

RF Exposure Evaluation Declaration

Product Name: Wireless Access Point

Model No. : AP650X

FCC ID : WBV-AP650X

Applicant: Aerohive Networks, Inc.

Address: Aerohive Networks, 1011 McCarthy Boulevard, Milpitas,

CA 95035, United States

Date of Receipt: Mar. 20, 2018

Issued Date : Aug. 03, 2018

Report No. : 1842039R-RF-US-P20V01

Report Version: V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF, A2LA or any agency of the government. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification (Suzhou) Co., Ltd.

Test Report Certification

Issued Date: Aug. 03, 2018

Report No.: 1842039R-RF-US-P20V01

Product Name : Wireless Access Point
Applicant : Aerohive Networks, Inc.

Address : Aerohive Networks, 1011 McCarthy Boulevard, Milpitas,

CA 95035, United States

Manufacturer : Aerohive Networks, Inc.

Address : Aerohive Networks, 1011 McCarthy Boulevard, Milpitas,

CA 95035, United States

Model No. : AP650X

FCC ID : WBV-AP650X

Brand Name : Aerohive EUT Voltage : PoE 48V

Applicable Standard : KDB 447498D01V06

FCC Part1.1310

Test Result : Complied

Performed Location : DEKRA Testing and Certification (Suzhou) Co., Ltd.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou,

215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Designation Number: CN1199

Documented By : Kathy Feng

(Project Assistant: Kathy Feng)

Frankhe

Reviewed By :

(Senior Engineer: Frank He)

Approved By :

Harry Then

(Engineering Manager: Harry Zhao)

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

	Electric	Magnetic	Power	Average				
Frequency	Field	Field	Density	Time				
Range (MHz)	Strength	Strength	(mW/cm2)	(Minutes)				
	(V/m)	(A/m)	(11177/61112)	(Militates)				
(A) Limits for C	(A) Limits for Occupational/ Control Exposures							
300-1500	-		F/300	6				
1500-100,000			5	6				
(B) Limits for C	(B) Limits for General Population/ Uncontrolled Exposures							
300-1500			F/1500	6				
1500-100,000			1	30				

F= Frequency in MHz

Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

Report No: 1842039R-RF-US-P20V01

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18 and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	Wireless Access Point
Test Item	:	RF Exposure Evaluation
Test Site	:	AC-6

Antenna Information:

BLE:

Model No.	N/A									
Antenna manufacturer	N/A	N/A								
Antenna Delivery		1*TX+1*R	X		2*TX+2*RX		3*TX+3*RX			
Antenna technology	\boxtimes	SISO	SISO							
				Basic						
		МІМО		CDD						
				Sectorized						
				Beam-forming						
Antenna Type		- Lyternel		Dipole						
		External		Sectorized						
	\boxtimes	Internal		PIFA						
				PCB						
				Ceramic Chip Antenna						
				Metal plate type F antenna						
Antonno Tochnolom	Ant Gain									
Antenna Technology	(dBi)									
⊠ SISO	4.2									

2.4G:

Model No.	N/A													
Antenna manufacturer	N/A													
Antenna Delivery		1*TX+1*R	1*TX+1*RX						\boxtimes	4*T	X+4*RX			
Antenna technology		SISO	SISO											
				Basic										
		MIMO	\boxtimes	С	CDD									
		IVIIIVIO		S	ectori	zed								
			\boxtimes	В	eam-f	formir	ng							
Antenna Type				D	ipole									
		External		Sectorized										
		Internal		PIFA										
				PCB										
				Ceramic Chip Antenna										
				Metal plate type F antenna										
							•					Direc	ction	al Gain
Antenna			Ant Gain			(dBi)								
Technology(2*TX+2*RX)					(dBi)					Fo	r	For		
							Pow		PSD					
⊠ CDD												3.5	5	6.5
			3.5					6.5		6.5				
⊠ Beam-forming														
						P	Ant G							
Antenna		Ant Gain (dBi)						91)						
Technology(4*TX+4*RX)			(dBi)					Fo	r	For				
										Pow	er	PSD		
⊠ CDD					2.5							3.5	5	9.5
		3.5					9.5							

5G:

N/A										
, .										
N/A										
	1*TX+1	1*TX+1*RX				3*TX+3*RX	\boxtimes	4*TX+4*RX		
	SISO									
			Bas	sic methodolo	gy					
	Sectoriz		ctorized anter	nna s	systems					
	MIMO		Cro	ss-polarized	ante	nnas				
	IVIIIVIO		Un	equal antenna	a gai	ns, with equa	al tra	nsmit powers		
			Spa	Spatial Multiplexing						
						ty (CDD)				
Ме	Metal Antenna									
					Directional Gain					
				n	(dBi)					
		(aBI)			For Power	,	For PSD		
			5.5			5.5		8.5		
					8.5		8.5			
				Directional Gain			al Gain			
Ant Gain		(abi))		
	(dBi)				For Power		For PSD			
	5.5					5.5		11.5		
						11.5		11.5		
		☐ 1*TX+1☐ SISO	□ 1*TX+1*RX □ SISO □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	□ 1*TX+1*RX □ Bas □ SISO □ SISO □ Und □ Und □ Spa □ Cyd Metal Antenna Ant Gai (dBi) 5.5	□ 1*TX+1*RX	□ 1*TX+1*RX □ 2*TX+2*RX □ □ SISO □ Basic methodology □ Sectorized antenna s □ Cross-polarized ante □ Unequal antenna gai □ Spatial Multiplexing □ Cyclic Delay Diversit Metal Antenna Ant Gain (dBi) 5.5 Ant Gain (dBi)	□ 1*TX+1*RX □ 2*TX+2*RX □ 3*TX+3*RX □ SISO □ Basic methodology □ Sectorized antenna systems □ Cross-polarized antennas □ Unequal antenna gains, with equal Spatial Multiplexing □ Cyclic Delay Diversity (CDD) Metal Antenna Ant Gain (dBi) For Power 5.5 5.5 8.5 Direct Ant Gain (dBi) For Power 5.5 5.5 5.5 8.5	□ 1*TX+1*RX □ 2*TX+2*RX □ 3*TX+3*RX □ SISO □ SISO □ Basic methodology □ Sectorized antenna systems □ Cross-polarized antennas □ Unequal antenna gains, with equal tra □ Spatial Multiplexing □ Cyclic Delay Diversity (CDD) Metal Antenna Ant Gain (dBi) For Power 5.5 Ant Gain (dBi) For Power 5.5 For Power 5.5 For Power 5.5 S.5		

Power Density

Standlone modes:

Test Mode	Frequency Band (MHz)	Maximum Output Power to Antenna (dBm)	Directional Gain (dBi)	Power Density at R = 24.5 cm (mW/cm2)	Power Density Limit at R = 24.5 cm (mW/cm2)
802.11b/g/n/ac/ax 2T2R with CDD	2400 ~ 2483.5	24.61	3.5	0.086	1.0
802.11b/g/n/ac/ax 4T4R with CDD	2400 ~ 2483.5	27.03	3.5	0.150	1.0
802.11a/n/ac/ax 2T2R with CDD	5150 ~ 5250 5725 ~ 5850	21.61	5.5	0.068	1.0
802.11a/n/ac/ax 4T4R with CDD	5150 ~ 5250 5725 ~ 5850	26.76	5.5	0.223	1.0
802.11b/g/n/ac/ax 2T2R with BF	2400 ~ 2483.5	23.79	6.5	0.142	1.0
802.11b/g/n/ac/ax 4T4R with BF	2400 ~ 2483.5	25.90	9.5	0.460	1.0
802.11a/n/ac/ax 2T2R with BF	5150 ~ 5250 5725 ~ 5850	23.86	11.5	0.455	1.0
802.11a/n/ac/ax 4T4R with BF	5150 ~ 5250 5725 ~ 5850	24.40	11.5	0.516	1.0
BLE	2400 ~ 2483.5	5.44	4.2	0.001	1.0

Report No: 1842039R-RF-US-P20V01

Simultaneous transmission:

Wireless Configure	Frequency Range (MHz)	Maximum EIRP (dBm)	Limit of Power Density S(mW/cm2)	Power Density S at R = 24.5 cm (mW/cm2)	Rate	Limit
WIFI	2400 ~ 2483.5	35.40	1.0	0.460		
	5150 ~ 5250	35.90	1.0	0.516	0.977	1
	5470 ~ 5850	33.30	1.0	0.510		
ВТ	2400 ~ 2483.5	9.64	1.0	0.001		

The EUT support simultaneously transmit with WIFI 2.4G+5G+ BLE.

The worst combination should be shown in the report. The Simultaneously safety distance is 24.5cm for installed for Wireless Access Point without any other radio equipment.

 The End	