

Test report No.

: 11145757H-B-R1

Page

: 1 of 16

Issued date FCC ID

: August 22, 2016 : WAZSKEA7D02

RADIO TEST REPORT

Test Report No.: 11145757H-B-R1

Applicant

Mitsubishi Electric Corporation Himeji Works

Type of Equipment

Smart Keyless System (Hand Unit)

Model No.

SKEA7D-02

Test regulation

FCC Part 15 Subpart C: 2016

FCC ID

WAZSKEA7D02

Test Result

Complied

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- This report is a revised version of 11145757H-B. 11145757H-B is replaced with this report.

Date of test:

May 15 and 16, 2016

Representative test engineer:

Keisuke Kawamura

Engineer

Consumer Technology Division

Approved by:

Engineer

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://japan.ul.com/resources/emc accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone Facsimile

: +81 596 24 8999

: +81 596 24 8124

 Test report No.
 : 11145757H-B-R1

 Page
 : 2 of 16

 Issued date
 : August 22, 2016

 FCC ID
 : WAZSKEA7D02

REVISION HISTORY

Original Test Report No.: 11145757H-B

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11145757H-B	July 5, 2016	-	-
1	11145757H-B-R1	August 22, 2016	P.8	Addition of the following sentences in Clause 4.1; *2) Hand Unit has two functions; Smart keyless function and Normal keyless function (Hand Unit function). The difference of these functions is the gap of operation timing. There is no difference in Output power of these functions (It was confirmed in pre check.). Therefore the test was performed with Normal keyless function.
1	11145757H-B-R1	August 22, 2016	P.9	Addition of test condition [For above 1GHz]
1	11145757H-B-R1	August 22, 2016	P.12	Deletion of "(Refer to Duty factor data sheet)"

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.
Page

: 11145757H-B-R1

: WAZSKEA7D02

Issued date FCC ID

: 3 of 16 : August 22, 2016

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)......12

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11145757H-B-R1 Page : 4 of 16

Issued date : August 22, 2016 FCC ID : WAZSKEA7D02

SECTION 1: Customer information

Company Name : Mitsubishi Electric Corporation Himeji works Address : 840 Chiyoda-machi Himeji Hyogo, 670-8677, Japan

Telephone Number : +81-79-298-7363 Facsimile Number : +81-79-298-9929 Contact Person : Shinichi Furuta

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Smart Keyless System (Hand Unit)

Model No. : SKEA7D-02 Serial No. : Refer to Clause 4.2

Rating : DC 3.0V Receipt Date of Sample : May 12, 2016 Country of Mass-production : Thailand

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: SKEA7D-02 (referred to as the EUT in this report) is the Smart Keyless System (Hand Unit). The clock frequency of EUT is 27.6 MHz (Crystal).

Radio Specification

RF Part

Equipment Type : Transmitter
Frequency band : 315 MHz
Type of modulation : ASK
Bandwidth : 2.5 kHz
Antenna Type : PCB Pattern
Method of Frequency Generation : Crystal
Operating voltage (inner) : DC +3.0 V

LF Part *

Type of Receiver : Receiver
Frequency of operation : 125 kHz
Antenna Type : Inductive
Method of Frequency Generation : Crystal
Operating voltage (inner) : DC +3.0 V

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The test of receiver part was performed separately from this test report, and the conformability is confirmed. LF Part test report No. 11145757H-D (FCC15B).

Test report No. : 11145757H-B-R1

Page : 5 of 16

Issued date : August 22, 2016 FCC ID : WAZSKEA7D02

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC part 15 final revised on April 6, 2016.

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66 - 40.70MHz

and above 70MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods IC: RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	-N/A	N/A *1)	-
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods IC: -	FCC: Section 15.231(a)(1) IC: RSS-210 A1.1.1	N/A	Complied	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 6 Standard test methods IC: RSS-Gen 6.12	FCC: Section 15.231(b) IC: RSS-210 A1.1.2	4.0 dB 315 MHz Horizontal, PK with Duty factor	Complied	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods IC: RSS-Gen 6.13	FCC: Section 15.205 Section 15.209 Section 15.231(b) IC: RSS-210 A1.1.2, 2.5.1 RSS-Gen 8.9	4.6 dB 2835 MHz Vertical, PK with Duty factor	Complied	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods IC: -	FCC: Section 15.231(c) IC: Reference data	N/A	Complied	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) The test is not applicable since the EUT does not have AC Mains.

FCC 15.31 (e)

This test was performed with the New Battery (DC 3.0 V) during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Also the EUT complies with FCC Part 15 Subpart B.

Test report No. : 11145757H-B-R1

Page : 6 of 16

Issued date : August 22, 2016 FCC ID : WAZSKEA7D02

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied Bandwidth	IC: RSS-Gen 6.6	IC: RSS-210 A1.1.3	N/A	Complied	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test distance	Radiated emission $(\underline{+}dB)$			
	9 kHz - 30 MHz			
3m	3.8 dB			
10m	3.7 dB			

^{*}Measurement distance

	Radiated emission (Below 1GHz)					
Polarity	(3 m*)(<u>+</u> dB)	(10 m*)(<u>+</u> dB)			
1 Glarity	30 – 200 MHz	200 – 1000MHz	30 – 200 MHz	200 – 1000MHz		
Horizontal	4.9 dB	5.2 dB	4.9 dB	5.0 dB		
Vertical	4.6 dB	5.9 dB	5.0 dB	5.0 dB		

Radiated emission						
(3 m*)	(<u>+</u> dB)	$(1 \text{ m*})(\underline{+}\text{dB})$	$(0.5 \text{ m*})(\underline{+}dB)$	(10 m*)(<u>+</u> dB)		
1 – 6GHz	6 – 18GHz	10 – 26.5 GHz	26.5 – 40GHz	1 -18 GHz		
5.1 dB	5.3 dB	5.1 dB	5.1 dB	5.3 dB		

^{*} Measurement distance

Radiated emission test(3 m)

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11145757H-B-R1

Page : 7 of 16

Issued date : August 22, 2016 FCC ID : WAZSKEA7D02

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

	IC Registration	Width x Depth x	Size of	Other
	Number	Height (m)	reference ground plane (m) / horizontal conducting plane	rooms
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	4.0 x 4.5 x 2.7m	4.0 x 4.5 m	-
No.6 measurement room	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	8.0 x 4.6 x 2.8m	2.4 x 2.4m	-
No.11 measurement room	-	6.2 x 4.7 x 3.0m	4.8 x 4.6m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up.

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11145757H-B-R1
Page : 8 of 16
Issued date : August 22, 2016

issued date : August 22, 2016 FCC ID : WAZSKEA7D02

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

Test Item*	Mode
Automatically Deactivate	Normal use mode 315 MHz
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx) 315 MHz *1), *2)
Electric Field Strength of Spurious Emission	
-20dB & 99% Occupied Bandwidth	
Duty Cycle	

^{*} The system was configured in typical fashion (as a customer would normally use it) for testing.

End users cannot change the settings of the output power of the product.

The difference of these functions is the gap of operation timing.

There is no difference in Output power of these functions (It was confirmed in pre check.).

Therefore the test was performed with Normal keyless function.

4.2 Configuration and peripherals

Α

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	Smart Keyless System	SKEA7D-02	20160511-T1 (No.6) *1)	Mitsubishi Electric	EUT
	(Hand Unit)		20160511-T2 (No.14) *2)	Corporation Himeji	
				works	

^{*1)} Used for Transmitting mode.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The software of this mode is the same as one of normal product, except that EUT continues to transmit when transmitter button is being pressed (For Normal use mode, EUT stops to transmit in a given time, even if transceiver button is being pressed.)

^{*2)} Hand Unit has two functions; Smart keyless function and Normal keyless function (Hand Unit function).

^{*} Test data was taken under worse case conditions.

^{*2)} Used for Normal use mode.

Test report No. : 11145757H-B-R1
Page : 9 of 16
Issued date : August 22, 2016
FCC ID : WAZSKEA7D02

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

[For below 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in Appendix 3.

[Transmitting mode]

(Below 30 MHz)

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

(Above 30 MHz)

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance of 3 m.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	Above 1 GHz
Detector Type	Peak	Peak	Peak	Peak	Peak and Peak with Duty factor	Peak and Peak with Duty factor
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz, VBW: 3 MHz

⁻ The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

Measurement range : 9 kHz - 3.2 GHz
Test data : APPENDIX
Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The result is rounded off to the second decimal place, so some differences might be observed.

Test report No. : 11145757H-B-R1
Page : 10 of 16
Issued date : August 22, 2016
FCC ID : WAZSKEA7D02

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	300 kHz	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak *1)	Max Hold	Spectrum Analyzer
Bandwidth	emission skirts	of OBW	of RBW			*1)	
*1\Th							

^{*1)} The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %.

Peak hold was applied as Worst-case measurement.

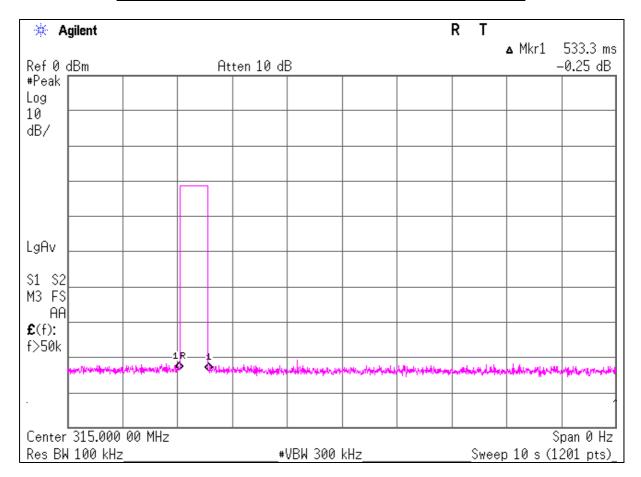
Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11145757H-B-R1
Page : 11 of 16
Issued date : August 22, 2016
FCC ID : WAZSKEA7D02


APPENDIX 1: Test data

Automatically deactivate

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11145757H
Date 05/15/2016
Temperature/ Humidity 22 deg. C / 48% RH
Engineer Keisuke Kawamura
Mode Normal use mode 315MHz

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.5333	5.00	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11145757H-B-R1
Page : 12 of 16
Issued date : August 22, 2016
FCC ID : WAZSKEA7D02

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11145757H Date 05/16/2016

Temperature/ Humidity
Engineer
Mode

24 deg. C / 62% RH
Keisuke Kawamura
Transmitting mode 315MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[dB]		Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
315.000	PK	76.4	72.9	13.8	8.9	27.5	-	71.6	68.1	95.6	24.0	27.5	Carrier
630.000	PK	31.1	30.7	19.1	10.2	28.3	-	32.1	31.7	75.6	43.5	43.9	Outside
945.000	PK	29.9	30.3	22.1	11.3	27.2	-	36.1	36.5	75.6	39.5	39.1	Outside
1260.000	PK	49.8	49.3	25.2	3.8	35.8	1	43.0	42.5	75.6	32.6	33.1	Outside
1575.000	PK	51.5	52.4	25.8	4.0	35.4	1	45.9	46.8	73.9	28.0	27.1	Inside
1890.000	PK	45.3	45.3	26.9	4.2	35.2	-	41.2	41.2	75.6	34.4	34.4	Outside
2205.000	PK	48.0	47.9	27.4	4.3	34.9	-	44.8	44.7	73.9	29.1	29.2	Inside
2520.000	PK	45.6	45.1	27.7	4.5	34.7	1	43.1	42.6	75.6	32.5	33.0	Outside
2835.000	PK	50.9	51.1	28.1	4.6	34.5		49.1	49.3	73.9	24.8	24.6	Inside
3150.000	PK	43.8	44.3	28.4	4.8	34.2	-	42.8	43.3	75.6	32.8	32.3	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier)

PK with Duty factor

1 K with Duty	iacioi												
Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBuV/m]			[dB]		
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
315.000	PK	76.4	72.9	13.8	8.9	27.5	0.0	71.6	68.1	75.6	4.0	7.5	Carrier
630.000	PK	31.1	30.7	19.1	10.2	28.3	0.0	32.1	31.7	55.6	23.5	23.9	Outside
945.000	PK	29.9	30.3	22.1	11.3	27.2	0.0	36.1	36.5	55.6	19.5	19.1	Outside
1260.000	PK	49.8	49.3	25.2	3.8	35.8	0.0	43.0	42.5	55.6	12.6	13.1	Outside
1575.000	PK	51.5	52.4	25.8	4.0	35.4	0.0	45.9	46.8	53.9	8.0	7.1	Inside
1890.000	PK	45.3	45.3	26.9	4.2	35.2	0.0	41.2	41.2	55.6	14.4	14.4	Outside
2205.000	PK	48.0	47.9	27.4	4.3	34.9	0.0	44.8	44.7	53.9	9.1	9.2	Inside
2520.000	PK	45.6	45.1	27.7	4.5	34.7	0.0	43.1	42.6	55.6	12.5	13.0	Outside
2835.000	PK	50.9	51.1	28.1	4.6	34.5	0.0	49.1	49.3	53.9	4.8	4.6	Inside
3150.000	PK	43.8	44.3	28.4	4.8	34.2	0.0	42.8	43.3	55.6	12.8	12.3	Outside

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator) - Gain(Amprifier) + Duty\ factor$

Sample calculation:

Result of PK = Reading + Ant Factor + Loss (Cable + Attenuator + Distance factor) - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss (Cable + Attenuator + Distance factor) - Gain (Amplifier) + Duty factor

For above 1GHz : Distance Factor: $20 \times \log (3.75 \text{ m}/3.0 \text{ m}) = 1.94 \text{ dB}$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Since the peak emission result satisfied the average limit, duty factor was omitted.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 11145757H-B-R1
Page : 13 of 16
Issued date : August 22, 2016
FCC ID : WAZSKEA7D02

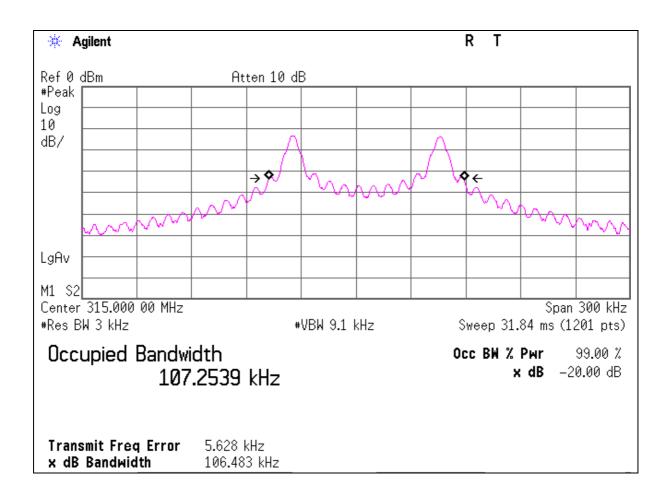
-20dB and 99% Occupied Bandwidth

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11145757H

Date 05/15/2016

Temperature/ Humidity 22 deg. C / 48% RH


Engineer Keisuke Kawamura

Mode Transmitting mode 315MHz

Bandwidth Limit : Fundamental Frequency 315 MHz x 0.25% = 787.50 kHz

-20dB Bandwidth [kHz]	Bandwidth Limit [kHz]	Result
106.48	787.50	Pass

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
107.25	787.50	Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11145757H-B-R1 Page : 14 of 16 **Issued date** : August 22, 2016

FCC ID : WAZSKEA7D02

APPENDIX 2: Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MOS-19	Thermo-Hygrometer	Custom	CTH-201	0001	RE	2015/12/08 * 12
MSA-13	Spectrum Analyzer	Agilent	E4440A	MY46185823	RE	2015/06/02 * 12
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE	2015/07/01 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE	2016/01/21 * 12
MJM-14	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	RE	2015/10/11 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	1915	RE	2015/10/11 * 12
MLA-21	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B 911B-190		RE	2016/01/30 * 12
MCC-12	Coaxial Cable	Fujikura/Agilent	-	-	RE	2016/02/08 * 12
MAT-07	Attenuator(6dB)	Weinschel Corp	2	BK7970	RE	2015/11/10 * 12
MPA-09	Pre Amplifier	Agilent	8447D 2944A10845		RE	2015/09/04 * 12
MMM-01	Digital Tester	Fluke	FLUKE 26-3	78030611	RE	2015/08/19 * 12
MHA-06	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	254	RE	2016/02/29 * 12
MCC-168	Microwave Cable	Junkosha	MWX221	1408S016(1m) / 1409S492(5m)	RE	2015/09/24 * 12
MPA-10	Pre Amplifier	Agilent	8449B	3008A02142	RE	2016/01/19 * 12
MLPA-07	Loop Antenna	UL Japan	-	-	RE	Pre Check

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission, 99% Occupied Bandwidth, -20dB bandwidth, and Automatically deactivate tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124