FCC TEST REPORT

FCC ID	: WC2DS-1098
Applicant	: Wonders Technology Co., Ltd.
Address	: Doss Industrial Zone, Qiping Kengdu Industrial ARE Guihua
	Village, Guanlan Town, Baoan District, Shenzhen, China

Equipment Under Test (EUT) :

Product Name	: Bluetooth Speaker
Model No.	: DS-1098, ISDB752B,DS-865B

: FCC CFR47 Part 15 Section 15.247:2010 **Standards**

Date of Test : May 5 ~ 15, 2012 Date of Issue : May 15, 2012

Tested By

Reviewed By

: Zero Zhou / Engineer

: Philo zhong / Manager

Phalo zhong

Test Result : PASS

Prepared By: Waltek Services (Shenzhen) Co., Ltd. 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel:+86-755-83551033

Fax:+86-755-83552400

♦ The sample detailed above has been tested to the requirements of Council Directives ANSI C63.4:2003. The test results have been reviewed against the Directives above and found to meet their essential requirements.

2 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15 207	DACC
(150kHz to 30MHz)	15.207	PASS
Dedicted Sumicus Emissions	15.205(a)	
Radiated Spurious Emissions	15.209	PASS
(9kHz to 25GHz)	15.247(d)	
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Maximum Permissible Exposure	1.1207(h)(1)	DASS
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

FCC ID: WC2DS-1098

3 Contents

		Page
1		
2		
3	3 CONTENTS	
4	4 GENERAL INFORMATION	5
	4.1 CLIENT INFORMATION	
	 4.2 GENERAL DESCRIPTION OF E.U.T. 4.3 DETAILS OF E.U.T. 	
	4.3 DETAILS OF E. U. 14.4 DESCRIPTION OF SUPPORT UNITS	
	4.5 STANDARDS APPLICABLE FOR TESTING	
	4.6 TEST FACILITY4.7 TEST LOCATION	
	4.7 TEST LOCATION	
5	5 EQUIPMENT USED DURING TEST	7
6	6 CONDUCTED EMISSION	
	6.1 E.U.T. OPERATION	
	6.2 EUT SETUP	
	 6.3 CONDUCTED EMISSION TEST RESULT 6.4 PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP 	
7		
/	7.1 EUT OPERATION :	
	7.2 TEST SETUP	
	7.3 Spectrum Analyzer Setup	
	 7.4 TEST PROCEDURE 7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION 	
	7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION 7.6 SUMMARY OF TEST RESULTS	
	7.7 PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	
8	8 BAND EDGE MEASUREMENTS	
9	20 DB BANDWIDTH MEASUREMENT	
	9.1 Test Procedure:	
	9.2 TEST RESULT:	
1	10 MAXIMUM PEAK OUTPUT POWER	
	10.1 Test Procedure: 10.2 Test Result:	
1	10.2 HEST RESOLUTION	
1.	11.1 TEST PROCEDURE:	
	11.2 TEST RESULT:	
12	12 NUMBER OF HOPPING FREQUENCY	
	12.1 TEST PROCEDURE:	
	12.2 TEST RESULT:	
1.	13 DWELL TIME	
	 13.1 TEST PROCEDURE: 13.2 TEST RESULT: 	
1.	13.2 TEST RESULT	
	RF EXPOSURE The results shown in this test report refer only to the sample(s) tested , This Test report of	
	full, without prior written permission of the Company.	camor de reproducea, except in

16 PHC	OTOGRAPHS - CONSTRUCTIONAL DETAILS	
16.1	PRODUCT VIEW	
16.2	EUT – Appearance View	
16.3	Adapter –View	
16.4	EUT – Open View	
16.5	EUT – PCB VIEW	
17 FCC	C LABEL	

4 General Information

4.1 Client Information

Applicant	: Wonders Technology Co., Ltd.			
Address of Applicant	: Doss Industrial Zone, Qiping Kengdu Industrial ARE Guihua Village, Guanlan Town, Baoan District, Shenzhen, China			
Manufacturer	: Wonders Technology Co., Ltd.			

Address of Manufacturer	: Doss Industrial Zone, Qiping Kengdu Industrial ARE Guihua
	Village, Guanlan Town, Baoan District, Shenzhen, China

4.2 General Description of E.U.T.

Product Name	: Bluetooth Speaker			
Model No.	: DS-1098, ISDB752B,DS-865B			
Difference Description	: All models are exactly the same except for different color and appearance. DS-1098 was the test sample.			
Operation Frequency	: 2402MHz ~ 2480MHz			
Antenna Gain	: 0dBi			
Details of E.U.T.				
Technical Data	: DC 13.0V By Adapter			
	Adapter input: 100 ~ 240V~, 50/60Hz, 1.0A			

Adapter output: 13.0VDC, 2760mA

4.4 Description of Support Units

4.3

The EUT has been tested as an independent unit. All the test was performed in the condition of AC 120V/60Hz input to AC/DC adapter.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Bluetooth Speaker. The standards used were FCC CFR47 Part 15 Section 15.203, Section 15.207, Section 15.209 and Section 15.247.

4.6 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: IC7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, August 3, 2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

Parameter		Uncertainty
Radio Frequency		$\pm 1 \ge 10^{-6}$
RF Power		± 1.0 dB
RF Power Density		± 2.2 dB
		± 5.03 dB
RadiatedSpuriousEmissions test		(Bilog antenna 30M~1000MHz)
		± 4.74 dB
		(Horn antenna 1000M~25000MHz)
Conducted S	Spurious	± 2.2 dB
Emissions test		± 2.2 uD

4.8 Measurement Uncertainty

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug. 2, 2011	Aug. 1, 2012	±1dB
Trilog Broadband Antenne	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug. 2, 2011	Aug. 1, 2012	±1dB
Broad- band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug. 2, 2011	Aug. 1, 2012	f < 10 GHz : ±1dB 10GHz < f < 18 GHz : ±1.5dB
Broadband Preamplifie r	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug. 2, 2011	Aug. 1, 2012	±1.2dB
10m Coaxial Cable with N-male Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
10m 50 Ohm Coaxial Cable	SCHWARZB ECK MESS- ELEKTROM / AK 9513	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
Positioning Controller	C&C LAB/ CC-C-IF	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
Color Monitor	SUNSPO/ SP-14C	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug. 2, 2011	Aug. 1, 2012	±1dB
Two-Line V-Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μΗ	Aug. 2, 2011	Aug. 1, 2012	±10%
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range : 9K-1GHz RF voltage : - 60 dBm- +10dBm	Aug. 2, 2011	Aug. 1, 2012	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1B
Active Loop Antenna	Beijing Dazhi / ZN30900A	-	-	-	Aug. 2, 2011	Aug. 1, 2012	±1Db
MP3 Player	Ipod Player/A1285	5K85004U 3R0	-	-	Aug. 2, 2011	Aug. 1, 2012	±0.5dB

5 Equipment Used during Test

FCC ID: WC2DS-1098

6 Conducted Emission

Test Requirement:	FCC CFR 47 Part 15 Section 15.207
Test Method:	ANSI C63.4:2003
Test Result:	PASS
Frequency Range:	150kHz to 30MHz
Class:	Class B
Limit:	66-56 dBµV between 0.15MHz & 0.5MHz
	56 dBµV between 0.5MHz & 5MHz
	60 dBµV between 5MHz & 30MHz
Detector:	Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-
	Peak & Average if maximised peak within 6dB of
	Average Limit

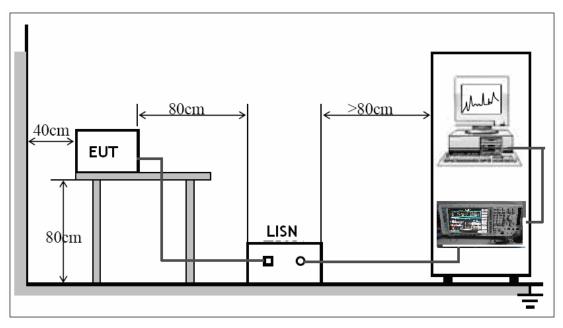
6.1 E.U.T. Operation

Operating Environment:

Temperature:	25.5 °C
Humidity:	51 % RH

Atmospheric Pressure: 1012 mbar

EUT Operation:

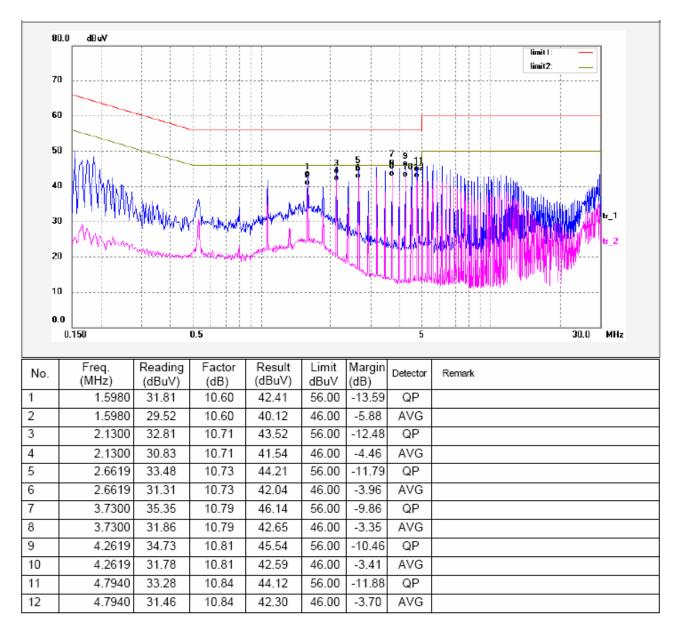

The EUT was tested in Bluetooth normal link mode,Line in mode and iPod playing connected with TV,the worst date were shown as follow.

The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.

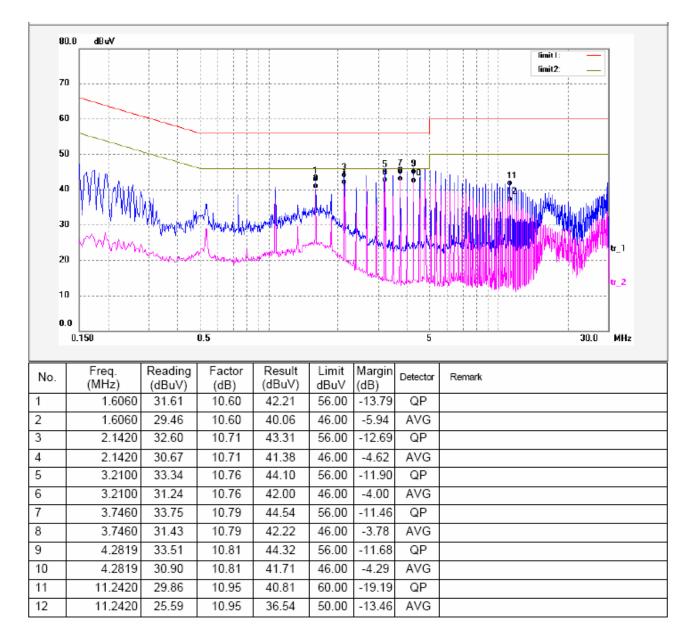
The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15.207 limits.

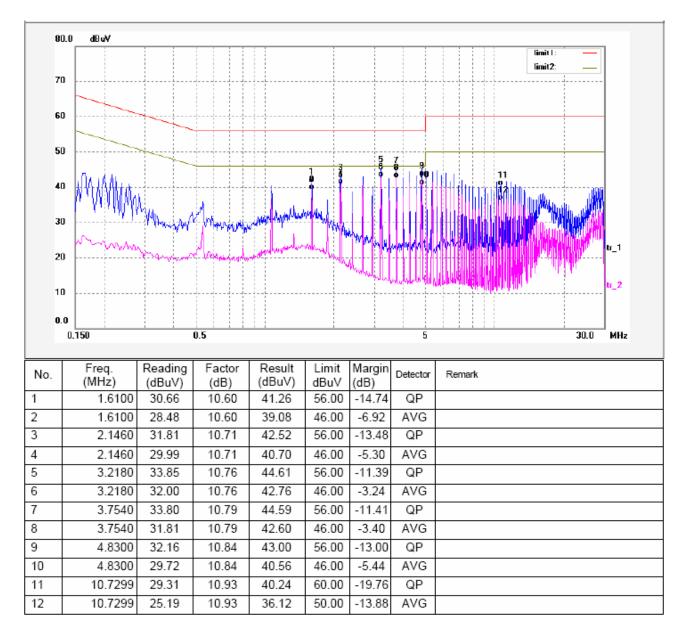

The EUT was placed on the test table in shielding room

6.3 Conducted Emission Test Result

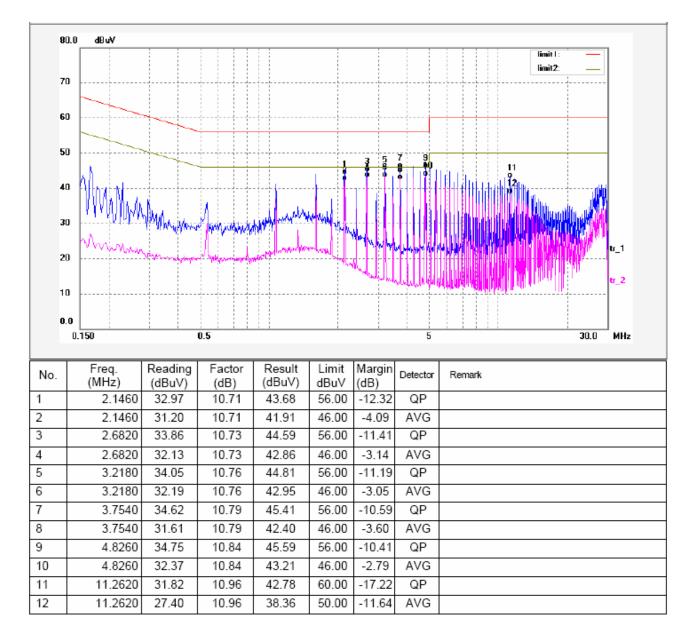

An initial pre-scan was performed on the live and neutral lines.

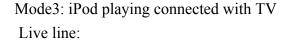
Mode1: Bluetooth normal link

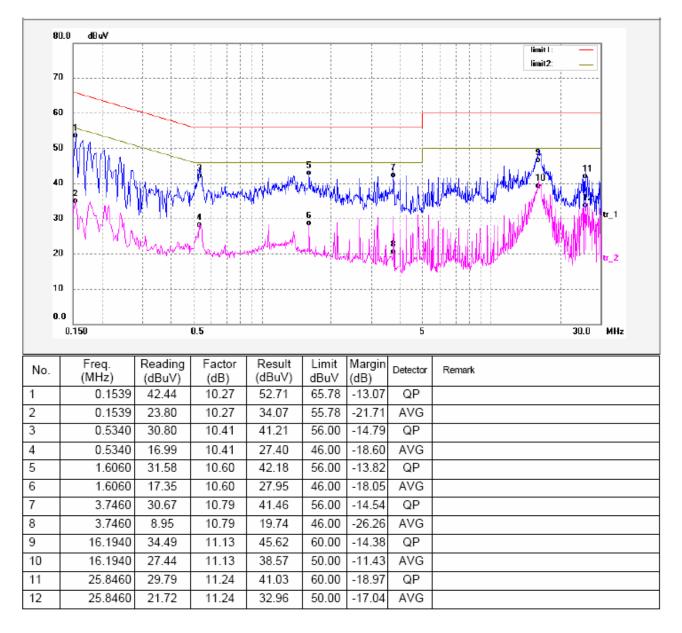
Live line:

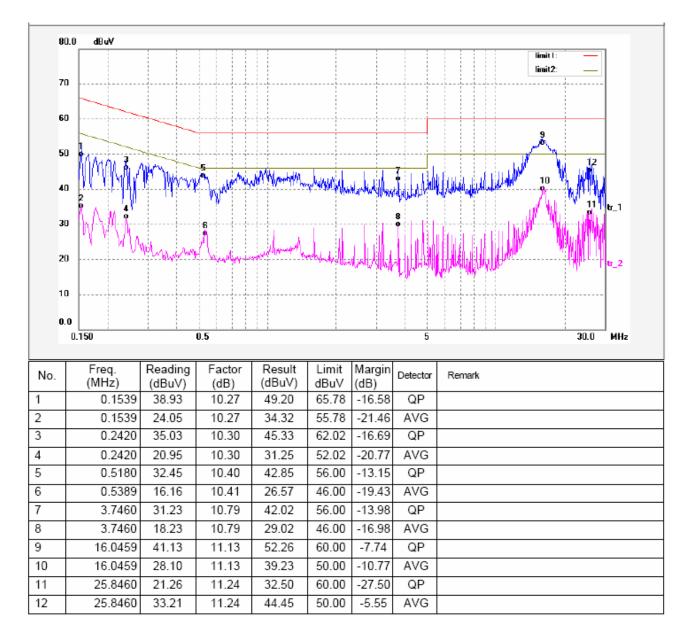


Neutral line:




Mode2: Line in


Live line:


Neutral line:

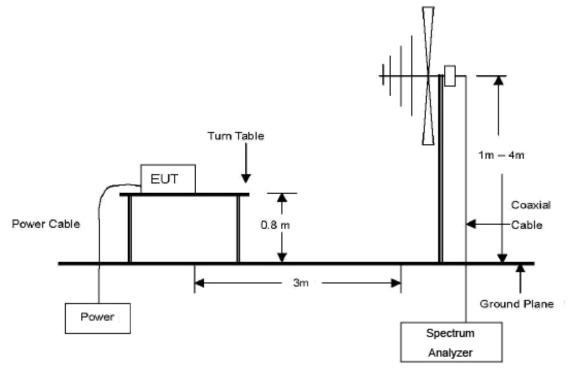
Neutral line:

6.4 Photograph – Conducted Emission Test Setup

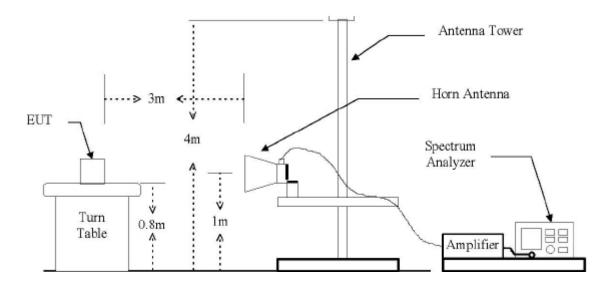
7 Radiated Spurious Emissions

Test Requirement:	FCC CFR47 Part 15 Section 15.209 & 15.247
Test Method:	Based on DA 00-705
Test Result:	PASS
Frequency Range:	9kHz to 25GHz
Measurement Distance:	3m
15.209 Limit:	40.0 dBuV/m between 30MHz & 88MHz
	43.5 dBuV/m between 88MHz & 216MHz
	46.0 dBuV/m between 216MHz & 960MHz
	54.0 dBuV/m above 960MHz
15.247 (d) Limit:	(d) In any 100 kHz bandwidth outside the frequency
	band in which the spread spectrum or digitally
	modulated intentional radiator is operating. The
	radio frequency power that is produced by the
	intentional radiator shall be at least 20 dB below that
	in the 100 kHz bandwidth within the band that
	Contains the highest level of the desired power,
	based on either an RF conducted or a radiated
	measurement, provided the transmitter demonstrates
	compliance with the peak conducted power limits.
Test mode:	The EUT was tested in continuously Transmit mode.

7.1 EUT Operation :


Operating Environment:

Temperature:	25.5 °	РС
Humidity:	51 %	RH
Atmospheric Press	ure:	1012 mbar


7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 25 GHz Emissions.

7.3 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested 9kHz to 25000MHz.

$9 k H z \sim 30 M H z$

Start Frequency	9kHz
Stop Frequency	30MHz
Sweep Speed	Auto
IF Bandwidth	10KHz
Video Bandwidth	10KHz
Resolution Bandwidth	10KHz

$30 MHz \sim 1 GHz$

Start Frequency	30 MHz
Stop Frequency	1000MHz
Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

Above 1GHz

Start Frequency	1000 MHz
Stop Frequency	25000MHz
Sweep Speed	Auto
IF Bandwidth	.120 KHz
Video Bandwidth	3MHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

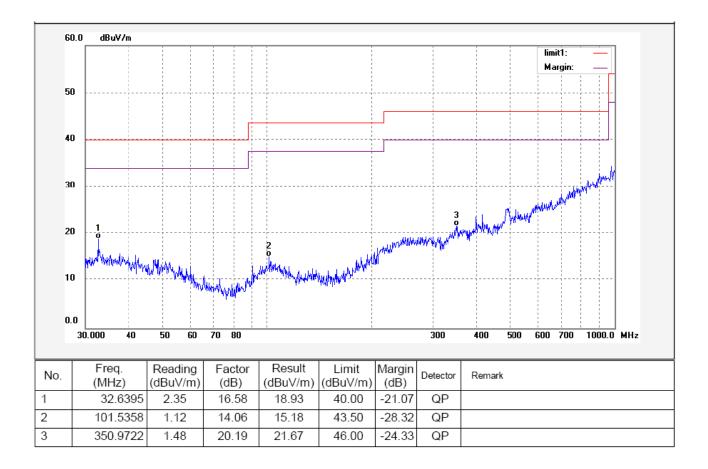
Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

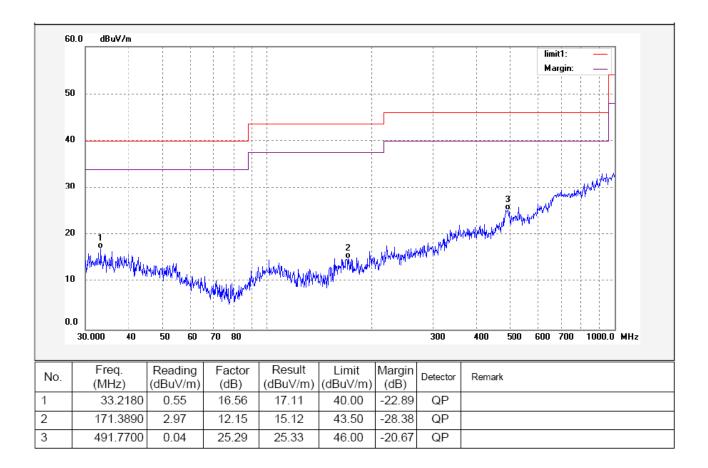
Margin = Corr. Ampl. – Limit

7.6 Summary of Test Results

According to the data in this section, the EUT complied with the FCC CFR47 Part 15 Section 15.209 & 15.247 standards.


The EUT was tested in Bluetooth normal link mode,Line in mode and iPod playing connected with TV,the worst date were shown as follow.

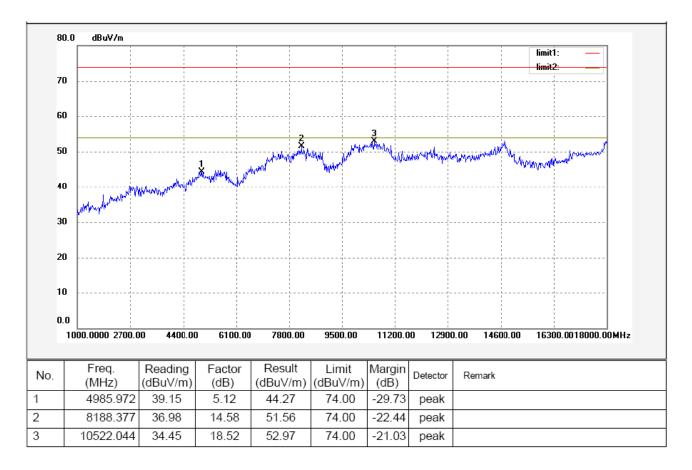
Test mode 1a: BT continuously recevie mode


Remark: the EUT was pretested at the high, middle and low channel, and the worse case was the middle Channel, so the data show was the low channel only. Because the emissions below 30MHz are more than 20dB below the limit, the data is not show in the report.

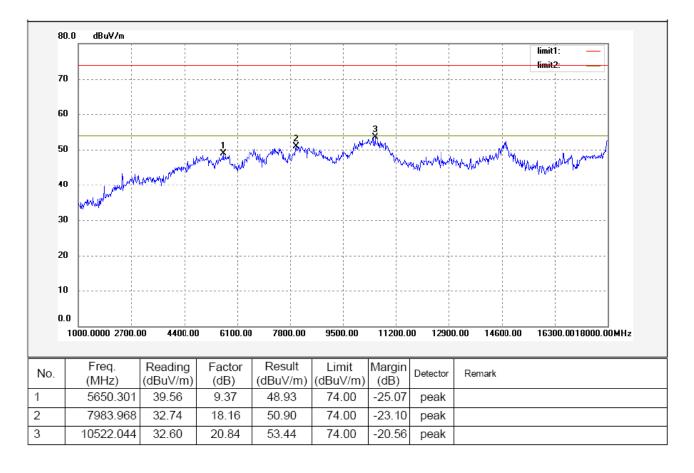
Test Frequency : $30MHz \sim 1000MHz$

Antenna polarization: Vertical

Antenna polarization: Horizontal


FCC ID: WC2DS-1098

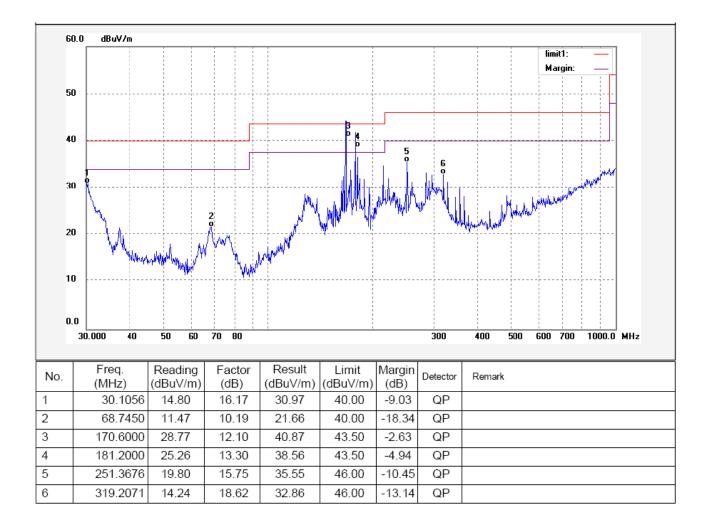
Wonders Technology Co., Ltd.


Test Frequency: Above 1GHz radiation test data:

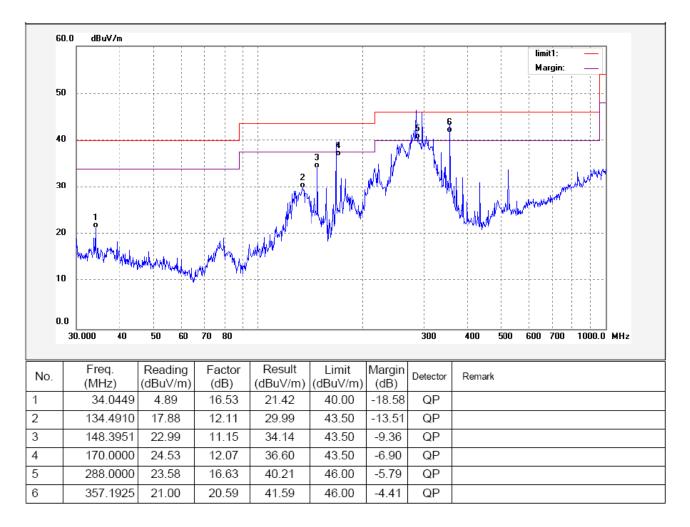
Remark: No any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Antenna polarization: Vertical

Antenna polarization: Horizontal



Test mode 1b: continuously transmit mode


Remark: The pre-test was performaned in continuously transmit mode and normal link mode, and the continuously transmit mode was pretested at the high, middle and low channel. The worst mode is normal link mode, so the data show was that mode's only. Because the emissions below 30MHz are more than 20dB below the limit, the data is not show in the report.

Test Frequency : $30MHz \sim 1000MHz$

Antenna polarization: Vertical

Antenna polarization: Horizontal

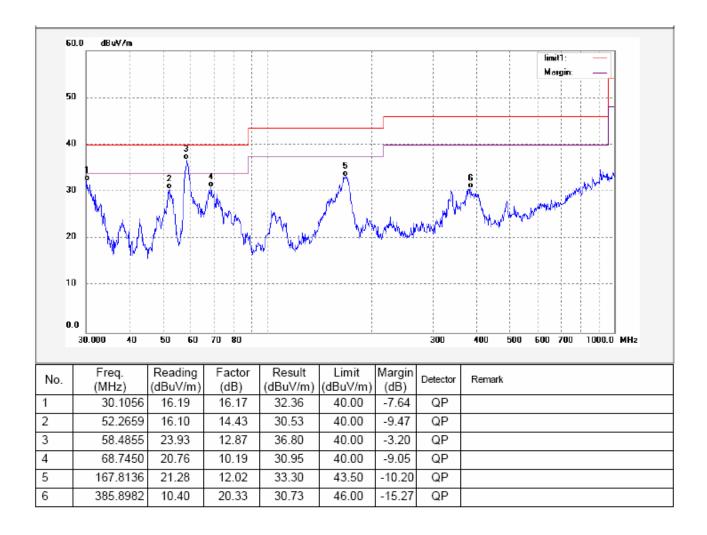
the below is	the Fund	amental and	1			A (TT (11
Frequency (MHz)	Detector	Antenna Polarization	Emission Level	Limit (dBuV/m)	Margin (dB)	Antenna Height	Turntable Angle
(101112)		1 Old 12ation	(dBuV/m)	(uDu V/III)	(uD)	(m)	(°)
			Low freq	uency			
2402.00	AV	Vertical	97.28		(Fund.)	1.1	20
4804.00	AV	Vertical	39.17	54.00	-14.83	1.2	125
7206.00	AV	Vertical	39.96	54.00	-14.04	1.3	120
9608.00	AV	Vertical	36.38	54.00	-17.62	1.9	140
12010.00	AV	Vertical	33.97	54.00	-20.03	1.5	165
14412.00	AV	Vertical	35.98	54.00	-18.02	1.4	180
16814.00	AV	Vertical	35.23	54.00	-18.77	1.5	110
19216.00	AV	Vertical	30.15	54.00	-23.85	1.6	150
21618.00	AV	Vertical	27.39	54.00	-26.61	1.5	10
24020.00	AV	Vertical	30.47	54.00	-23.53	1.2	130
2402.00	AV	Horizontal	90.87		(Fund.)	1.0	20
4804.00	AV	Horizontal	36.11	54.00	-17.89	1.3	190
7206.00	AV	Horizontal	34.44	54.00	-19.56	1.4	80
9608.00	AV	Horizontal	36.99	54.00	-17.01	1.2	180
12010.00	AV	Horizontal	35.23	54.00	-18.77	1.3	60
14412.00	AV	Horizonta	32.08	54.00	-21.92	1.3	200
16814.00	AV	Horizontal	34.89	54.00	-19.11	1.4	130
19216.00	AV	Horizontal	27.40	54.00	-26.60	1.8	160
21618.00	AV	Horizontal	28.34	54.00	-25.66	1.0	110
24020.00	AV	Horizontal	26.96	54.00	-27.04	1.6	100
2402.00	РК	Vertical	105.23		(Fund.)	1.4	10
4804.00	РК	Vertical	58.20	74.00	-15.80	1.8	130
7206.00	РК	Vertical	59.14	74.00	-14.86	2.1	110
9608.00	РК	Vertical	55.87	74.00	-18.13	1.5	250
12010.00	РК	Vertical	52.23	74.00	-21.77	1.1	80
14412.00	РК	Vertical	53.52	74.00	-20.48	1.2	140
16814.00	РК	Vertical	50.33	74.00	-23.67	1.2	135
19216.00	РК	Vertical	48.61	74.00	-25.39	1.3	200
21618.00	РК	Vertical	46.39	74.00	-27.61	1.6	90
24020.00	РК	Vertical	47.54	74.00	-26.46	2.0	150
2402.00	РК	Horizontal	99.30		(Fund.)	1.6	70
4804.00	РК	Horizontal	56.59	74.00	-17.41	1.9	180
7206.00	РК	Horizontal	54.34	74.00	-19.66	2.2	70
9608.00	РК	Horizontal	51.45	74.00	-22.55	1.2	70
12010.00	РК	Horizontal	53.43	74.00	-20.57	1.0	155
14412.00	РК	Horizontal	48.34	74.00	-25.66	1.6	70
16814.00	РК	Horizontal	54.44	74.00	-19.56	1.7	200
19216.00	РК	Horizontal	46.29	74.00	-27.71	1.5	140
21618.00	РК	Horizontal	47.62	74.00	-26.38	1.0	120

Test Frequency: $1GHz \sim 25GHz$ radiation test data

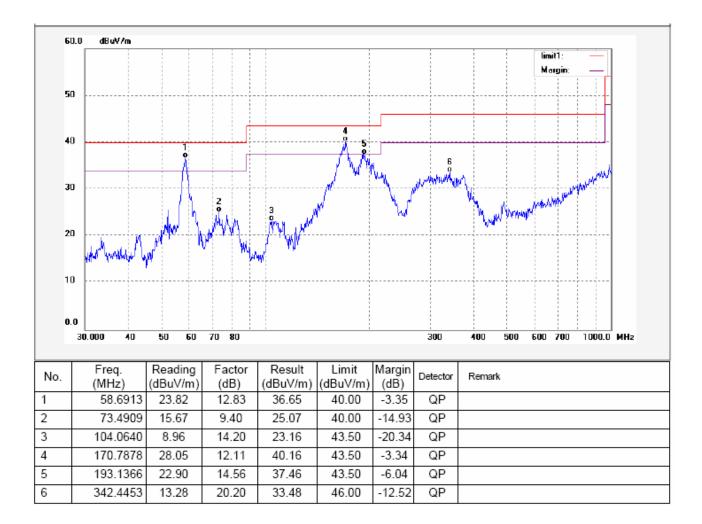
And the below	is the	Fundamental	and	Harmonic
	ib the	1 unumbinum	unu	1 Iui III0III0

24020.00	РК	Horizontal	49.39	74.00	-24.61	2.0	150
			Middle fre	anency			
2441.00	AV	Vertical	98.63	quency	(Fund.)	1.4	50
4882.00	AV	Vertical	41.69	54.00	-12.31	1.4	170
7323.00	AV	Vertical	39.90	54.00	-14.10	1.6	90
9764.00	AV	Vertical	35.81	54.00	-14.10	1.3	80
12205.00	AV	Vertical	40.40	54.00	-13.60	1.1	30
14646.00	AV	Vertical	34.22	54.00	-19.78	1.1	210
17087.00	AV	Vertical	36.02	54.00	-17.98	1.2	10
19528.00	AV	Vertical	30.02	54.00	-17.98	1.5	90
21969.00				54.00		1.6	90 190
	AV	Vertical	30.94		-23.06		
24410.00	AV	Vertical	35.03	54.00	-18.97	1.2	160
2441.00	AV	Horizontal	92.54	54.00	(Fund.)	2.1	140
4882.00	AV	Horizontal	38.21	54.00	-15.79	1.7	160
7323.00	AV	Horizontal	39.42	54.00	-14.58	1.4	290
9764.00	AV	Horizontal	34.33	54.00	-19.67	1.2	200
12205.00	AV	Horizontal	32.02	54.00	-21.98	1.0	150
14646.00	AV	Horizontal	35.92	54.00	-18.08	1.5	260
17087.00	AV	Horizontal	35.15	54.00	-18.85	1.5	165
19528.00	AV	Horizontal	29.83	54.00	-24.17	1.4	150
21969.00	AV	Horizontal	30.88	54.00	-23.12	1.0	160
24410.00	AV	Horizontal	29.06	54.00	-24.94	1.8	210
2441.00	PK	Vertical	107.24		(Fund.)	1.1	10
4882.00	РК	Vertical	63.10	74.00	-10.90	1.1	160
7323.00	РК	Vertical	61.21	74.00	-12.79	1.2	120
9764.00	РК	Vertical	57.07	74.00	-16.93	1.4	190
12205.00	РК	Vertical	60.31	74.00	-13.69	1.6	200
14646.00	PK	Vertical	52.98	74.00	-21.02	1.2	80
17087.00	РК	Vertical	56.23	74.00	-17.77	1.2	0
19528.00	РК	Vertical	51.04	74.00	-22.96	1.6	200
21969.00	РК	Vertical	55.03	74.00	-18.97	1.4	165
24410.00	РК	Vertical	48.09	74.00	-25.91	1.4	180
2441.00	РК	Horizontal	101.67		(Fund.)	1.4	10
4882.00	РК	Horizontal	58.25	74.00	-15.75	1.8	135
7323.00	РК	Horizontal	59.98	74.00	-14.02	1.5	100
9764.00	РК	Horizontal	54.09	74.00	-19.91	1.5	130
12205.00	РК	Horizontal	56.84	74.00	-17.16	1.2	170
14646.00	РК	Horizontal	52.24	74.00	-21.76	1.6	220
17087.00	РК	Horizontal	49.43	74.00	-24.57	1.0	140
19528.00	РК	Horizontal	52.12	74.00	-21.88	1.5	230
21969.00	РК	Horizontal	53.35	74.00	-20.65	1.7	0
24410.00	PK	Horizontal	48.03	74.00	-25.97	1.7	225
High frequency							
2480.00	A 17	Vertical	97.62	uciicy	(Fund)	1 2	200
2480.00	AV	ventical	97.02		(Fund.)	1.3	200

Page:29 of 65

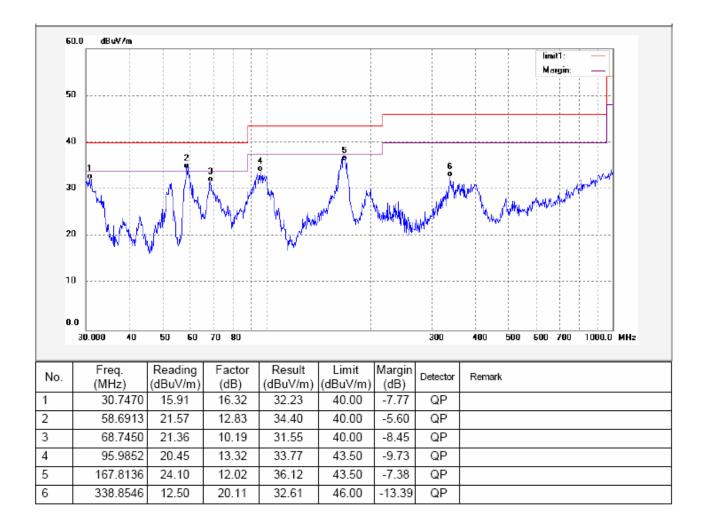

Wonders Technology Co., Ltd.

FCC ID: WC2DS-1098

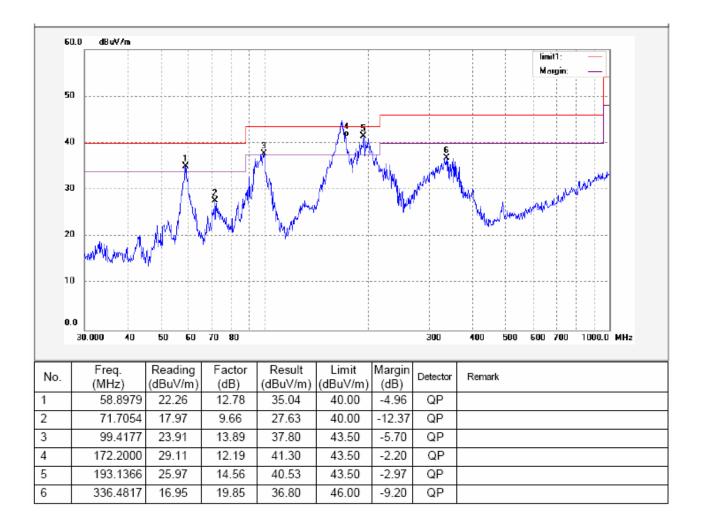

4960.00	AV	Vertical	41.96	54.00	-12.04	1.6	80
7440.00	AV	Vertical	40.92	54.00	-13.08	1.1	120
9920.00	AV	Vertical	39.40	54.00	-14.60	1.5	140
12400.00	AV	Vertical	37.96	54.00	-16.04	1.4	120
14880.00	AV	Vertical	41.50	54.00	-12.50	1.8	180
17360.00	AV	Vertical	34.89	54.00	-19.11	1.5	110
19840.00	AV	Vertical	32.18	54.00	-21.82	1.2	270
22320.00	AV	Vertical	38.95	54.00	-15.05	1.3	130
24800.00	AV	Vertical	30.91	54.00	-23.09	1.5	205
2480.00	AV	Horizontal	91.63		(Fund.)	1.8	140
4960.00	AV	Horizontal	40.30	54.00	-13.70	2.3	220
7440.00	AV	Horizontal	35.67	54.00	-18.33	1.1	140
9920.00	AV	Horizontal	36.24	54.00	-17.76	1.5	260
12400.00	AV	Horizontal	37.51	54.00	-16.49	1.0	135
14880.00	AV	Horizontal	34.06	54.00	-19.94	1.3	200
17360.00	AV	Horizontal	31.22	54.00	-22.78	1.3	210
19840.00	AV	Horizontal	33.85	54.00	-20.15	2.1	120
22320.00	AV	Horizontal	29.11	54.00	-24.89	1.1	100
24800.00	AV	Horizontal	29.96	54.00	-24.04	1.9	180
2480.00	РК	Vertical	106.87		(Fund.)	1.1	190
4960.00	РК	Vertical	61.67	74.00	-12.33	1.2	100
7440.00	РК	Vertical	58.10	74.00	-15.90	1.9	130
9920.00	РК	Vertical	60.56	74.00	-13.44	1.6	170
12400.00	РК	Vertical	55.66	74.00	-18.34	1.3	110
14880.00	РК	Vertical	62.21	74.00	-11.79	1.2	140
17360.00	РК	Vertical	56.24	74.00	-17.76	1.0	90
19840.00	РК	Vertical	57.11	74.00	-16.89	1.3	200
22320.00	РК	Vertical	55.43	74.00	-18.57	1.5	150
24800.00	РК	Vertical	49.05	74.00	-24.95	1.6	195
2480.00	РК	Horizontal	100.28		(Fund.)	1.5	190
4960.00	РК	Horizontal	58.14	74.00	-15.86	1.5	150
7440.00	РК	Horizontal	56.45	74.00	-17.55	1.4	130
9920.00	РК	Horizontal	57.27	74.00	-16.73	1.3	250
12400.00	РК	Horizontal	55.13	74.00	-18.87	1.0	110
14880.00	РК	Horizontal	49.32	74.00	-24.68	2.1	160
17360.00	РК	Horizontal	53.53	74.00	-20.47	1.8	170
19840.00	РК	Horizontal	48.20	74.00	-25.80	1.5	230
22320.00	РК	Horizontal	51.03	74.00	-22.97	2.1	120
24800.00	РК	Horizontal	46.41	74.00	-27.59	2.0	270

Test mode 2: Line in

Test Frequency : 30MHz ~ 1000MHz Antenna polarization: Vertical

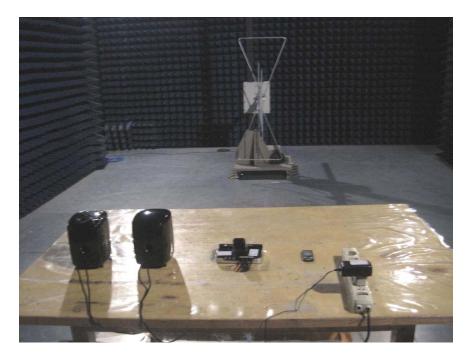


Antenna polarization: Horizontal

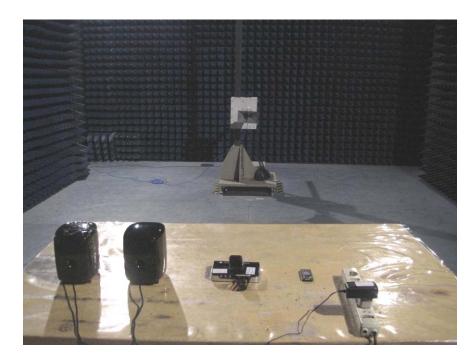


Test mode 3: iPod playing connected with TV

Test Frequency : 30MHz ~ 1000MHz Antenna polarization: Vertical

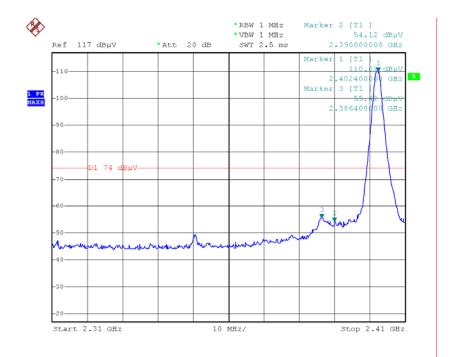


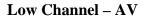
Antenna polarization: Horizontal

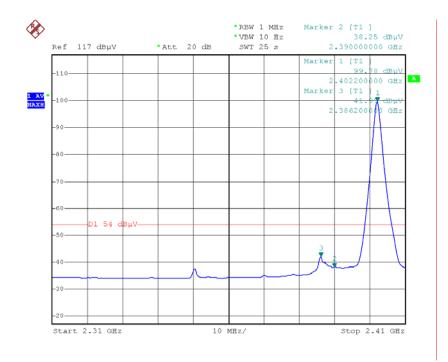


7.7 Photograph – Radiation Spurious Emission Test Setup

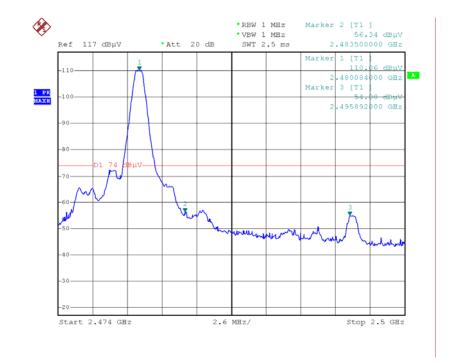
Below 1GHz

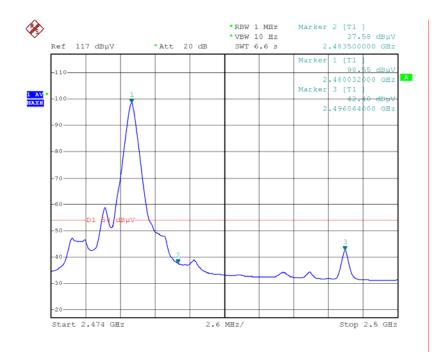

Above 1GHz




8 Band Edge Measurements

Test Requirement:	Section 15.247(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method:	Based on DA 00-705
Measurement Distance:	3m
Limit:	40.0 dBuV/m between 30MHz & 88MHz;
	43.5 dBuV/m between 88MHz & 216MHz;
	46.0 dBuV/m between 216MHz & 960MHz;
	54.0 dBuV/m above 960MHz.
	74.0 dBuV/m for peak above 1GHz
	54.0 dBuV/m for AVG above 1GHz
Detector:	For Peak value:
	$RBW = 1 MHz$ for $f \ge 1 GHz$
	$VBW \ge RBW$; Sweep = auto
	Detector function = peak
	Trace = max hold
	For AVG value:
	$RBW = 1 MHz$ for $f \ge 1 GHz$
	VBW = 10Hz; Sweep = auto
	Detector function = AVG
	Trace = max hold


Test Result: Low Channel – Peak



High Channel – Peak

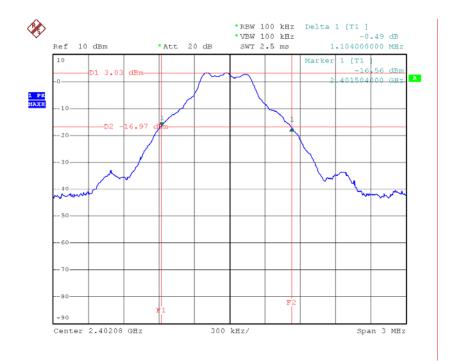
High Channel – AV

9 20 dB Bandwidth Measurement

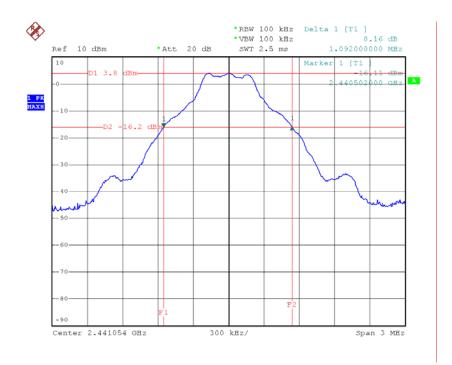
Test Requirement:	FCC CFR47 Part 15 Section 15.247
Test Method:	Based on DA 00-705
Test Mode:	Test in fixing operating frequency at low, Middle, high
	channel.

9.1 Test Procedure:

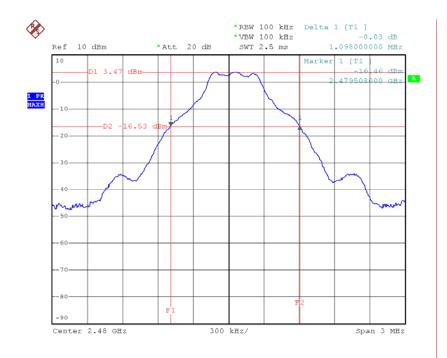
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;


2. Set the spectrum analyzer: Span = 3MHz, RBW = 100kHz, VBW = 100kHz

9.2 Test Result:


Test Channel	Bandwidth
Low	1.104MHz
Middle	1.092MHz
High	1.098MHz

Test result plot as follows:


Low Channel

Middle Channel

High Channel

FCC ID: WC2DS-1098

10 Maximum Peak Output Power

Test Requirement:	FCC CFR47 Part 15 Section 15.247			
Test Method:	Based on ANSI C63.4:2003			
Test Limit:	Regulation 15.247 (b)(1)For frequency hopping systems			
	operating in the 2400-2483.5 MHz band employing at			
	least 75 non-overlapping hopping channels, and all			
	frequency hopping systems in the 5725-5850 MHz band: 1			
	watt. For all other frequency hopping systems in the 2400-			
	2483.5 MHz band: 0.125 watts.			
	Refer to the result "Number of Hopping Frequency" of			
	this document. The 1watts (30 dBm) limit applies.			
Test mode:	Test in fixing frequency transmitting mode.			

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3 MHz. VBW = 10 MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result:

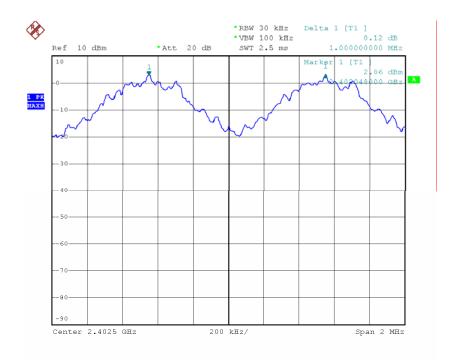
Test Channel	Output Power (dBm)	Limit (dBm)
Low	3.28	30
Middle 3.49		30
High	3.76	30

11 Hopping Channel Separation

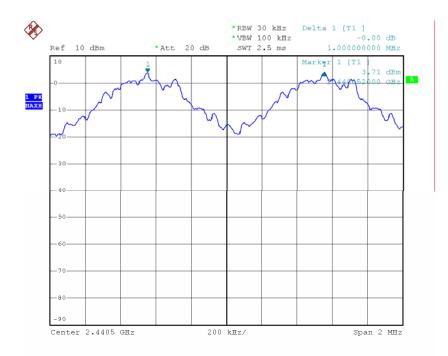
Test Requirement:	FCC CFR47 Part 15 Section 15.247
Test Method:	Based on DA 00-705
Test Limit:	Regulation 15.247(a)(1) Frequency hopping systems shall have
	hopping channel carrier frequencies separated by a minimum of
	25 kHz or the 20 dB bandwidth of the hopping channel,
	whichever is greater. Alternatively, frequency hopping systems
	operating in the 2400-2483.5 MHz band may have hopping
	channel carrier frequencies that are separated by 25 kHz or two-
	thirds of the 20 dB bandwidth of the hopping channel,
	whichever is greater, provided the systems operate with an
	output power no greater than 125 mW.
Test Mode:	Test in hopping transmitting operating mode.

11.1 Test Procedure:

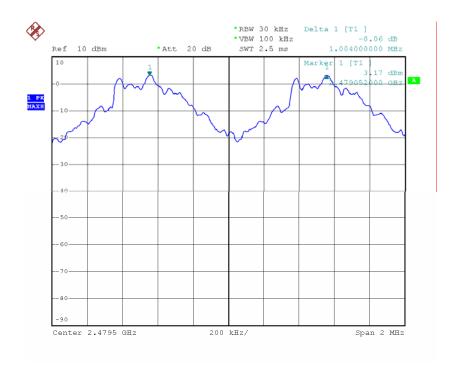
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz, Span = 2MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.


11.2 Test Result:

Test Channel	Separation (MHz)	Result
Low	1.000	PASS
Middle	1.000	PASS
High	1.004	PASS


Test result plot as follows: Low Channel:

Middle Channel

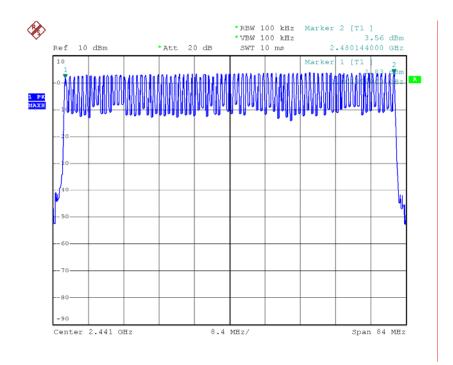
High Channel

12 Number of Hopping Frequency

Test Requirement:	FCC CFR47 Part 15 Section 15.247		
Test Method:	Based on DA 00-705		
Test Limit:	Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15		
	channels.		
Test Mode:	Test in hopping transmitting operating mode.		

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 100 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Center Frequency = 2441MHz, Span = 86MHz. Submit the test result graph.

12.2 Test Result:

Total Channels are 79 Channels

13 Dwell Time

Test Requirement:	FCC CFR47 Part 15 Section 15.247
Test Method:	Based on DA 00-705
Test Limit:	Regulation 15.247(a)(1)(iii) Frequency hopping systems in
	the 2400-2483.5 MHz band shall use at least 15 channels.
	The average time of occupancy on any channel shall not
	be greater than 0.4 seconds within a period of 0.4 seconds
	multiplied by the number of hopping channels employed.
Test Mode:	Test in hopping transmitting operating mode.

13.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2.Set spectrum analyzer span = 0. centered on a hopping channel;

3.Set RBW = 1MHz and VBW = 1MHz.Sweep = as necessary to capture the entire dwell time per hopping channel.

4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.2 Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6 (s)

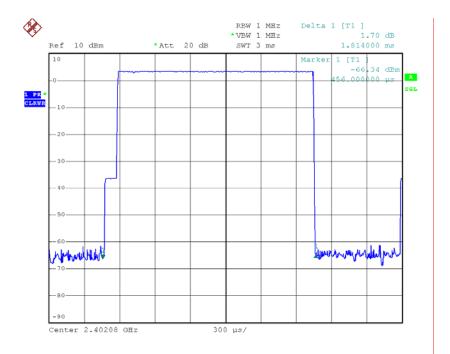
DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So,the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)	
DH5	1600/79/6*31.6*(MkrDelta)/1000	
DH3	1600/79/4*31.6*(MkrDelta)/1000	
DH1	1600/79/2*31.6*(MkrDelta)/1000	

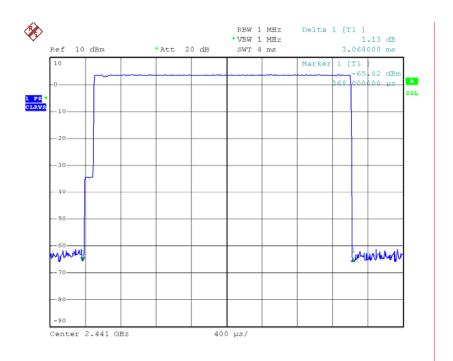
Note : Mkr Delta is once pulse time .


Low Channel: 2402MHz

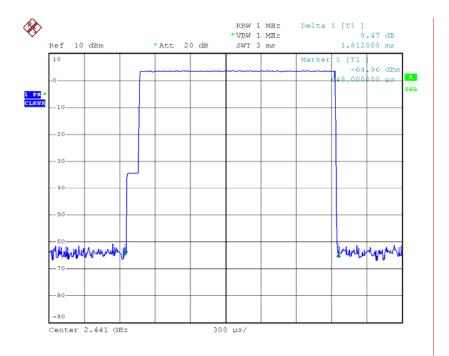
Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
DH5	2402 MHz	3.068	0.327	0.400	Pass
DH3	2402 MHz	1.814	0.290	0.400	Pass
DH1	2402 MHz	0.530	0.170	0.400	Pass

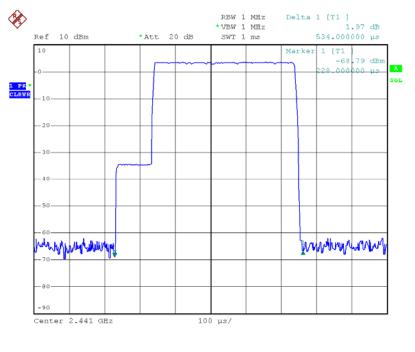
(DH5)



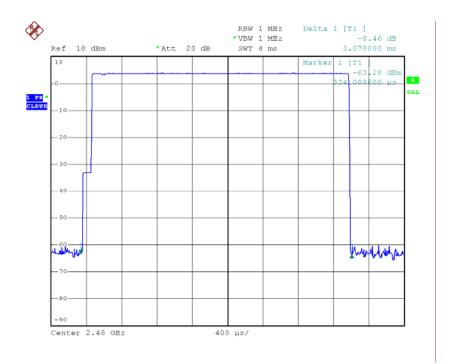
(DH1)


Middle Channel: 2441MHz

Dwell time of each occupation in this channel as follows:


Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
DH5	2441 MHz	3.068	0.327	0.400	Pass
DH3	2441 MHz	1.812	0.290	0.400	Pass
DH1	2441 MHz	0.534	0.171	0.400	Pass

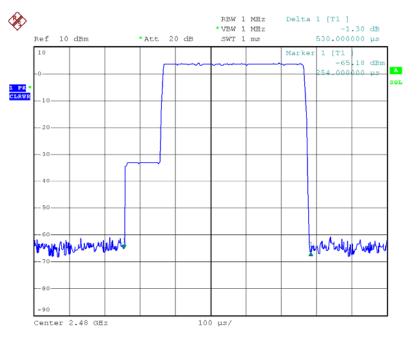
(DH5)



(DH1)

High Channel: 2480MHz

Dwell time of each occupation in this channel as follows:


Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
DH5	2480 MHz	3.070	0.327	DH5	Pass
DH3	2480 MHz	1.802	0.288	DH3	Pass
DH1	2480 MHz	0.530	0.170	DH1	Pass

(DH5)

(DH1)

14 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. This product has a permanent PCB antenna, fulfill the requirement of this section.

15 RF Exposure

Test Requirement:	FCC Part 1.1307
Test Mode:	The EUT work in test mode(Tx).

Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1093 this device has been defined as a moblie device.

The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time $ \mathbf{E} ^2$, $ \mathbf{H} ^2$ or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note: f = frequency in MHz ; *Plane-wave equivalent power density

MPE Calculation Method

 $E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$ Power Density: $Pd (W/m^2) = \frac{E^2}{377}$ E = Electric field (V/m) P = Peak RF output power (W) G = EUT Antenna numeric gain (numeric) d = Separation distance between radiator and human body (m)The formula can be changed to $Pd = \frac{30 \times P \times G}{377 \times d^2}$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm2)	Limit of Power Density (S) (mW/cm2)	Test Result
0	1	3.27	2.123	0.000422	1	Complies
0	1	3.48	2.228	0.000443	1	Complies
0	1	3.75	2.371	0.000472	1	Complies

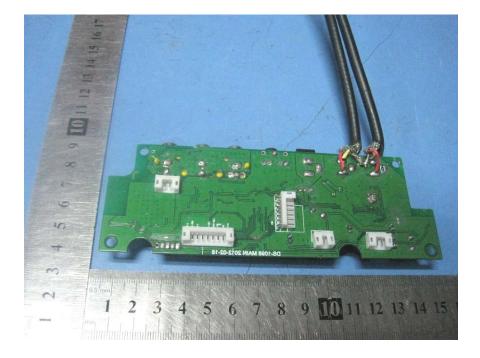
Photographs - Constructional Details 16

16.1 Product View

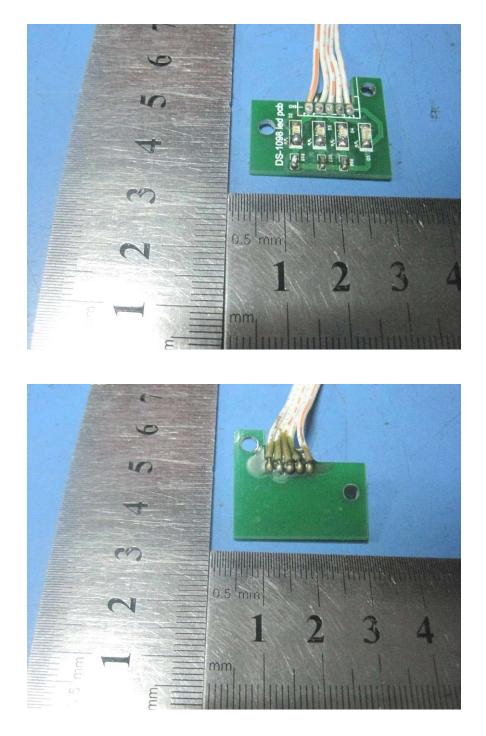
14 15 16 17 18 19 10 28 22 21 24 25 26 27 28 29 10 10 12 1 10

16.2 EUT – Appearance View

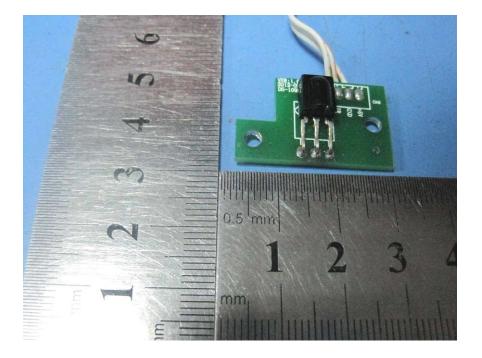
16.3 Adapter –View

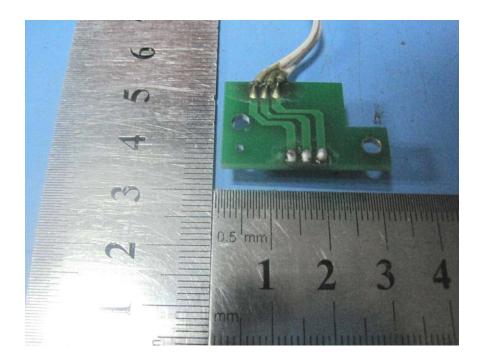


16.4 EUT – Open View

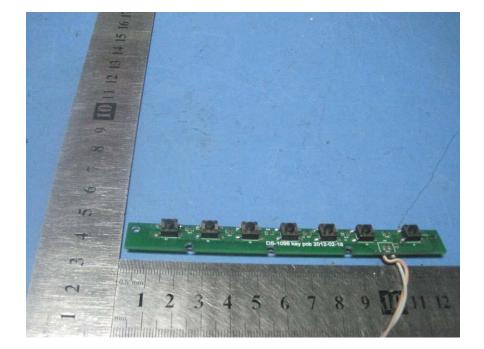


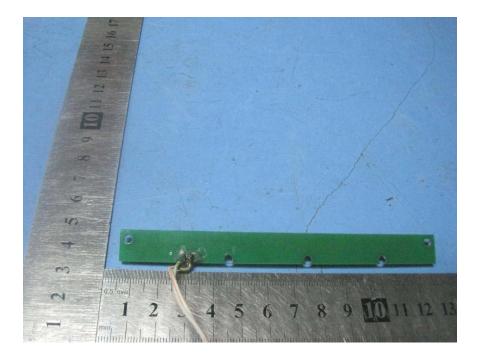
16.5 EUT – PCB View

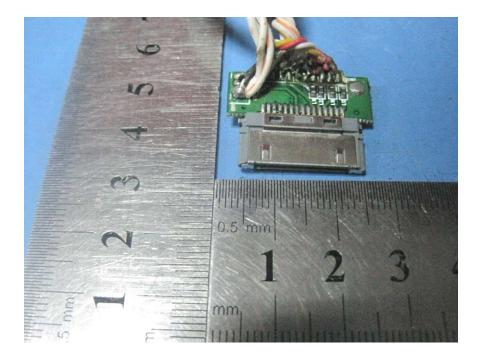




FCC ID: WC2DS-1098




FCC ID: WC2DS-1098




FCC ID: WC2DS-1098

FCC ID: WC2DS-1098

17 FCC Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation. The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Proposed Label Location on EUT EUT Back View/ proposed FCC Label Location