

EMI TEST REPORT

Test Report No. 14841967H-B

Customer	Mitsubishi Electric Corporation Himeji works
Description of EUT	Smart Keyless System Smart Unit
Model Number of EUT	SKEA7A-04
FCC ID	WAZSKEA7A04
Test Regulation	FCC Part 15 Subpart B
Test Result	Complied
Issue Date	July 19, 2023
Remarks	-

Representative test engineer	Approved by
(.coshida	9. Jakimmo
Tetsuro Yoshida Engineer	Tsubasa Takayama Leader
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed	ed is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 22.0

Test Report No. 14841967H-B Page 2 of 17

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers EMC technical requirements. It does not cover administrative issues such as Manual or non-EMC test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in SECTION 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 14841967H-B

Revision	Test Report No.	Date	Page Revised Contents
-	14841967H-B	July 19, 2023	-
(Original)			

Test Report No. 14841967H-B Page 3 of 17

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	GPS	Global Positioning System	
AAN	Asymmetric Artificial Network	Hori.	Horizontal	
AC	Alternating Current	ICES	Interference-Causing Equipment Standard	
AM	Amplitude Modulation	1/0	Input/Output	
AMN	Artificial Mains Network	IEC	International Electrotechnical Commission	
Amp, AMP	Amplifier	IEEE	Institute of Electrical and Electronics Engineers	
ANSI	American National Standards Institute	IF	Intermediate Frequency	
Ant, ANT	Antenna	ILAC	International Laboratory Accreditation Conference	
	<u> </u>		Innovation, Science and Economic Development	
AP	Access Point	ISED	Canada	
ASK	Amplitude Shift Keying	ISN	Impedance Stabilization Network	
Atten., ATT	Attenuator	ISO	International Organization for Standardization	
AV	Average	JAB	Japan Accreditation Board	
BPSK	Binary Phase-Shift Keying	LAN	Local Area Network	
BR	Bluetooth Basic Rate	LCL	Longitudinal Conversion Loss	
BT	Bluetooth	LIMS	Laboratory Information Management System	
BT LE	Bluetooth Low Energy	LISN	Line Impedance Stabilization Network	
BW	BandWidth	MRA	Mutual Recognition Arrangement	
C.F	Correction Factor	N/A	Not Applicable	
Cal Int	Calibration Interval	NIST	National Institute of Standards and Technology	
CAV	CISPR AV	NS	No signal detect.	
CCK	Complementary Code Keying	NSA	Normalized Site Attenuation	
CDN	Coupling Decoupling Network	OBW	Occupied BandWidth	
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing	
CISPR	Comite International Special des Perturbations Radioelectriques	PER	Packet Error Rate	
Corr.	Correction	PK	Peak	
CPE	Customer premise equipment	P _{LT}	long-term flicker severity	
CW	Continuous Wave	POHC(A)	Partial Odd Harmonic Current	
DBPSK	Differential BPSK	Pol., Pola.	Polarization	
DC	Direct Current	PR-ASK	Phase Reversal ASK	
DET	Detector	P _{ST}	short-term flicker severity	
D-factor	Distance factor	QAM	Quadrature Amplitude Modulation	
Dmax	maximum absolute voltage change during an observation period	QP	Quasi-Peak	
DQPSK	Differential QPSK	QPSK	Quadrature Phase Shift Keying	
DSSS	Direct Sequence Spread Spectrum	r.m.s., RMS	Root Mean Square	
DUT	Device Under Test	RBW	Resolution BandWidth	
EDR	Enhanced Data Rate	RE	Radio Equipment	
e.i.r.p., EIRP	Equivalent Isotropically Radiated Power	REV	Reverse	
EM clamp	Electromagnetic clamp	RF	Radio Frequency	
EMC	ElectroMagnetic Compatibility	RFID	Radio Frequency Identifier	
EMI	ElectroMagnetic Interference	RNSS	Radio Navigation Satellite Service	
EMS	ElectroMagnetic Susceptibility	RSS	Radio Standards Specifications	
EN	European Norm	Rx	Receiving	
e.r.p., ERP	Effective Radiated Power	SINAD	Ratio of (Signal + Noise + Distortion) to (Noise + Distortion)	
ETSI	European Telecommunications Standards Institute	S/N	Signal to Noise ratio	
EU	European Union	SA, S/A	Spectrum Analyzer	
EUT	Equipment Under Test	SG	Signal Generator	
Fac.	Factor	SVSWR	Site-Voltage Standing Wave Ratio	
FCC	Federal Communications Commission	THC(A)	Total Harmonic Current	
FHSS	Frequency Hopping Spread Spectrum	THD(%)	Total Harmonic Distortion	
FM	Frequency Modulation	TR, T/R	Test Receiver	
Freq.	Frequency	Tx	Transmitting	
FSK	Frequency Shift Keying	VBW	Video BandWidth	
Fund	Fundamental	Vert.	Vertical	
FWD	Forward	WLAN	Wireless LAN	
GFSK	Gaussian Frequency-Shift Keying	xDSL	Generic term for all types of DSL technology	
0. 0. 0				

CONTENTS	PAGE
SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated Emission	
APPENDIX 1: Test data	12
Radiated Emission	
APPENDIX 2: Test instruments	14
APPENDIX 3: Photographs of test setup	15
Radiated Emission	
Worst Case Position	

Test Report No. 14841967H-B Page 5 of 17

SECTION 1: Customer information

Company Name	Mitsubishi Electric Corporation Himeji works		
Address	840, Chiyoda-machi, Himeji, Hyogo 670-8677, Japan		
Telephone Number	+81-79-298-9580		
Contact Person	Yasuhiro Takahashi		

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Description	Smart Keyless System Smart Unit
Model Number	SKEA7A-04
Serial Number	Refer to SECTION 4.2
Condition	Production model
Modification	No Modification by the test lab
Receipt Date	July 3, 2023
Test Date	July 4, 2023

2.2 Product Description

General Specification

Rating	DC 12 V
Clock frequency (ies) in the	30.32 MHz (max.)
system	

Radio Specification

[LF part] *1)

Equipment Type	Transmitter
Frequency of Operation	125 kHz
Type of Modulation	ASK

[RF part]

Equipment Type	Receiver
Frequency of Operation	315 MHz
Local Oscillator Frequency	314.72 MHz
Intermediate Frequency	280 kHz
Voltage Controlled Oscillator	1888.32 MHz

^{*1)} The test of this function was performed separately from this test report, and the conformability is confirmed.

Test Report No. 14841967H-B Page 6 of 17

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart B The latest version on the first day of the testing period
Title	FCC 47CFR Part15 Radio Frequency Device Subpart B Unintentional Radiators

3.2 Procedures and results

Item	Test Procedure	Limits	Worst margin	Result	Remarks
Conducted	FCC: ANSI C63.4: 2014	FCC:Part 15	-	N/A	*1)
emission	7. AC power - line	Subpart B			
	conducted emission	15.107(a)			
	measurements				
	ISED: RSS-Gen 7.1	ISED: RSS-Gen 7.2			
Radiated	FCC: ANSI C63.4: 2014	FCC: Part 15	27.13 dB	Complied	-
emission	8. Radiated	Subpart B	45.183 MHz,		
	emission measurements	15.109(a)	Vertical, QP		
	ISED: RSS-Gen 7.1	ISED: RSS-Gen 7.3			
Antenna	FCC: ANSI C63.4: 2014	FCC: Part 15	-	N/A	*2)
Terminal	12. Measurement of	Subpart B			
	unintentional radiators other	15.111(a)			
	than ITE				
	ISED: RSS-Gen 7.1	ISED: RSS-Gen 7.4			

^{*} Note: UL Japan, Inc.'s EMI Work Procedure: Work Instructions-ULID-003591.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*2)} The receiving antenna (of this EUT) is installed inside the EUT and cannot be removed (permanently attached). Therefore, Radiated emission test was performed.

Test Report No. 14841967H-B Page 7 of 17

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range		Uncertainty (+/-)
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	5.0 dB
	200 MHz to 1000 MHz	Horizontal	5.1 dB
		Vertical	6.2 dB
10 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	4.8 dB
	200 MHz to 1000 MHz	Horizontal	4.9 dB
		Vertical	5.0 dB
3 m	1 GHz to 6 GHz	Test Receiver	5.0 dB
		Spectrum analyzer	4.9 dB
	6 GHz to 18 GHz	Test Receiver	5.3 dB
		Spectrum analyzer	5.2 dB
1 m	10 GHz to 26.5 GHz	Spectrum analyzer	5.5 dB
	26.5 GHz to 40 GHz	Spectrum analyzer	5.4 dB
0.5 m	26.5 GHz to 40 GHz	Spectrum analyzer	5.4 dB
10 m	1 GHz to 18 GHz	Test Receiver	5.3 dB

Test Report No. 14841967H-B Page 8 of 17

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

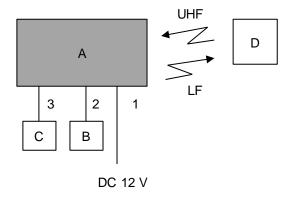
ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power	10 m
***************************************	75 45 0 45 0	4.0 x 4.0	source room	3 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 X 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

Test Report No. 14841967H-B Page 9 of 17


SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Smart Keyless function mode
Software(s)	Smcm_Dn2

^{*}The test signal level was confirmed to be sufficient to stabilize the local oscillator of the EUT.

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Smart Keyless	SKEA7A-04	20230613-E1	Mitsubishi Electric	EUT
	System Smart Unit		No.3	Corporation Himeji works	
В	SW	-	-	-	-
С	LED	-	-	-	-
D	Electric Key	SKEA7A-05	20230613-T1	Mitsubishi Electric	-
	-		No.23	Corporation Himeji works	

List of Cables Used

-101	n Gabioo Good					
No.	Name	Length (m)	Shield	Shield		
			Cable	Connector		
1	DC Cable	3.5	Unshielded	Unshielded	-	
2	Signal Cable	0.7	Unshielded	Unshielded	-	
3	DC & Signal Cable	0.7	Unshielded	Unshielded	_	

^{*} It was confirmed by using checker that the EUT receives the signal from the transmitter (pair of EUT).

^{*} Item No. A includes Receiver Antenna.

Test Report No. 14841967H-B Page 10 of 17

SECTION 5: Radiated Emission

5.1 Operating environment

Date : See data
Test place : See data
Temperature : See data
Humidity : See data
Test engineer : See data

5.2 Test configuration

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The EUT was set on the center of the tabletop.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength.

Photographs of the set up are shown in APPENDIX 3.

5.3 Test conditions

Frequency range : 30 MHz to 200 MHz (Biconical antenna)

200 MHz to 1000 MHz (Logperiodic antenna)

1000 MHz to 10000 MHz (Horn antenna)

Test distance : 3 m

EUT position : Table top

EUT operation mode : See Clause 4.1

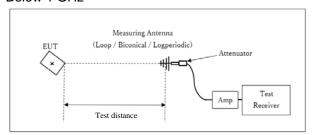
5.4 Test procedure

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The radiated emission measurements were made with the following detector function of the Test Receiver and the Spectrum Analyzer.

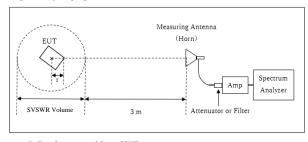
Test antenna was aimed at the emission source for receiving the maximum signal and always kept. (Above 1 GHz)


Frequency	Below 1 GHz	Above 1 GHz *1)
Instrument used	Test Receiver	Test Receiver
IF Bandwidth	QP: BW 120 kHz	PK: BW 1 MHz, CAV: BW 1 MHz

^{*1)} The measurement data was adjusted to a 3 m distance using the following Distance Factor. Distance Factor: See Figure 1.

Test Report No. 14841967H-B Page 11 of 17

Figure 1: Test Setup


Below 1 GHz

Test Distance: 3 m

× : Center of turn table

1 GHz to 10 GHz

Distance Factor: $20 \times \log (3.85 \text{ m}^*/3.0 \text{ m}) = 2.17 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 3.85 m

SVSWR Volume: 2 m

(SVSWR Volume has been calibrated based on CISPR

16-1-4.) r = 0.15 m

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

5.5 Test result

Summary of the test results: Pass

The limit is rounded down to one decimal place.

The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No. 14841967H-B Page 12 of 17

APPENDIX 1: Test data

Radiated Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date July 4, 2023

Temperature / Humidity 24 deg. C / 50 % RH Engineer Tetsuro Yoshida (Below 1 GHz)

Mode 1

Limit : FCC_Part 15 Subpart B(15.109)_Class B

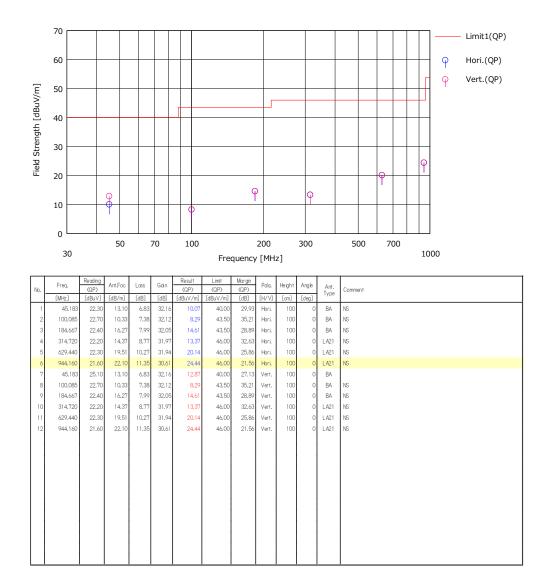


CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS(CABLE + ATT) - GAIN(AMP)

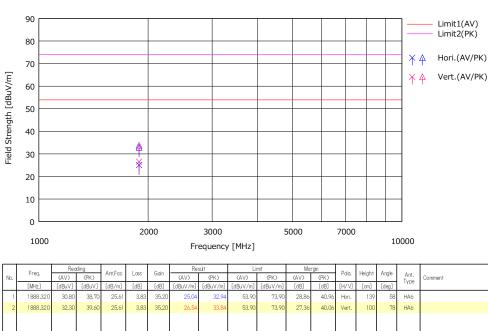
Except for the above table: adequate margin data below the limits.

Test Report No. 14841967H-B Page 13 of 17

Radiated Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2


Date July 4, 2023

Temperature / Humidity 24 deg. C / 50 % RH Engineer Tetsuro Yoshida

(Above 1 GHz)

Mode 1

Limit: FCC_Part 15 Subpart B(15.109)_Class B

Me c (dBuV) (dBuV) (dBuV) (dB) (dB)	No.	Freq.	(AV)	(PK)	Ant.Fac	Loss	Gain	(AV)	(PK)	(AV)	(PK)	(AV)	(PK)	Pala.	Height	Angle	Ant.	Comment
1 1888.320 30.80 38.70 25.61 3.83 35.20 25.04 32.94 53.90 73.90 28.86 40.96 Hori. 139 58 HA6	140.				[dR/m]	[4B]	[AD]							£ 1/√	[cm]	[doa]	Type	Collinati
																_		
2 1888,320 32,30 39,60 25,61 3,83 35,20 26,54 33,84 53,90 73,90 27,36 40,06 Vert, 100 78 HA6	1																	
	2	1888.320	32.30	39.60	25.61	3.83	35.20	26.54	33.84	53.90	73.90	27.36	40.06	Vert.	100	78	HA6	
		l													ł			i
		ı													l			i
		l																
		1													l			
															l			
		l													l			1
		1													l			
		1													1			
		i													l			l
		ł													ŀ			
		1													1			
		1													l			
		1													ŀ			
		1																
		1																
		1												l	l			
		1																
		1													l			

CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS(CABLE + D-factor) - GAIN(AMP) Except for the above table: adequate margin data below the limits.

Test Report No. 14841967H-B Page 14 of 17

APPENDIX 2: Test instruments

Test equipment

Test Item		LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	05/30/2022	24
RE	MAEC-02- SVSWR	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/17/2023	24
RE	MAT-112	220646	Attenuator	Huber+Suhner	6806_N-50-1	=	03/17/2023	12
RE	MBA-08	141427	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103B+ BBA9106	08031	07/30/2022	12
RE	MCC-12	141317	Coaxial Cable	UL Japan	-	-	09/27/2022	12
RE	MCC-218	141394	Microwave Cable	Junkosha	MWX221	1607S141(1 m)/ 1608S264(5 m)	09/12/2022	12
RE	MHA-06	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	254	10/20/2022	12
RE	MJM-27	142228	Measure, Tape, Steel	KOMELON	KMC-36	=	-	-
RE	MLA-21	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-190	07/30/2022	12
RE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/12/2022	12
RE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/17/2022	12
RE	MPA-10	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	02/14/2023	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/07/2023	12
RE	MSA-22	141978	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180899	03/06/2023	12
RE	MTR-08	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	05/17/2023	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission