# **BTI Wireless**

#### **TEST REPORT FOR**

700MHz 40W Remote Transmitting Unit Model: mBSC0700-040-RUC11

**Tested To The Following Standard:** 

FCC Part 27C

Report No.: 94688-3

Date of issue: August 16, 2013



This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 57 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.



## **TABLE OF CONTENTS**

| Administrative Information                                                 | 3  |
|----------------------------------------------------------------------------|----|
| Test Report Information                                                    | 3  |
| Report Authorization                                                       | 3  |
| Test Facility Information                                                  | 4  |
| Software Versions                                                          | 4  |
| Site Registration & Accreditation Information                              | 4  |
| Summary of Results                                                         | 5  |
| Equipment Under Test                                                       | 6  |
| Peripheral Devices                                                         | 6  |
| FCC Part 27C                                                               | 7  |
| FCC 2.1033(c)(14)/2.1046/27C - RF Power Output                             | 7  |
| FCC 2.1033(c)(14)/2.1049 - Occupied Bandwidth                              | 24 |
| FCC 2.1033(c)(14)/2.1051/27.53(g) - Spurious Emissions at Antenna Terminal | 35 |
| FCC 2.1033(c)(14)/2.1053/27C - Field Strength of Spurious Radiation        | 41 |
| Band Edge                                                                  | 44 |
| Intermodulation                                                            | 49 |
| Out of Band Rejection                                                      | 53 |
| Supplemental Information                                                   | 56 |
| Measurement Uncertainty                                                    | 56 |
| Fmissions Test Details                                                     | 56 |



## **ADMINISTRATIVE INFORMATION**

# **Test Report Information**

REPORT PREPARED FOR: REPORT PREPARED BY:

BTI Wireless Joyce Walker

6185 Phyllis Dr. Unit D CKC Laboratories, Inc.
Cypress, CA 90630 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Winston Abrian Project Number: 94688

**DATE OF EQUIPMENT RECEIPT:**July 22, 2013
DATE(S) OF TESTING:
July 22 - 29, 2013

## **Report Authorization**

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Stew 7 Be



# **Test Facility Information**



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823

## **Software Versions**

| CKC Laboratories Proprietary Software | Version |
|---------------------------------------|---------|
| EMITest Emissions                     | 5.00.14 |
| Immunity                              | 5.00.07 |

# **Site Registration & Accreditation Information**

| Location | CB#    | TAIWAN         | CANADA  | FCC   | JAPAN  |
|----------|--------|----------------|---------|-------|--------|
| Brea A   | US0060 | SL2-IN-E-1146R | 3082D-1 | 90473 | A-0147 |



## **SUMMARY OF RESULTS**

**Standard / Specification: FCC Part 27C** 

| Description                            | Test Procedure/Method                | Results |
|----------------------------------------|--------------------------------------|---------|
| RF Power Output                        | FCC 2.1033(c)(14)/2.1046/27.50(c)(3) | Pass    |
|                                        |                                      |         |
| Occupied Bandwidth                     | FCC 2.1033(c)(14)/2.1049             | Pass    |
|                                        |                                      |         |
| Spurious Emissions at Antenna Terminal | FCC 2.1033(c)(14)/2.1051/27.53(g)    | Pass    |
|                                        |                                      |         |
| Field Strength of Spurious Radiation   | FCC 2.1033(c)(14)/2.1053/27.53(g)    | Pass    |
|                                        |                                      |         |
| Band Edge                              |                                      | Pass    |
|                                        |                                      |         |
| Intermodulation                        |                                      | Pass    |
|                                        |                                      |         |
| Out of Band Rejection                  | Referencing RSS 131 4.2 Procedure    | Pass    |
|                                        |                                      |         |



# **EQUIPMENT UNDER TEST (EUT)**

#### **EQUIPMENT UNDER TEST**

#### 700MHz 40W Remote Transmitting Unit

Manuf: BTI Wireless

Model: mBSC0700-040-RUC11

Serial: 070013010001

#### **PERIPHERAL DEVICES**

The EUT was tested with the following peripheral device(s):

#### **ESG Vector Signal Generator**

Manuf: Agilent Model: 4438C Serial: MY45091601

> Page 6 of 57 Report No.: 94688-3



# **FCC PART 27C**

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) requirements for licensed devices.

# FCC 2.1033(c)(14)/2.1046/27C - RF Power Output

#### **Test Data**

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: BTI Wireless
Specification: RF Output Power

 Work Order #:
 94688
 Date: 7/26/2013

 Test Type:
 Conducted Emissions
 Time: 15:55:14

Equipment: **700MHz 40W remote transmitting unit** Sequence#: 3

Manufacturer: BTI Wireless Tested By: Don Nguyen Model: mBSC0700-040-RUC11 110V 60Hz

S/N: 070013010001

#### Test Equipment:

| ID | Asset #  | Description       | Model       | Calibration Date | Cal Due Date |
|----|----------|-------------------|-------------|------------------|--------------|
| T1 | ANP06153 | Cable             | 16301       | 10/27/2011       | 10/27/2013   |
| T2 | AN02869  | Spectrum Analyzer | E4440A      | 2/6/2013         | 2/6/2015     |
| T3 | AN03169  | High Pass Filter  | HM1155-11SS | 9/22/2011        | 9/22/2013    |

#### Equipment Under Test (\* = EUT):

| Equipment enter 1 cm ( = E c 1). |              |                    |              |  |
|----------------------------------|--------------|--------------------|--------------|--|
| Function                         | Manufacturer | Model #            | S/N          |  |
| 700MHz 40W remote                | BTI Wireless | mBSC0700-040-RUC11 | 070013010001 |  |
| transmitting unit*               |              |                    |              |  |

#### Support Devices:

| Function          | Manufacturer | Model # | S/N        |
|-------------------|--------------|---------|------------|
| ESG Vector Signal | Agilent      | 4438C   | MY45091601 |
| Generator         |              |         |            |

Page 7 of 57 Report No.: 94688-3



#### Test Conditions / Notes:

The EUT is placed on the test bench. Tx In is connected to an ESG Signal generator, ANT is connected to a spectrum analyzer and attenuator. RX out port is terminated to 50 ohm load.

The evaluation is performed at the antenna port using Channel power function of the spectrum analyzer.

Freq: 728-746MHz

Signal protocol: LTE-TM1.1 1.4MHz, 5MHz. 15MHz

The RF output power was measured with automatic level control threshold setting (ALCTH) as listed in the result table for RF Output power of 40 W, 20W, 10W

21°C, 65% RH

The EUT is a RF amplifier operating the 728-746 MHz band under part 27. The manufacture does not provide an antenna for sale with the product; hence EIRP is not measured nor calculated. The Automatic Level Control Threshold of each individual unit is to be programed to produce conducted RF output power as rated at the time of deployment.

The end user of this product is to exercise proper engineering judgment to select the appropriate antenna to comply with the EIRP limitation set forth

#### 27.50

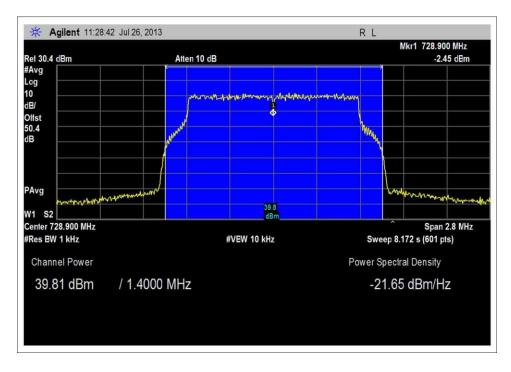
(c) The following power and antenna height requirements apply to stations transmitting in the 698-746 MHz band: (3) Fixed and base stations transmitting a signal with an emission bandwidth greater than 1 MHz must not exceed an ERP of 1000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 1000 watts/MHz ERP in accordance with Table 3 of this section

#### 40W

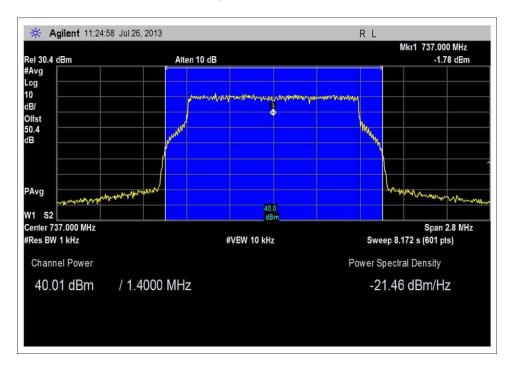
| Modulation | ALCTH | Power (dBm) | Power (W) |
|------------|-------|-------------|-----------|
| LTE 1.4MHz |       |             |           |
| 728.9MHz   | 1616  | 45.62       | 36.48     |
| 737.0MHz   | 1616  | 45.95       | 39.36     |
| 745.1MHz   | 1616  | 45.89       | 38.82     |
| LTE 5MHz   |       |             |           |
| 730.8MHz   | 1488  | 45.84       | 38.37     |
| 737.0MHz   | 1488  | 45.96       | 39.45     |
| 743.2MHz   | 1488  | 45.92       | 39.08     |
|            | 1     |             | 1         |
| LTE 15MHz  |       |             |           |
| 735.8MHz   | 1440  | 45.92       | 39.08     |
| 737.0MHz   | 1440  | 45.99       | 39.72     |
| 738.2MHz   | 1440  | 45.97       | 39.54     |

Page 8 of 57 Report No.: 94688-3



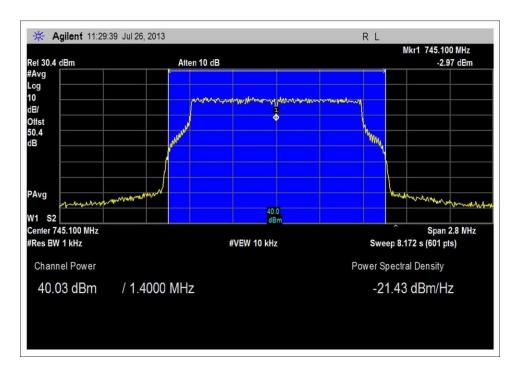

#### 20W

| Modulation | ALCTH | Power (dBm) | Power (W) |
|------------|-------|-------------|-----------|
| LTE 1.4MHz |       |             |           |
| 728.9MHz   | 1152  | 42.86       | 19.32     |
| 737.0MHz   | 1152  | 43.01       | 20.00     |
| 745.1MHz   | 1152  | 42.92       | 19.59     |
|            |       |             |           |
| LTE 5MHz   |       |             |           |
| 730.8MHz   | 1072  | 42.85       | 19.28     |
| 737.0MHz   | 1072  | 43.00       | 19.95     |
| 743.2MHz   | 1072  | 42.92       | 19.59     |
|            |       |             |           |
| LTE 15MHz  |       |             |           |
| 735.8MHz   | 1024  | 42.98       | 19.86     |
| 737.0MHz   | 1024  | 42.98       | 19.86     |
| 738.2MHz   | 1024  | 42.95       | 19.72     |

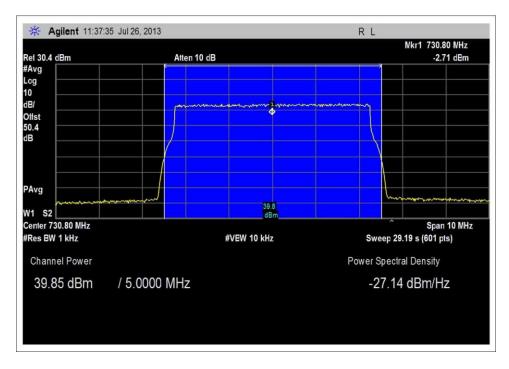

#### 10W

| Modulation | ALCTH | Power (dBm) | Power (W) |
|------------|-------|-------------|-----------|
| LTE 1.4MHz |       |             |           |
| 728.9MHz   | 784   | 39.81       | 9.57      |
| 737.0MHz   | 784   | 40.01       | 10.02     |
| 745.1MHz   | 784   | 40.03       | 10.07     |
| LTE 5MHz   |       |             |           |
| 730.8MHz   | 728   | 39.85       | 9.66      |
| 737.0MHz   | 728   | 39.95       | 9.89      |
| 743.2MHz   | 728   | 39.82       | 9.59      |
| LTE 15MHz  | 1     |             |           |
| 735.8MHz   | 720   | 39.98       | 9.95      |
| 737.0MHz   | 720   | 40.05       | 10.12     |
| 738.2MHz   | 720   | 40.02       | 10.05     |



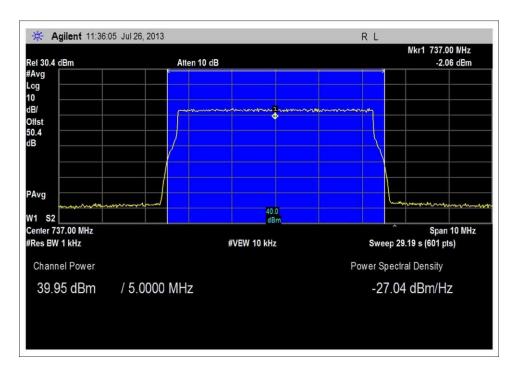



10W, LTE 1.4MHz - Low

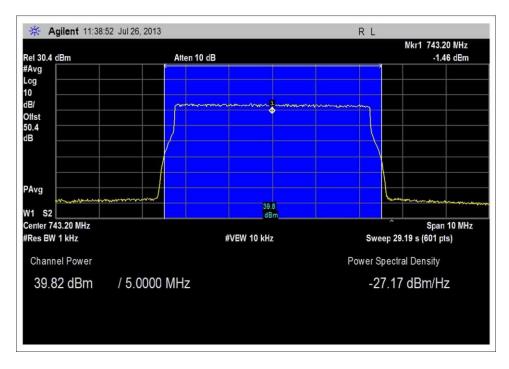



10W, LTE 1.4MHz – Middle



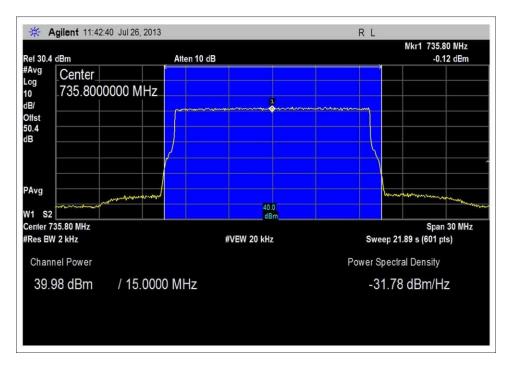



10W, LTE 1.4MHz - High

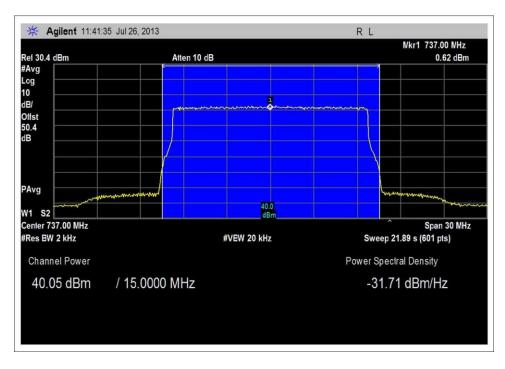



10W, LTE 5MHz - Low



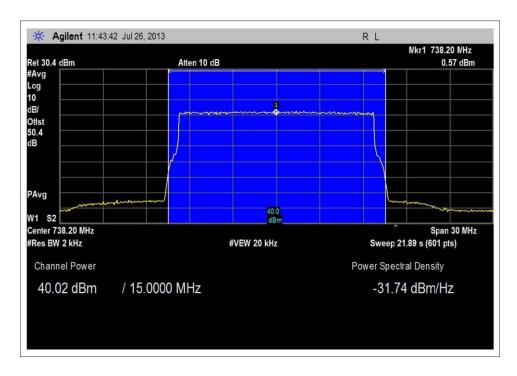



10W, LTE 5MHz - Middle

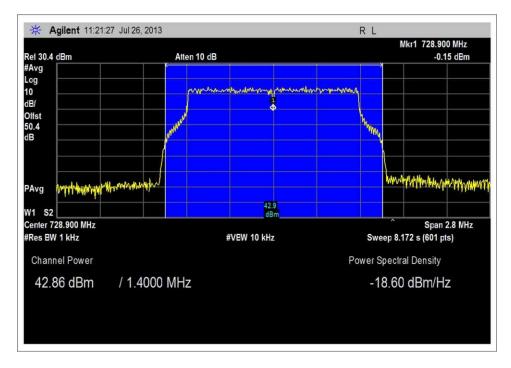



10W, LTE 5MHz – High



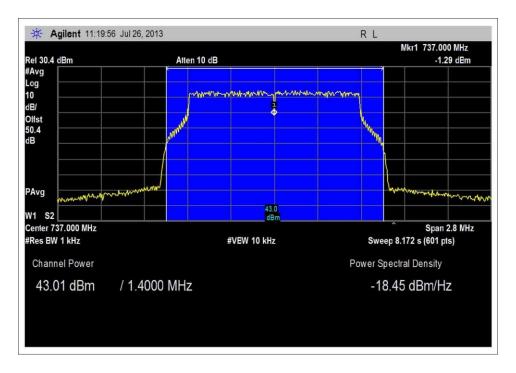



10W, LTE 15MHz - Low

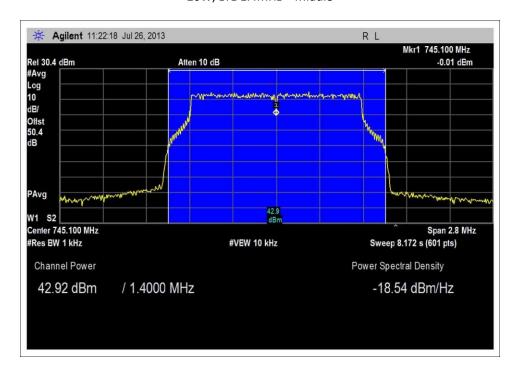



10W, LTE 15MHz - Middle



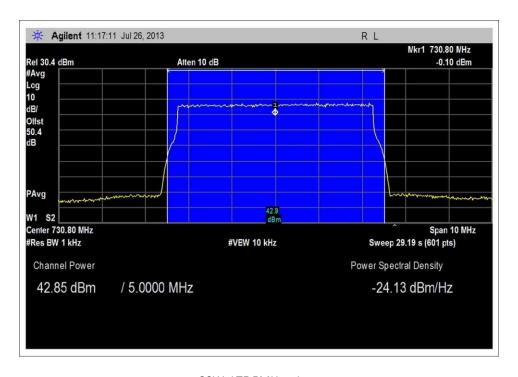



10W, LTE 15MHz - High

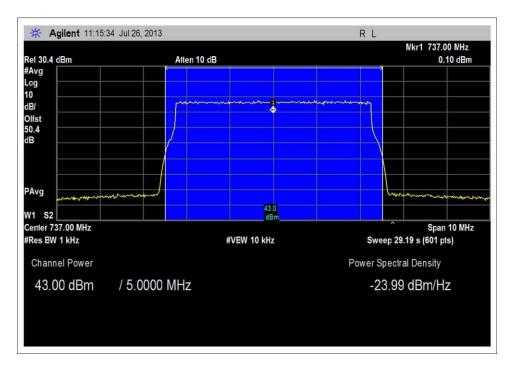



20W, LTE 1.4MHz - Low



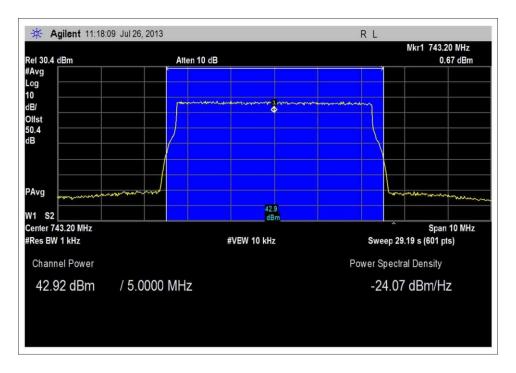



20W, LTE 1.4MHz - Middle

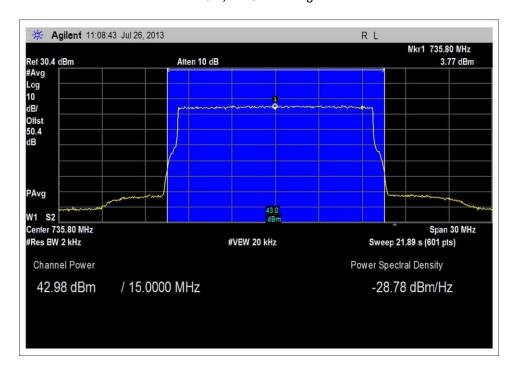



20W, LTE 1.4MHz - High



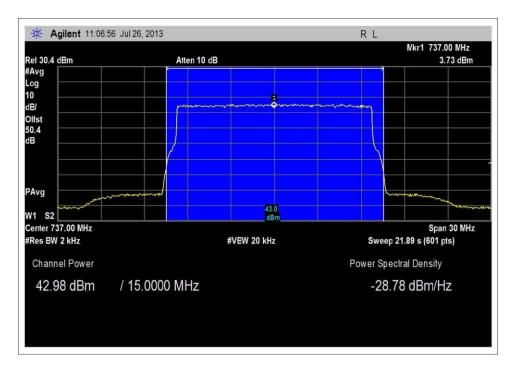



20W, LTE 5MHz - Low

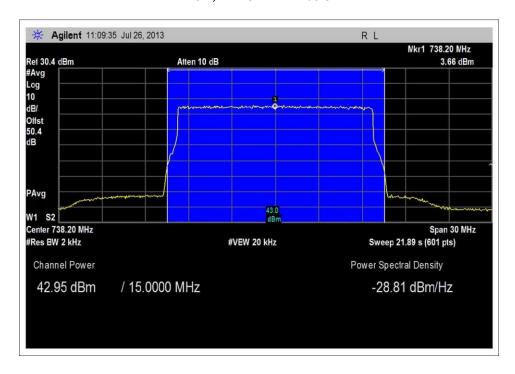



20W, LTE 5MHz - Middle



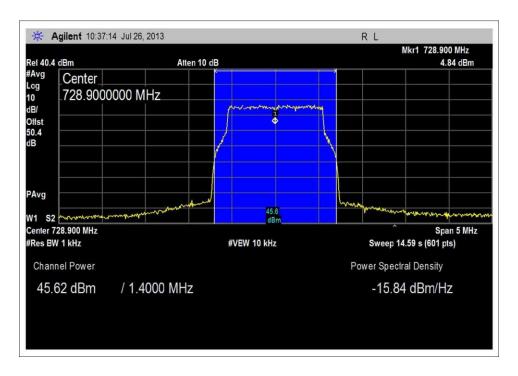



20W, LTE 5MHz - High

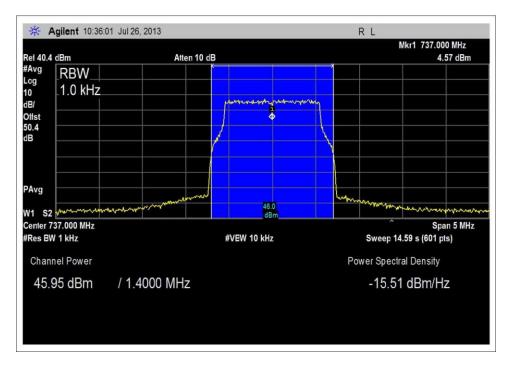



20W, LTE 15MHz - Low



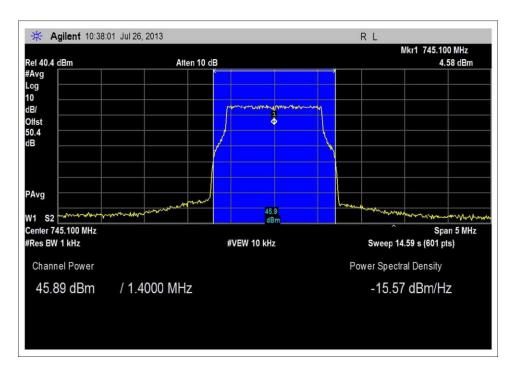



20W, LTE 15MHz – Middle

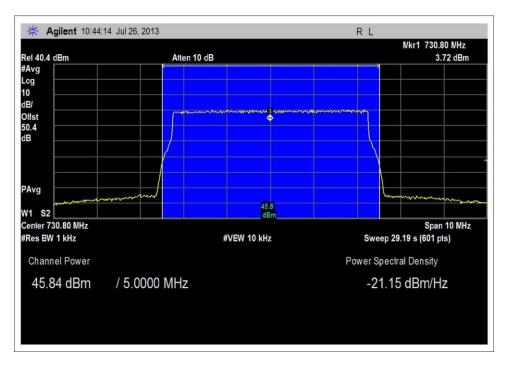



20W, LTE 15MHz - High



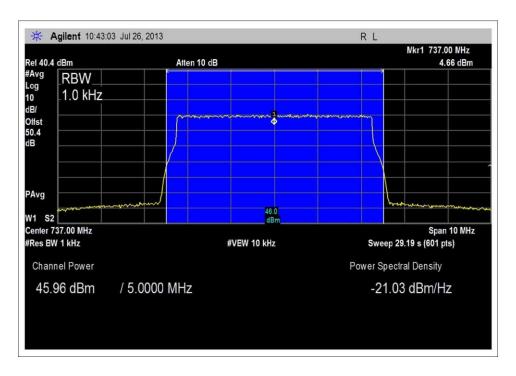



40W, LTE 1.4MHz - Low

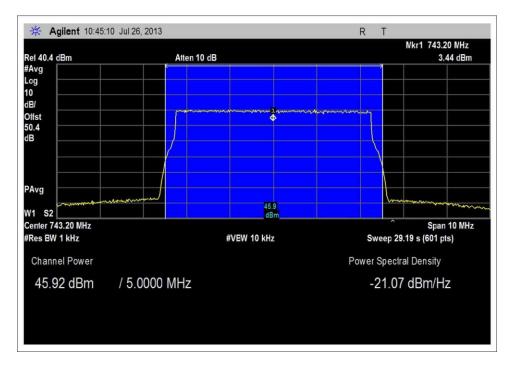



40W, LTE 1.4MHz - Middle



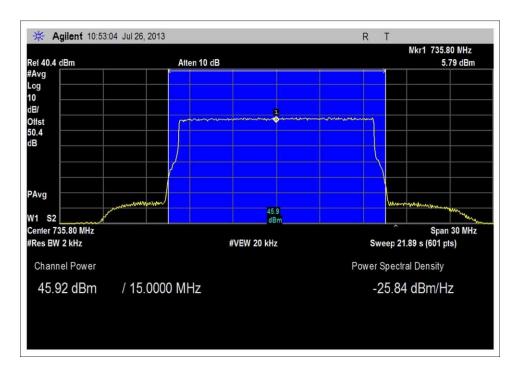



40W, LTE 1.4MHz - High

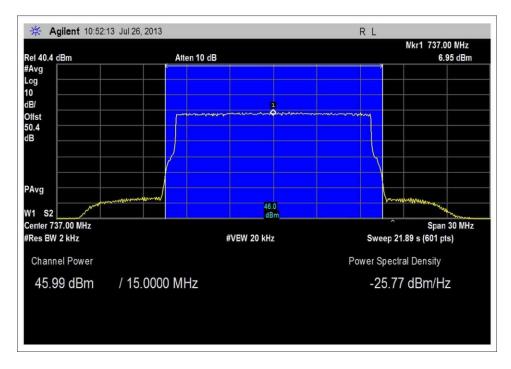



40W, LTE 5MHz - Low



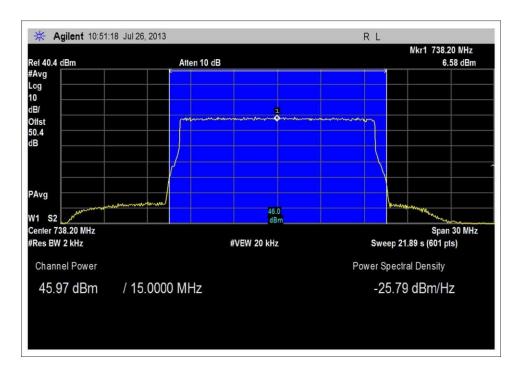



40W, LTE 5MHz – Middle




40W, LTE 5MHz – High






40W, LTE 15MHz - Low



40W, LTE 15MHz - Middle





40W, LTE 15MHz - High

#### **Test Setup Photos**





## FCC 2.1033(c)(14)/2.1049 - Occupied Bandwidth

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: **BTI Wireless** 

Specification: Occupied Bandwidth Input vs Output plot

Work Order #: 94688 Date: 7/26/2013
Test Type: Conducted Emissions Time: 14:18:15
Equipment: 700MHz 40W remote transmitting unit Sequence#: 1

Manufacturer: BTI Wireless Tested By: Don Nguyen Model: mBSC0700-040-RUC11 110V 60Hz

S/N: 070013010001

Test Equipment:

| ID | Asset #  | Description       | Model  | Calibration Date | Cal Due Date |
|----|----------|-------------------|--------|------------------|--------------|
| T1 | AN02869  | Spectrum Analyzer | E4440A | 2/6/2013         | 2/6/2015     |
| T2 | ANP06153 | Cable             | 16301  | 10/27/2011       | 10/27/2013   |

Equipment Under Test (\* = EUT):

| Function           | Manufacturer | Model #            | S/N          |
|--------------------|--------------|--------------------|--------------|
| 700MHz 40W remote  | BTI Wireless | mBSC0700-040-RUC11 | 070013010001 |
| transmitting unit* |              |                    |              |

Support Devices:

| Function          | Manufacturer | Model # | S/N        |
|-------------------|--------------|---------|------------|
| ESG Vector Signal | Agilent      | 4438C   | MY45091601 |
| Generator         |              |         |            |

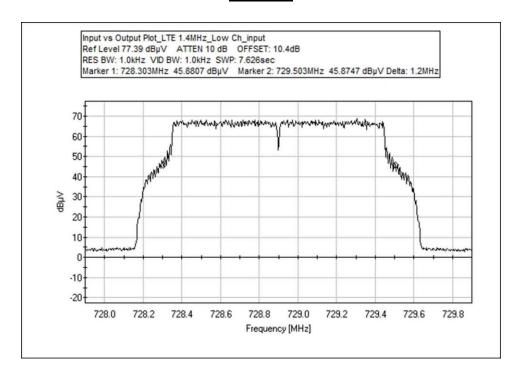
#### Test Conditions / Notes:

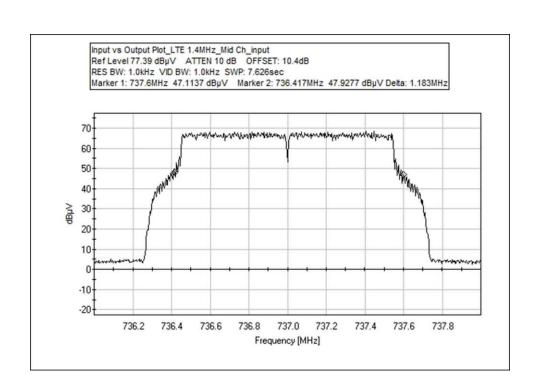
The EUT is placed on the test bench. Tx In is connected to an ESG Signal generator, ANT is connected to a spectrum analyzer and attenuator. RX out port is terminated to 50 ohm load.

Output waveform is recorded with a spectrum analyzer at the Antenna port of the device. Input waveform is recorded with a spectrum analyzer at the RF out of the support ESG.

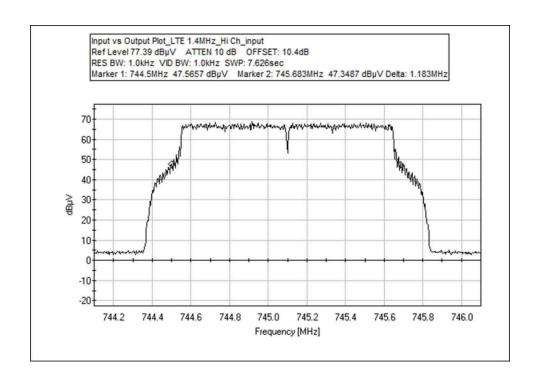
Freq: 728-746MHz

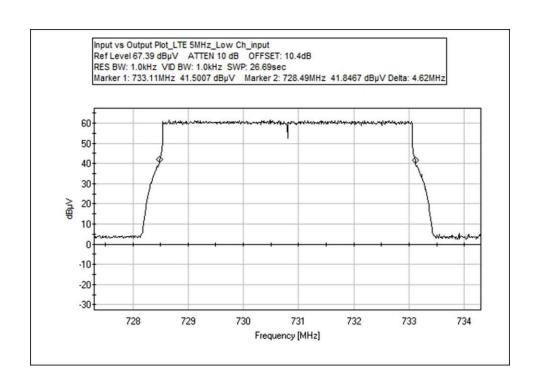
Signal protocol: LTE-TM1.1 1.4MHz, 5MHz. 15MHz


Power: 40 W

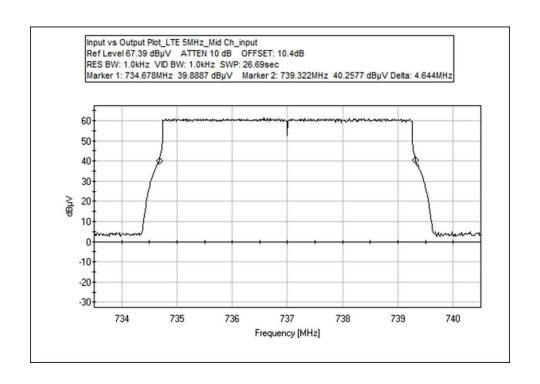

21°C, 47% RH.

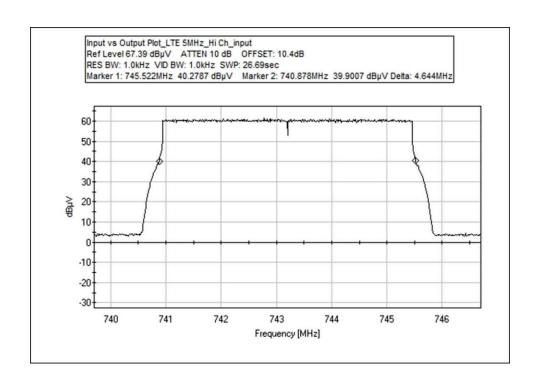
Page 24 of 57 Report No.: 94688-3



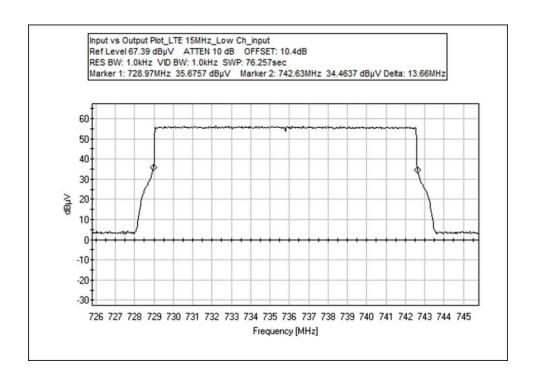


#### **Test Data**

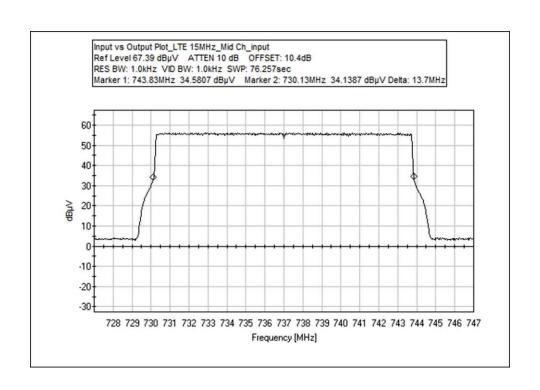




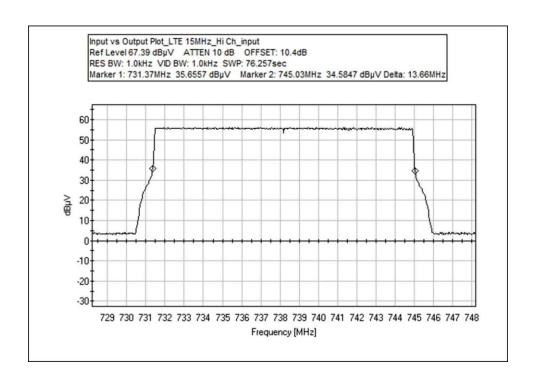



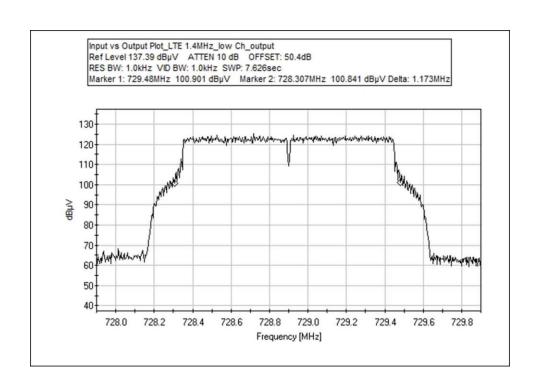


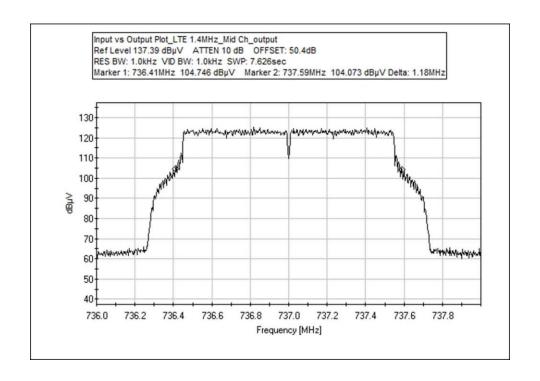



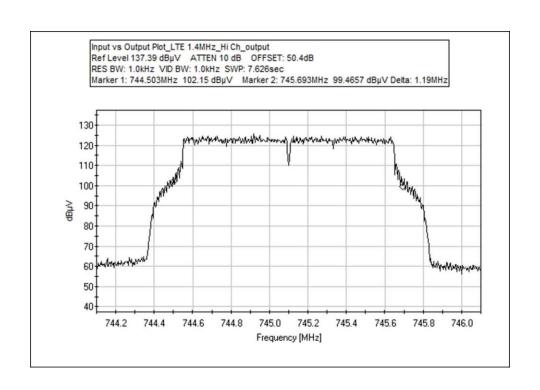


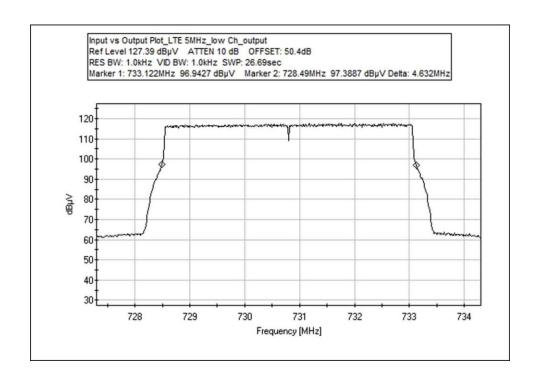



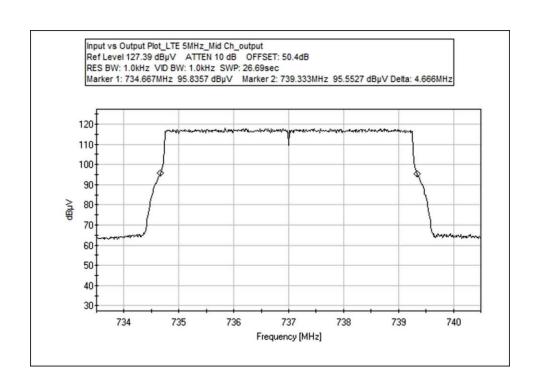


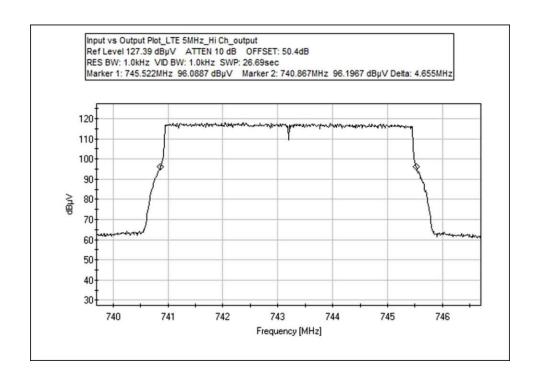



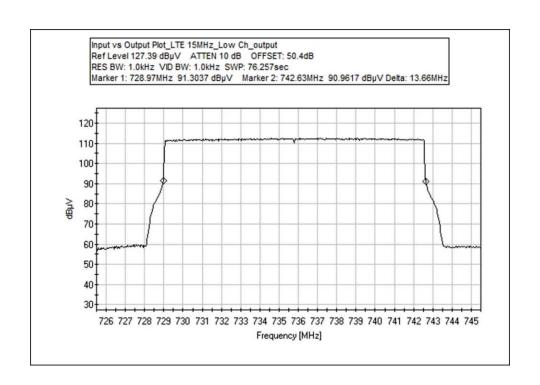


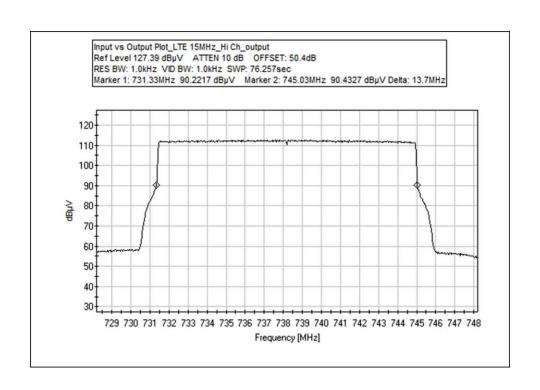



















## Test Setup Photos





# FCC 2.1033(c)(14)/2.1051/27.53(g) - Spurious Emissions at Antenna Terminal

#### **Test Data**

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: BTI Wireless

Specification: FCC Part 27.53(g) Conducted Spurious Emission

 Work Order #:
 94688
 Date: 7/26/2013

 Test Type:
 Conducted Emissions
 Time: 15:55:14

Equipment: **700MHz 40W remote transmitting unit** Sequence#: 3

Manufacturer: BTI Wireless Tested By: Don Nguyen Model: mBSC0700-040-RUC11 110V 60Hz

S/N: 070013010001

#### Test Equipment:

| ID | Asset #  | Description       | Model       | Calibration Date | Cal Due Date |
|----|----------|-------------------|-------------|------------------|--------------|
| T1 | ANP06153 | Cable             | 16301       | 10/27/2011       | 10/27/2013   |
| T2 | AN02869  | Spectrum Analyzer | E4440A      | 2/6/2013         | 2/6/2015     |
| Т3 | AN03169  | High Pass Filter  | HM1155-11SS | 9/22/2011        | 9/22/2013    |

Equipment Under Test (\* = EUT):

| Function           | Manufacturer | Model #            | S/N          |
|--------------------|--------------|--------------------|--------------|
| 700MHz 40W remote  | BTI Wireless | mBSC0700-040-RUC11 | 070013010001 |
| transmitting unit* |              |                    |              |

#### Support Devices:

| Function          | Manufacturer | Model # | S/N        |
|-------------------|--------------|---------|------------|
| ESG Vector Signal | Agilent      | 4438C   | MY45091601 |
| Generator         |              |         |            |

#### Test Conditions / Notes:

The EUT is placed on the test bench. Tx In is connected to an ESG Signal generator, ANT is connected to a spectrum analyzer and attenuator. RX out port is terminated to 50 ohm load.

The evaluation is performed at the antenna port.

Freq: 728-746MHz

Signal protocol: LTE-TM1.1 1.4MHz, 5MHz. 15MHz

The RF output power was measured with the following Automatic level control threshold setting.

Automatic Level Control Threshold: 1616, 1152, 0784

Power: 40W, 20W, 10W

Frequency range of measurement = 9 kHz-8 GHz.

9 kH -150 kHz;RBW=200 Hz,VBW=200 Hz;150 kHz-30 MHz;RBW=9 kHz,VBW=9 kHz;30 MHz-1000 MHz;RBW=120 kHz,VBW=120 kHz,1000 MHz-9000 MHz;RBW=1 MHz,VBW=1 MHz.

21°C, 65% RH

Page 35 of 57 Report No.: 94688-3



#### LIMIT LINE FOR SPURIOUS CONDUCTED EMISSION

#### REQUIRED ATTENUATION = 43+10 LOG P DB

Limit line (dBuV) =  $V_{dBuv}$  - Attenuation

$$V_{\text{dBuV}} = 20 \text{ Log } \frac{V}{1 \times 10^{-6}}$$

$$= 20 \left( \text{Log V} - \text{Log 1 x } 10^{-6} \right)$$

$$= 20 \text{ Log V} - 20 \text{ Log1 x } 10^{-6}$$

$$=$$
 20 Log V  $-$  20  $(-6)$ 

$$= 20 \operatorname{Log} V + 120$$

Attenuation = 43 + 10 Log P

$$= 43 + 10 \operatorname{Log} \frac{V^2}{R}$$

$$= 43 + 10 \left( \text{Log V}^2 - \text{Log R} \right)$$

$$=$$
 43+10(2 Log V - Log R)

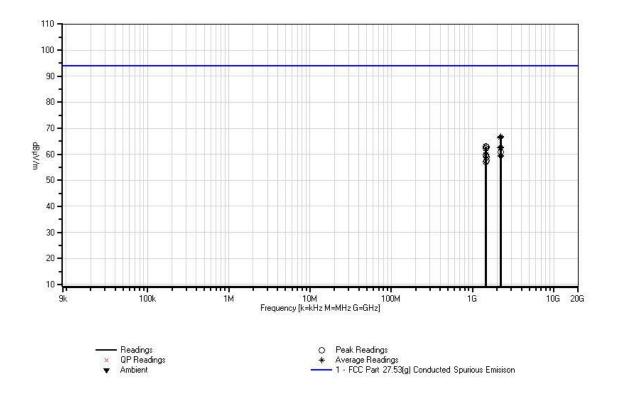
$$=$$
 43 + 20 Log V - 10 Log R

Limit line =  $V_{dBuv}$  - Attenuation

= 
$$120 - 43 + 10 \log 50$$
 Note: R =  $50 \Omega$ 



Ext Attn: 0 dB


|     | attn: 0 aB<br>u <b>rement Data:</b> | Re           | eading lis | ted by ma | rgin  |    |        | Test Lea | d: Ant Port         |             |          |
|-----|-------------------------------------|--------------|------------|-----------|-------|----|--------|----------|---------------------|-------------|----------|
| #   | Freq                                | Rdng         | T1         | T2        | T3    |    | Dist   | Corr     | Spec                | Margin      | Polar    |
|     | MHz                                 | dBμV         | dB         | dB        | dB    | dB | Table  |          | dBμV/m              | dB          | Ant      |
| 1   | 2211.100M                           | 66.0         | +0.5       | +0.0      | +0.3  |    | +0.0   | 66.8     | 94.0                | -27.2       | Ant P    |
|     | Ave                                 |              |            |           |       |    |        |          | LTE 1.4M            |             |          |
|     |                                     |              |            |           |       |    |        |          | Ch, 40W             | ,           |          |
| ^   | 2211.100M                           | 70.4         | +0.5       | +0.0      | +0.3  |    | +0.0   | 71.2     | 94.0                | -22.8       | Ant P    |
|     |                                     |              |            |           |       |    |        |          | LTE 1.4M            | Hz, mid     |          |
|     |                                     |              |            |           |       |    |        |          | Ch, 40W             |             |          |
| 3   | 2235.347M                           | 65.9         | +0.5       | +0.0      | +0.3  |    | +0.0   | 66.7     | 94.0                | -27.3       | Ant P    |
|     | Ave                                 |              |            |           |       |    |        |          | LTE 1.4M            | Hz, hi      |          |
|     |                                     |              |            |           |       |    |        |          | Ch, 40W             |             |          |
| ^   | 2235.310M                           | 70.0         | +0.5       | +0.0      | +0.3  |    | +0.0   | 70.8     | 94.0                | -23.2       | Ant P    |
|     |                                     |              |            |           |       |    |        |          | LTE 1.4M            | Hz, hı      |          |
|     | 2106 750) 5                         |              | 0.5        | 0.0       | 0.2   |    | 0.0    |          | Ch, 40W             | 27.7        | 4 . D    |
| 5   | 2186.750M                           | 65.5         | +0.5       | +0.0      | +0.3  |    | +0.0   | 66.3     | 94.0                | -27.7       | Ant P    |
|     | Ave                                 |              |            |           |       |    |        |          | LTE 1.4M<br>Ch, 40W | nz, Low     |          |
|     | 2186.720M                           | 68.4         | +0.5       | +0.0      | +0.3  |    | +0.0   | 69.2     | 94.0                | -24.8       | Ant P    |
|     | 2100.720W                           | 00.4         | +0.5       | +0.0      | +0.3  |    | +0.0   | 09.2     | LTE 1.4M            |             | Allt     |
|     |                                     |              |            |           |       |    |        |          | Ch, 40W             | ile, Low    |          |
| 7   | 1457.820M                           | 61.9         | +0.5       | +0.0      | +0.6  |    | +0.0   | 63.0     | 94.0                | -31.0       | Ant P    |
| ,   | 1.57.02011                          | 01.7         | 10.5       | 10.0      | 10.0  |    | 10.0   | 05.0     | LTE 1.4M            |             | 7 1111 1 |
|     |                                     |              |            |           |       |    |        |          | Ch, 40W             | ,           |          |
| 8   | 2211.300M                           | 62.1         | +0.5       | +0.0      | +0.3  |    | +0.0   | 62.9     | 94.0                | -31.1       | Ant P    |
|     | Ave                                 |              |            |           |       |    |        |          | LTE 5MHz            | z, Mid      |          |
|     |                                     |              |            |           |       |    |        |          | Ch, 40W             |             |          |
| ^   | 2211.230M                           | 63.5         | +0.5       | +0.0      | +0.3  |    | +0.0   | 64.3     | 94.0                | -29.7       | Ant P    |
|     |                                     |              |            |           |       |    |        |          | LTE 5MH             | z, Mid      |          |
|     |                                     |              |            |           |       |    |        |          | Ch, 40W             |             |          |
| 10  | 1490.230M                           | 61.7         | +0.5       | +0.0      | +0.6  |    | +0.0   | 62.8     | 94.0                | -31.2       | Ant P    |
|     |                                     |              |            |           |       |    |        |          | LTE 1.4M            | Hz, hı      |          |
| 1.1 | 2220 00014                          | <i>c</i> 1.0 | .0.5       | . 0. 0    | .0.2  |    | . 0. 0 | (2.6     | Ch, 40W             | 21.4        | A . D    |
| 11  | 2229.800M                           | 61.8         | +0.5       | +0.0      | +0.3  |    | +0.0   | 62.6     | 94.0<br>LTE 5MH2    | -31.4       | Ant P    |
|     | Ave                                 |              |            |           |       |    |        |          | 40W                 | z, ni Cii,  |          |
|     | 2229.800M                           | 63.3         | +0.5       | +0.0      | +0.3  |    | +0.0   | 64.1     | 94.0                | -29.9       | Ant P    |
|     | 2229.800WI                          | 03.3         | +0.5       | +0.0      | +0.3  |    | +0.0   | 04.1     | LTE 5MH             |             | Allt     |
|     |                                     |              |            |           |       |    |        |          | 40W                 | z, 111 CII, |          |
| 13  | 2193.100M                           | 61.7         | +0.5       | +0.0      | +0.3  |    | +0.0   | 62.5     | 94.0                | -31.5       | Ant P    |
|     | Ave                                 | J1.,         | . 0.2      | . 0.0     | . 0.2 |    | . 0.0  | 02.0     | LTE 5MHz            |             | 1        |
|     |                                     |              |            |           |       |    |        |          | Ch, 40W             | •           |          |
| ^   | 2193.100M                           | 63.2         | +0.5       | +0.0      | +0.3  |    | +0.0   | 64.0     | 94.0                | -30.0       | Ant P    |
|     |                                     |              |            |           |       |    |        |          | LTE 5MH             | z, Low      |          |
|     |                                     |              |            |           |       |    |        |          | Ch, 40W             |             |          |
| 15  | 1474.100M                           | 61.1         | +0.5       | +0.0      | +0.6  |    | +0.0   | 62.2     | 94.0                | -31.8       | Ant P    |
|     |                                     |              |            |           |       |    |        |          | LTE 1.4M            | Hz, mid     |          |
|     |                                     | <u> </u>     |            |           |       |    |        |          | Ch, 40W             |             |          |
| 16  | 2215.400M                           | 60.1         | +0.5       | +0.0      | +0.3  |    | +0.0   | 60.9     | 94.0                | -33.1       | Ant P    |
|     |                                     |              |            |           |       |    |        |          | LTE 15MF            | 1Z, H1      |          |
|     |                                     |              |            |           |       |    |        |          | Ch, 40W             |             |          |



| 17 | 1474.030M        | 58.7 | +0.5 | +0.0 | +0.6 | +0.0 | 59.8 | 94.0 -34.2<br>LTE 5MHz, Mid<br>Ch, 40W  | Ant P |
|----|------------------|------|------|------|------|------|------|-----------------------------------------|-------|
| 18 | 2212.300M<br>Ave | 58.7 | +0.5 | +0.0 | +0.3 | +0.0 | 59.5 | 94.0 -34.5<br>LTE 15MHz, Mid<br>Ch, 40W | Ant P |
| ^  | 2212.300M        | 60.2 | +0.5 | +0.0 | +0.3 | +0.0 | 61.0 | 94.0 -33.0<br>LTE 15MHz, Mid<br>Ch, 40W | Ant P |
| 20 | 2215.700M<br>Ave | 58.7 | +0.5 | +0.0 | +0.3 | +0.0 | 59.5 | 94.0 -34.5<br>LTE 15MHz, Hi<br>Ch, 40W  | Ant P |
| 21 | 1461.700M        | 58.3 | +0.5 | +0.0 | +0.6 | +0.0 | 59.4 | 94.0 -34.6<br>LTE 5MHz, Low<br>Ch, 40W  | Ant P |
| 22 | 2208.800M<br>Ave | 58.4 | +0.5 | +0.0 | +0.3 | +0.0 | 59.2 | 94.0 -34.8<br>LTE 15MHz, Low<br>Ch, 40W | Ant P |
| ^  | 2208.800M        | 59.9 | +0.5 | +0.0 | +0.3 | +0.0 | 60.7 | 94.0 -33.3<br>LTE 15MHz, Low<br>Ch, 40W | Ant P |
| 24 | 1486.630M        | 57.8 | +0.5 | +0.0 | +0.6 | +0.0 | 58.9 | 94.0 -35.1<br>LTE 5MHz, Hi Ch,<br>40W   | Ant P |
| 25 | 1476.400M        | 56.5 | +0.5 | +0.0 | +0.6 | +0.0 | 57.6 | 94.0 -36.4<br>LTE 15MHz, Hi<br>Ch, 40W  | Ant P |
| 26 | 1475.500M        | 56.4 | +0.5 | +0.0 | +0.6 | +0.0 | 57.5 | 94.0 -36.5<br>LTE 15MHz, Mid<br>Ch, 40W | Ant P |
| 27 | 1472.100M        | 55.9 | +0.5 | +0.0 | +0.6 | +0.0 | 57.0 | 94.0 -37.0<br>LTE 15MHz, Low<br>Ch, 40W | Ant P |



Date: 7/26/2013 Time: 15:55:14 BTI Wireless WO#: 94688 FCC Part 27:53(g) Conducted Spurious Emisison Test Lead: Ant Port 110V 60Hz Sequence#: 3 Ext ATTN: 0 dB









# FCC 2.1033(c)(14)/2.1053/27C - Field Strength of Spurious Radiation

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: **BTI Wireless** 

Specification: FCC 27.53 (g) Radiated Spurious Emission

Work Order #: 94688 Date: 7/29/2013 Test Type: **Maximized Emissions** Time: 09:39:27

Equipment: 700MHz 40W remote transmitting unit Sequence#: 4 Tested By: Don Nguyen

Manufacturer: **BTI** Wireless mBSC0700-040-RUC11 Model:

S/N: 070013010001

#### Test Equipment:

| ID | Asset #  | Description        | Model         | Calibration Date | Cal Due Date |
|----|----------|--------------------|---------------|------------------|--------------|
|    | AN00309  | Preamp             | 8447D         | 3/29/2012        | 3/29/2014    |
|    | AN01995  | Biconilog Antenna  | CBL6111C      | 5/16/2012        | 5/16/2014    |
|    | ANP05050 | Cable              | RG223/U       | 1/21/2013        | 1/21/2015    |
|    | ANP05198 | Cable-Amplitude 15 | 8268          | 12/11/2012       | 12/11/2014   |
|    |          | to 45degC (dB)     |               |                  |              |
|    | AN00314  | Loop Antenna       | 6502          | 6/29/2012        | 6/29/2014    |
| T1 | AN02869  | Spectrum Analyzer  | E4440A        | 2/6/2013         | 2/6/2015     |
| T2 | AN00787  | Preamp             | 83017A        | 5/31/2013        | 5/31/2015    |
| Т3 | AN00849  | Horn Antenna       | 3115          | 4/13/2012        | 4/13/2014    |
| T4 | ANP05421 | Cable              | Sucoflex 104A | 2/8/2012         | 2/8/2014     |
| T5 | ANP05988 | Cable              | LDF1-50       | 3/12/2012        | 3/12/2014    |
| T6 | ANP06153 | Cable              | 16301         | 10/27/2011       | 10/27/2013   |

Equipment Under Test (\* = EUT):

| Function           | Manufacturer | Model #            | S/N          |  |
|--------------------|--------------|--------------------|--------------|--|
| 700MHz 40W remote  | BTI Wireless | mBSC0700-040-RUC11 | 070013010001 |  |
| transmitting unit* |              |                    |              |  |

Support Devices:

| Function          | Manufacturer | Model #  | S/N        |
|-------------------|--------------|----------|------------|
| ESG Vector Signal | Agilent      | 4438C    | MY45091601 |
| Generator         |              |          |            |
| Power Meter       | HP           | EPM-441A | GB37170458 |
| Power Sensor      | Agilent      | E4412A   | MY41502826 |

Page 41 of 57 Report No.: 94688-3



#### Test Conditions / Notes:

The EUT is installed on an open rack to simulating final installation, and placed on the wooden table. Tx In is connected to a remotely located ESG. ANT is connected to a power meter for verification of output power level. RX out port is terminated to 50 ohm load.

Freq: 728-746MHz

Signal protocol: LTE-TM1.1\_1.4MHz Power: 40W (Max rated power)

LTE-TM1.1\_1.4MHz 728.9MHz, 737.0MHz, 745.1MHz

Frequency range of measurement = 9 kHz-8 GHz.

9 kH -150 kHz;RBW=200 Hz,VBW=200 Hz;150 kHz-30 MHz;RBW=9 kHz,VBW=9 kHz;30 MHz-1000 MHz;RBW=120 kHz,VBW=120 kHz,1000 MHz-9000 MHz;RBW=1 MHz,VBW=1 MHz.

21°C, 47% RH

RMS detector.

#### **Test Data**

Operating Frequency: 728-746MHz

Channels: LTE-TM1.1 1.4MHz

Highest Measured Output Power: 46.00 (dBm)= 40 (Watts)

Distance:  $\frac{3}{43+10\text{Log(P)}=}$  meters Limit:  $\frac{3}{43+10\text{Log(P)}=}$  59.02 dBc

| Freq.    | Reference Lev | -           | -       |
|----------|---------------|-------------|---------|
| (MHz)    | (dBm)         | Polarity (H | /V) dBc |
| 1,457.80 | -55.12059991  | Vert        | 101.12  |
| 1,474.00 | -56.32059991  | Vert        | 102.32  |
| 2,211.00 | -55.02059991  | Vert        | 101.02  |
| 2,186.70 | -56.12059991  | Vert        | 102.12  |
| 1,490.20 | -56.82059991  | Vert        | 102.82  |
| 2,235.30 | -57.22059991  | Vert        | 103.22  |
| 1,490.20 | -55.42059991  | Horiz       | 101.42  |
| 2,235.30 | -55.92059991  | Horiz       | 101.92  |
| 1,474.00 | -57.22059991  | Horiz       | 103.22  |
| 2,211.00 | -57.92059991  | Horiz       | 103.92  |
| 1,457.80 | -55.82059991  | Horiz       | 101.82  |
| 2,186.70 | -56.22059991  | Horiz       | 102.22  |

Page 42 of 57 Report No.: 94688-3









# **Band Edge**

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: **BTI Wireless**Specification: **Band edge plot** 

Work Order #: 94688 Date: 7/26/2013
Test Type: Conducted Emissions Time: 14:18:15
Equipment: 700MHz 40W remote transmitting unit Sequence#: 1

Manufacturer:BTI WirelessTested By:Don NguyenModel:mBSC0700-040-RUC11110V 60Hz

S/N: 070013010001

Test Equipment:

| ID | Asset #  | Description       | Model  | Calibration Date | Cal Due Date |
|----|----------|-------------------|--------|------------------|--------------|
| T1 | AN02869  | Spectrum Analyzer | E4440A | 2/6/2013         | 2/6/2015     |
| T2 | ANP06153 | Cable             | 16301  | 10/27/2011       | 10/27/2013   |

Equipment Under Test (\* = EUT):

| Equipment Citate Test ( | 201).        |                    |              |
|-------------------------|--------------|--------------------|--------------|
| Function                | Manufacturer | Model #            | S/N          |
| 700MHz 40W remote       | BTI Wireless | mBSC0700-040-RUC11 | 070013010001 |
| transmitting unit*      |              |                    |              |

Support Devices:

| Function          | Manufacturer | Model # | S/N        |
|-------------------|--------------|---------|------------|
| ESG Vector Signal | Agilent      | 4438C   | MY45091601 |
| Generator         |              |         |            |

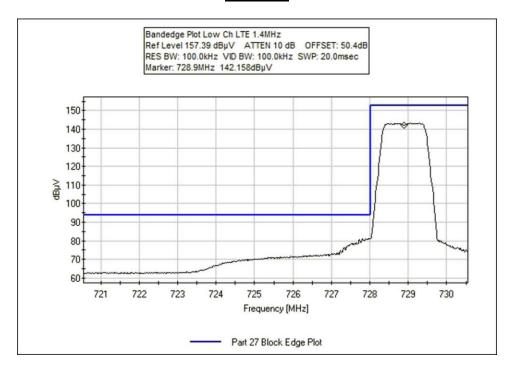
#### Test Conditions / Notes:

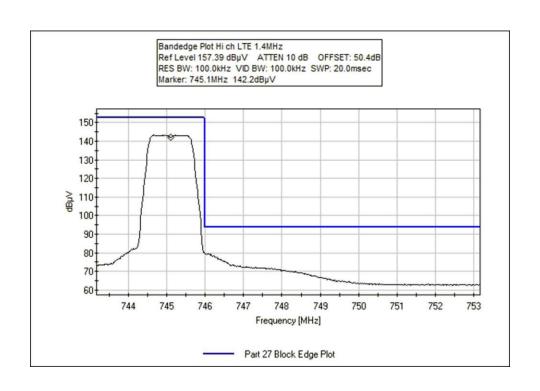
The EUT is placed on the test bench. Tx In is connected to an ESG Signal generator, ANT is connected to a spectrum analyzer and attenuator. RX out port is terminated to 50 ohm load.

The evaluation is performed at the antenna port.

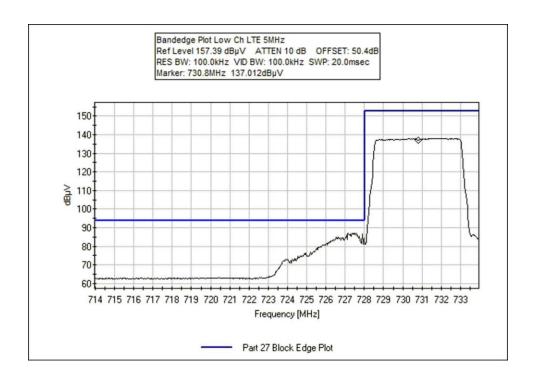
Freq: 728-746MHz

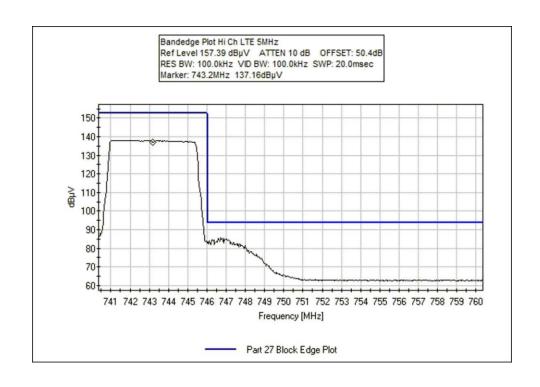
Signal protocol: LTE-TM1.1 1.4MHz, 5MHz, 15MHz


Power: 40W

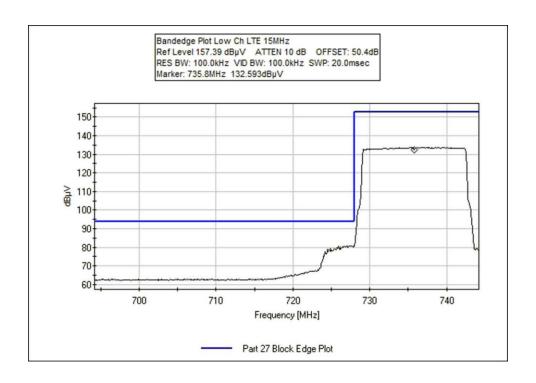

21°C, 47% RH.

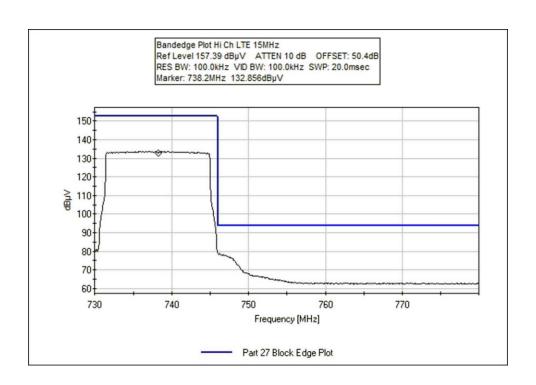
Page 44 of 57 Report No.: 94688-3





### **Test Data**






















### Intermodulation

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: BTI Wireless
Specification: Intermodulation

Work Order #: 94688 Date: 7/26/2013
Test Type: Conducted Emissions Time: 15:55:14
Equipment: 800MHz 40W remote transmitting unit Sequence#: 3

Manufacturer: BTI Wireless Tested By: Don Nguyen Model: mBSC0700-040-RUC11 110V 60Hz

S/N: 070013010001

Test Equipment:

| ID | Asset #  | Description       | Model  | Calibration Date | Cal Due Date |
|----|----------|-------------------|--------|------------------|--------------|
| T1 | AN02869  | Spectrum Analyzer | E4440A | 2/6/2013         | 2/6/2015     |
| T2 | ANP06153 | Cable             | 16301  | 10/27/2011       | 10/27/2013   |

#### *Equipment Under Test* (\* = EUT):

| Function           | Manufacturer | Model #            | S/N          |
|--------------------|--------------|--------------------|--------------|
| 700MHz 40W remote  | BTI Wireless | mBSC0700-040-RUC11 | 070013010001 |
| transmitting unit* |              |                    |              |

Support Devices:

| Function                       | Manufacturer | Model # | S/N        |
|--------------------------------|--------------|---------|------------|
| ESG Vector Signal<br>Generator | Agilent      | 4438C   | MY45091601 |
| ESG Vector Signal<br>Generator | Agilent      | 4438C   | MY45092055 |

### Test Conditions / Notes:

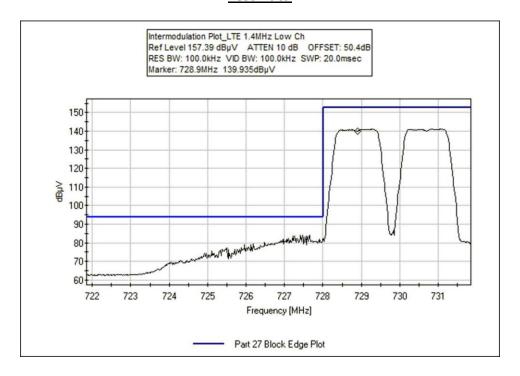
The EUT is placed on the test bench. Tx In is connected to two ESGs via a power combiner. ANT is connected to a spectrum analyzer and attenuator. RX out port is terminated to 50 ohm load.

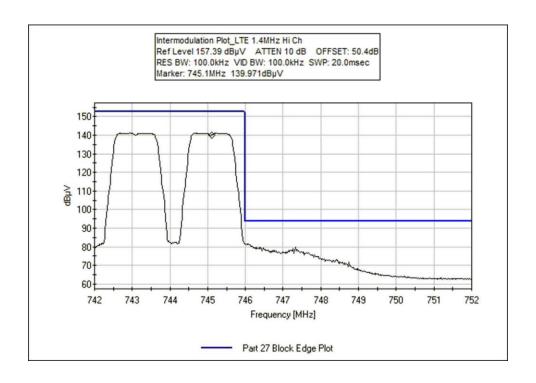
The evaluation is performed at the antenna port.

Freq: 728-746MHz

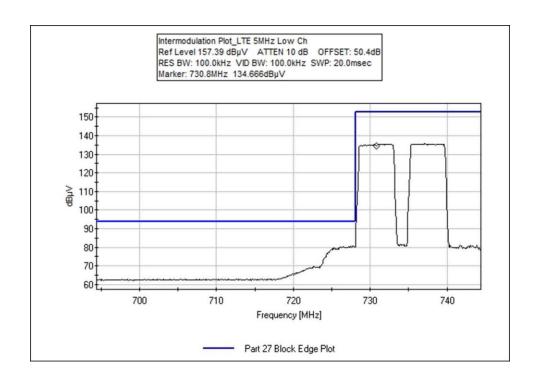
Signal protocol: LTE-TM1.1 1.4MHz, 5MHz, 15MHz

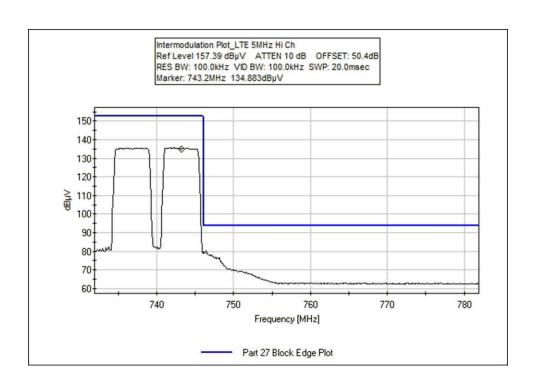
Input signal levels were set to produce maximum rated RF output power.


Power: 40 W


21°C, 47% RH

Page 49 of 57 Report No.: 94688-3





### **Test Data**

















# **Out of Band Rejection**

Test Location: Brea

Customer: BTI Wireless

Specification: Out of band rejection plot

 Work Order #:
 94688
 Date: 7/25/2013

 Test Type:
 Conducted Emissions
 Time: 16:47:52

Equipment: 700MHz 40W remote transmitting unit Sequence#: 4

Manufacturer: BTI Wireless Tested By: E. Wong Model: mBSC0700-040-RUC11 110V 60Hz

S/N: 070013010001

#### Test Equipment:

| ID | Asset # | Description      | Model | Calibration Date | Cal Due Date |
|----|---------|------------------|-------|------------------|--------------|
|    | C00054  | Network Analyzer | 8753E | 9/12/08          | 9/12/10      |
|    |         | _                |       |                  |              |

#### *Equipment Under Test* (\* = EUT):

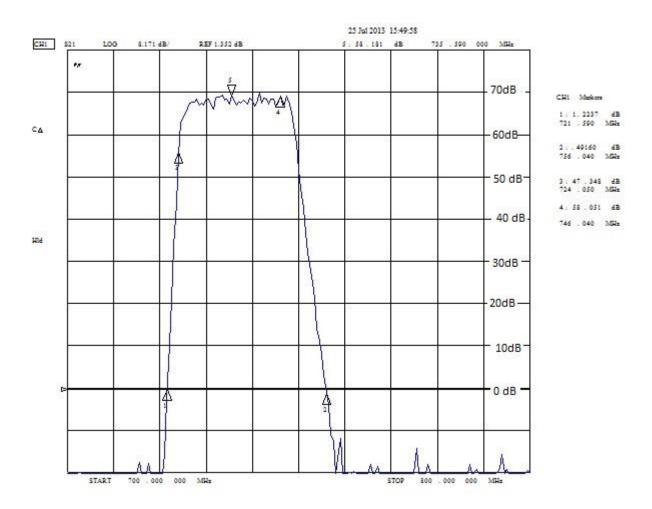
| <u> </u>           | ,            |                    |              |
|--------------------|--------------|--------------------|--------------|
| Function           | Manufacturer | Model #            | S/N          |
| 700MHz 40W remote  | BTI Wireless | mBSC0700-040-RUC11 | 070013010001 |
| transmitting unit* |              |                    |              |

#### Test Conditions / Notes:

The EUT is placed on the test bench. Tx In is connected to Port 1 of the Network Analyzer. ANT is connected Port 2 of the Network Analyzer via an attenuator. RX out port is terminated to 50 ohm load.

The evaluation is performed at the antenna port.

Freq: 728-746MHz Power: 40W


Frequency range of measurement = 700 - 800 MHz

21°C, 47% RH

Page 53 of 57 Report No.: 94688-3



### **Test Data**









# SUPPLEMENTAL INFORMATION

# **Measurement Uncertainty**

| Uncertainty Value | Parameter                 |  |
|-------------------|---------------------------|--|
| 4.73 dB           | Radiated Emissions        |  |
| 3.34 dB           | Mains Conducted Emissions |  |
| 3.30 dB           | Disturbance Power         |  |

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

### **Emissions Test Details**

#### **TESTING PARAMETERS**

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### **CORRECTION FACTORS**

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $dB\mu V/m$ , the spectrum analyzer reading in  $dB\mu V$  was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 56 of 57 Report No.: 94688-3



| SAMPLE CALCULATIONS |                     |          |  |  |
|---------------------|---------------------|----------|--|--|
|                     | Meter reading       | (dBμV)   |  |  |
| +                   | Antenna Factor      | (dB)     |  |  |
| +                   | Cable Loss          | (dB)     |  |  |
| -                   | Distance Correction | (dB)     |  |  |
| -                   | Preamplifier Gain   | (dB)     |  |  |
| =                   | Corrected Reading   | (dBµV/m) |  |  |

#### TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE |                     |                  |                   |  |  |
|------------------------------------------------------------|---------------------|------------------|-------------------|--|--|
| TEST                                                       | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |  |  |
| CONDUCTED EMISSIONS                                        | 150 kHz             | 30 MHz           | 9 kHz             |  |  |
| RADIATED EMISSIONS                                         | 9 kHz               | 150 kHz          | 200 Hz            |  |  |
| RADIATED EMISSIONS                                         | 150 kHz             | 30 MHz           | 9 kHz             |  |  |
| RADIATED EMISSIONS                                         | 30 MHz              | 1000 MHz         | 120 kHz           |  |  |
| RADIATED EMISSIONS                                         | 1000 MHz            | >1 GHz           | 1 MHz             |  |  |

#### SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

#### Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

#### **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

#### **Average**

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 57 of 57 Report No.: 94688-3