ref 10 dBm Atten 20 dB 0.445 dBm	Next Peak
#Peak Log 10	Next Pk Right
dB/ Offst 2 dB	Next Pk Left
Center 2.441 GHz Span 3 MHz #Res BW 100 kHz #VBW 100 kHz Sweep 5 ms (401 pts)	Min Search
Occupied Bandwidth Occ BW % Pwr 99.00 % 961.7600 kHz × dB -20.00 dB	Pk-Pk Search
Transmit Freq Error -11.879 kHz x dB Bandwidth 1.117 MHz	More 1 of 2

CH MID

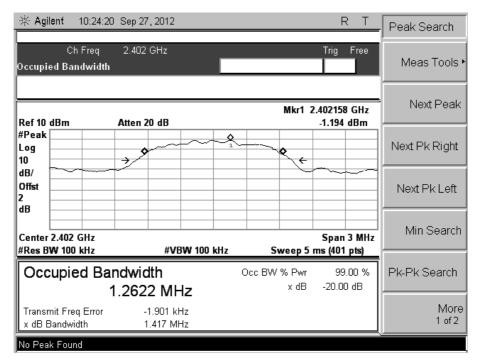


CH High

Π / 4-DQPSK Modulation test result:

₩ Agilent 10:13:20 Sep 27, 2012 R T							Peak Search
Ch Freq 2.402 GHz Trig Free Occupied Bandwidth						Meas Tools •	
Ref 10 dBm Atten 20 dB				Mkr1 2.401993 GHz -1.296 dBm			Next Peak
#Peak Log 10	, s		- -				Next Pk Right
dB/ Offst 2 dB						~~~~~	Next Pk Left
Center 2.402 0 #Res BW 100		#VBW 100) kHz	Sweep	Span 5 ms (401		Min Search
Occupie	d Bandwid 1.278	dth 2 MHz		Occ BW % Pv x d		00 % dB	Pk-Pk Search
Transmit Freq x dB Bandwid		-5.011 kHz 1.416 MHz					More 1 of 2
No Peak Found							

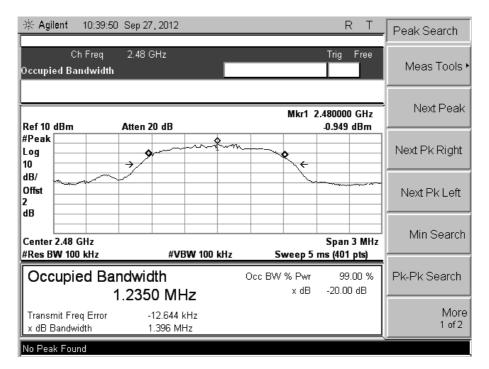
CH Low



CH MID

- ∰ Agilent	10:00:24 Sep 2	7,2012			F	<u> х т</u>	Peak Search
C Occupied Ba	h Freq 2.48 ndwidth	GHz			Trig	Free	Meas Tools •
Ref 10 dBm	Atten	20 dB		Mkr	1 2.47998 -0.898		Next Peak
#Peak Log 10		•	9		-		Next Pk Right
dB/ Offst 2 dB						~~~~	Next Pk Left
Center 2.48		#VBW 100	kH7	Sween	Span 5 ms (401	3 MHz	Min Search
ie	ed Bandwi			Occ BW % Pv x d	vr 99	.00 %	Pk-Pk Search
Transmit Fre x dB Bandw	eq Error	-16.624 kHz 1.390 MHz					More 1 of 2

CH High

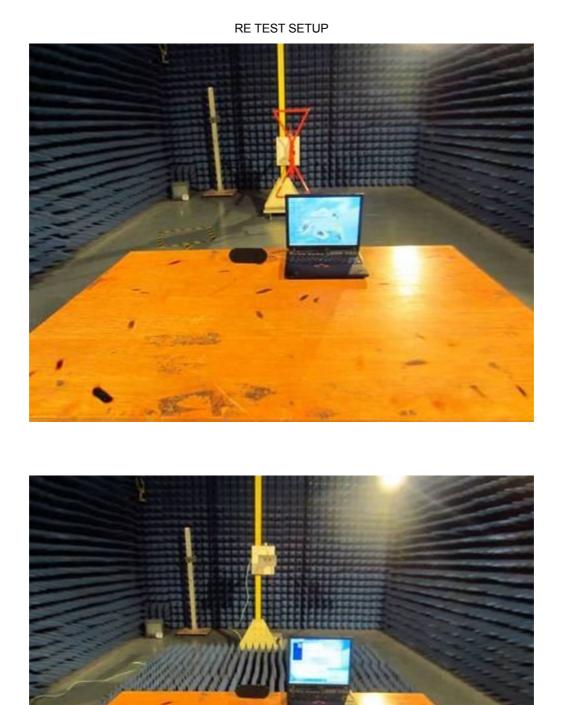

8DPSK Modulation test result:

CH Low

	7,2012		RT	Peak Search
Ch Freq 2.441 Occupied Bandwidth	GHz		Trig Free	Meas Tools •
Ref 10 dBm Atten	20 dB	Mkr1 2	2.440835 GHz -0.812 dBm	Next Peak
#Peak Log 10 +		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Next Pk Right
dB/ Offst 2 dB			~~~~~	Next Pk Left
Center 2.441 GHz #Res BW 100 kHz	#VBW 100 kHz	Sween 5	Span 3 MHz ms (401 pts)	Min Search
Occupied Bandwi		Occ BW % Pwr x dB	99.00 % -20.00 dB	Pk-Pk Search
Transmit Freq Error	-12.440 kHz 1.396 MHz			More 1 of 2
No Peak Found				

CH MID

CH High


APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

CONDUCTED TEST SETUP

CE TEST SETUP

-----END OF REPORT-----