

RADIO TEST REPORT

Test Report No.: 13584430H-A-R1

Applicant	:	Mitsubishi Electric Corporation Himeji works
Type of EUT	:	Smart Keyless System (Smart Unit)
Model Number of EUT	:	SKE45A-03
FCC ID	:	WAZSKE45A03
Test regulation	:	FCC Part 15 Subpart C: 2020
Test Result	:	Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 13584430H-A. 13584430H-A is replaced with this report.

Date of test:

engineer:

Representative test

Ken Fujita

November 11 and December 23, 2020

Engineer Consumer Technology Division

Approved by:

mina Motoya Imura Leader

Consumer Technology Division

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan. There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Telephone
 : +81 596 24 8999

 Facsimile
 : +81 596 24 8124

REVISION HISTORY

Original Test Report No.: 13584430H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	13584430H-A	December 22, 2020	-	-
1	13584430H-A-R1	December 25, 2020	P.6	Correction of FCC Part 15.31 (e) in Clause 3.2; From "The test was performed with the New Battery and the stable voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement."
				To "The test was performed with the New Battery and the EUT constantly provides the stable voltage to RF part through the regulator regardless of input voltage from New Battery. Therefore, this EUT complies with the requirement."
1	13584430H-A-R1	December 25, 2020	P.14	Correction of Detector for 0.5000 MHz to 1.2500 MHz; From AV to QP

Reference : Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	MCS	Modulation and Coding Scheme
AC	Alternating Current	MRA	Mutual Recognition Arrangement
AFH	Adaptive Frequency Hopping	N/A	Not Applicable
AM	Amplitude Modulation	NIST	National Institute of Standards and Technology
Amp, AMP	Amplifier	NS	No signal detect.
ANSI	American National Standards Institute	NSA	Normalized Site Attenuation
Ant, ANT	Antenna	NVLAP	National Voluntary Laboratory Accreditation Program
AP	Access Point	OBW	Occupied Band Width
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
BT	Bluetooth	РК	Peak
BT LE	Bluetooth Low Energy	PN	Pseudo random Noise
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadri-Phase Shift Keying
CW	Continuous Wave	RBW	Resolution Band Width
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RSS	Radio Standards Specifications
DSSS	Direct Sequence Spread Spectrum	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR	Test Receiver
EN	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
EU	European Union	Vert.	Vertical
EUT	Equipment Under Test	WLAN	Wireless LAN
Fac.	Factor	WLARV	
FCC	Federal Communications Commission		
FHSS			
	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq. FSK	Frequency Frequency Shift Koving		
	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	International Organization for Standardization		

ISO International Organization for Standardization JAB Japan Accreditation Board

LAN Local Area Network

LIMS Laboratory Information Management System

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

PAGE

SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	5
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of EUT during testing	9
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	
SECTION 6: -26 dB Bandwidth	
SECTION 7: 99 % Occupied Bandwidth	
APPENDIX 1: Test data	14
Radiated Emission below 30 MHz (Fundamental and Spurious Emission)	14
Radiated Emission above 30 MHz (Spurious Emission)	
-26 dB Bandwidth & 99 % Occupied Bandwidth	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	19
Radiated Emission.	
Worst Case Position (EUT: X-axis / Antenna: Y-axis)	

CONTENTS

SECTION 1: Customer information

Company Name	:	Mitsubishi Electric Corporation Himeji works
Address	:	840 Chiyoda-machi, Himeji, Hyogo 670-8677, Japan
Telephone Number	:	+81-79-298-7363
Facsimile Number	:	+81-79-298-9929
Contact Person	:	Yasuhiro Takahashi

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Туре	:	Smart Keyless System (Smart Unit)
Model Number	:	SKE45A-03
Serial Number	:	Refer to SECTION 4.2
Rating	:	DC 12.0 V
Receipt Date	:	November 11, 2020
Country of Mass-production	:	Japan
Condition	:	Production prototype
		(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	:	No Modification by the test lab

2.2 Product Description

Model No: SKE45A-03, (referred to as the EUT in this report), is the Smart Keyless System (Smart Unit).

Radio Specification

<u>LF Part</u>		
Equipment Type	:	Transmitter
Frequency of operation	:	125 kHz
Type of modulation	:	ASK
Other clock frequency	:	-
Antenna Type	:	Inductive
Clock frequency (maximum)	:	8 MHz
RF Part *		
Type of Receiver	:	Receiver
Frequency of operation	:	315 MHz
Other clock frequency	:	30.32 MHz
Intermediate frequency	:	280 kHz
Antenna Type	:	Bar Antenna

* EUT also has this function. Please refer to No. 13584430H-B (FCC15B).

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	:	FCC Part 15 Subpart C FCC Part 15 final revised on October 13, 2020		
Title	:	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators Section 15.207 Conducted limits Section 15.209 Radiated emission limits; general requirements.		
		Section 15.209 Radiated emission mints, general requirements.		
* Also the EUT complies with FCC Part 15 Subpart B.				

3.2 Procedures and results

Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
Conducted Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ised> RSS-Gen 8.8</ised></fcc>	<fcc> Section 15.207 <ised> RSS-Gen 8.8</ised></fcc>	-	N/A	N/A	N/A *1)
Electric Field Strength of Fundamental Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ised> RSS-Gen 6.5, 6.12</ised></fcc>	<fcc> Section 15.209 <ised> RSS-210 7.2 RSS-Gen 8.9</ised></fcc>	Radiated	N/A	6.6 dB 125 kHz, 0 deg. Peak with Duty factor	Complied a)
Electric Field Strength of Spurious Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ised> RSS-Gen 6.5, 6.6, 6.13</ised></fcc>	<fcc> Section 15.209 <ised> RSS-210 7.3 RSS-Gen 8.9</ised></fcc>	Radiated	N/A	14.3 dB 32.718 MHz, Vertical, QP	Complied a)
-26 dB Bandwidth	<fcc> ANSI C63.10:2013 6 Standard test methods <ised> -</ised></fcc>	<fcc> Reference data <ised> -</ised></fcc>	Radiated	N/A	N/A	Complied b)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

a) Refer to APPENDIX 1 (data of Radiated emission)

b) Refer to APPENDIX 1 (data of -26 dB Bandwidth and 99 % Occupied Bandwidth)					
Symbols:					
Complied	The data of this test item has enough margin, more than the measurement uncertainty.				
Complied#	The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.				

FCC Part 15.31 (e)

The test was performed with the New Battery and the EUT constantly provides the stable voltage to RF part through the regulator regardless of input voltage from New Battery. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
99 % Occupied Band Width	RSS-Gen 6.7	-	Radiated	N/A	N/A	-
Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Radiated emission	<u>n</u>		
Measurement distance	Frequency ra	Uncertainty (+/-)	
3 m	9 kHz to 30 M	1Hz	3.3 dB
10 m			3.2 dB
3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	5.0 dB
	200 MHz to 1000 MHz	(Horizontal)	5.2 dB
		(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	4.8 dB
	200 MHz to 1000 MHz	(Horizontal)	5.0 dB
		(Vertical)	5.0 dB
3 m	1 GHz to 6 G	1 GHz to 6 GHz	
	6 GHz to 18 0	GHz	5.2 dB
1 m	10 GHz to 26.5	GHz	5.5 dB
	26.5 GHz to 40	GHz	5.5 dB
10 m	1 GHz to 18 G	GHz	5.2 dB

Antenna Terminal test

Test Item	Uncertainty (+/-)
-26 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %

	Test report No. Page Issued date FCC ID	: 13584430H-A-R1 : 8 of 20 : December 25, 2020 : WAZSKE45A03
--	--	---

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 199967 / ISED Lab Company Number: 2973C 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Maximum Width x Depth x Size of reference ground plane (m) Test site Other rooms measuremen Height (m) / horizontal conducting plane t distance No.1 semi-anechoic No.1 Power 10 m 19.2 x 11.2 x 7.7 7.0 x 6.0 chamber source room No.2 semi-anechoic 7.5 x 5.8 x 5.2 4.0 x 4.0 3 m chamber No.3 Preparation No.3 semi-anechoic 3 m 12.0 x 8.5 x 5.9 6.8 x 5.75 chamber room No.3 shielded room 4.0 x 6.0 x 2.7 N/A No.4 semi-anechoic No.4 Preparation 12.0 x 8.5 x 5.9 6.8 x 5.75 3 m chamber room No.4 shielded room 4.0 x 6.0 x 2.7 N/A No.5 semi-anechoic 6.0 x 6.0 x 3.9 6.0 x 6.0 chamber No.5 measurement 6.4 x 6.4 x 3.0 6.4 x 6.4 room No.6 shielded room 4.0 x 4.5 x 2.7 4.0 x 4.5 No.6 measurement 4.75 x 5.4 x 3.0 4.75 x 4.15 room 4.7 x 7.5 x 2.7 4.7 x 7.5 No.7 shielded room No.8 measurement 3.1 x 5.0 x 2.7 3.1 x 5.0 room No.9 measurement 8.8 x 4.6 x 2.8 2.4 x 2.4 room No.11 measurement 6.2 x 4.7 x 3.0 4.8 x 4.6 room

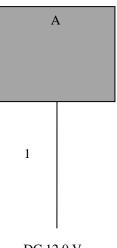
* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0 m for No.1, No.2,

No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

Test report No.	: 13584430H-A-R1
Page	: 9 of 20
Issued date	: December 25, 2020
FCC ID	: WAZSKE45A03


SECTION 4: Operation of EUT during testing

4.1 **Operating Modes**

Test mode		Remarks
1) Transmi	tting mode (125 kHz)	-
* EUT was se	t by the software as follows;	
Software:	J979 Version 001	
	(Date: November 11, 2020, Storage location: EUT memory)	
*This setting	of software is the worst case.	
Any condition	ns under the normal use do not exceed the condition of setting.	
In addition, en	nd users cannot change the settings of the output power of the produc	et.

Justification The system was configured in typical fashion (as a user would normally use it) for testing. :

4.2 Configuration and peripherals

DC 12.0 V

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Descr	iption of EUT and Supp	<u>ort equipment</u>			
No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	Smart Keyless System	SKE45A-03	20201103-Е8	Mitsubishi Electric Corporation	EUT
	(Smart Unit)			Himeji works	

List of cables used

No.	Name	Length (m)	Shie	Remark	
			Cable	Connector	
1	DC Cable	2.0	Unshielded	Unshielded	-

Test report No. Page	: 13584430H-A-R1 : 10 of 20
Issued date FCC ID	: December 25, 2020 : WAZSKE45A03

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

Frequency : From 9 kHz to 30 MHz

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

Frequency: From 30 MHz to 1 GHz

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

The test was made with the detector (RBW / VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

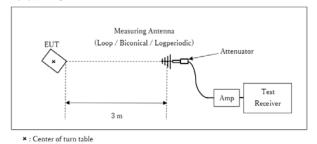
Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz
Antenna Type	Loop	Biconical	Logperiodic

Frequency	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz
Instrument used			Test Receiver		L
Detector	PK / AV	QP	PK / AV	QP	QP
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m

*1) Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

*2) Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

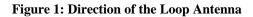

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

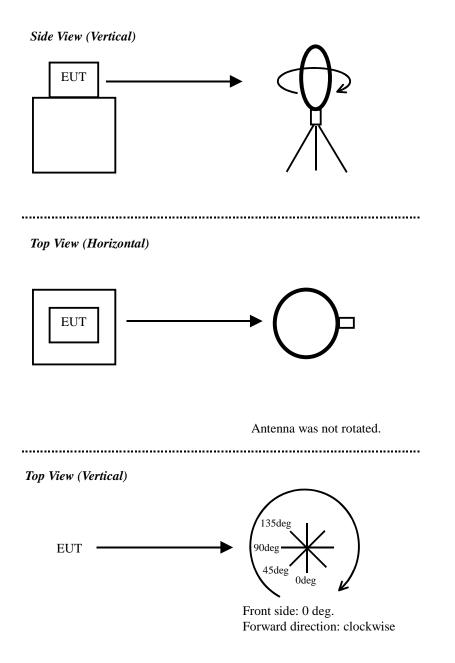
These tests were performed in semi anechoic chamber. Therefore the measured level of emissions may be higher than if measurements were made without a ground plane.

However test results were confirmed to pass against standard limit.

The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

[Test Setup] Below 1 GHz




Test Distance: 3 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range Test data Test result	: 9 kHz - 1 GHz : APPENDIX 1 : Pass	
Date: November 11, 2020	Test engineer:	Ken Fujita

Page : Issued date :	: 13584430H-A-R1 : 13 of 20 : December 25, 2020 : WAZSKE45A03
-------------------------	--

SECTION 6: -26 dB Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

	W VBW	Sweep	Detector	Trace	Instrument used
-26 dB Bandwidth 75 kHz 510 l	Hz 1.6 kHz	z Auto	Peak	Max Hold	Spectrum Analyzer

Test data	: APPENDIX 1
Test result	: Pass

SECTION 7: 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used		
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer		
Peak hold was applied as Worst-case measurement.									

Test data	: APPENDIX 1
Test result	: Pass

APPENDIX 1: Test data

Radiated Emission below 30 MHz (Fundamental and Spurious Emission)

Report No.13584430HTest placeIse EMC Lab.Semi Anechoic ChamberNo.3DateNovember 11, 2020Temperature / Humidity22 deg. C / 41 % RHEngineerKen FujitaModeMode 1

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
or				Factor			Factor				
Polarity [Hori/Vert	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.1250	PK	105.9	19.4	-74.0	32.3	-	19.0	45.6	26.6	Fundamental
0deg	0.2500	PK	75.9	19.5	-74.0	32.3	-	-10.9	39.6	50.5	
0deg	0.3750	PK	71.5	19.5	-73.9	32.3	-	-15.2	36.1	51.3	
0deg	0.5000	QP	36.4	19.4	-33.9	32.2	-	-10.3	33.6	44.0	
0deg	0.6250	QP	55.1	19.4	-33.9	32.2	-	8.4	31.7	23.3	
0deg	0.7500	QP	31.9	19.4	-33.9	32.2	-	-14.8	30.1	44.9	
0deg	0.8750	QP	49.0	19.4	-33.9	32.2	-	2.3	28.7	26.4	
0deg	1.0000	QP	31.6	19.5	-33.9	32.2	-	-15.0	27.6	42.6	
0deg	1.1250	QP	44.7	19.5	-33.9	32.2	-	-1.9	26.5	28.4	
0deg	1.2500	QP	31.1	19.5	-33.8	32.2	-	-15.5	25.6	41.1	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

ſ	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
					Factor			Factor				
		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	0deg	0.1250	PK	105.9	19.4	-74.0	32.3	0.0	19.0	25.6	6.6	
	0deg	0.2500	PK	75.9	19.5	-74.0	32.3	0.0	-10.9	19.6	30.5	
	0deg	0.3750	PK	71.5	19.5	-73.9	32.3	0.0	-15.2	16.1	31.3	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor *

* Since the peak emission result satisfied the average limit, duty factor was omitted.

Result of the fundamental emission at 3m without Distance factor

 K OI QI											
Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
0deg	0.12500	PK	105.9	19.4	6.0	32.3	-	99.0	-	-	Fundamental
											•

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

* Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*The test result is rounded off to one or two decimal places, so some differences might be observed.

Test report No.	: 13584430H-A-R1
Page	: 15 of 20
Issued date	: December 25, 2020
FCC ID	: WAZSKE45A03

Radiated Emission above 30 MHz (Spurious Emission)

Report No.	13584430H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.3
Date	November 11, 2020
Temperature / Humidity	22 deg. C / 41 % RH
Engineer	Ken Fujita
Mode	Mode 1

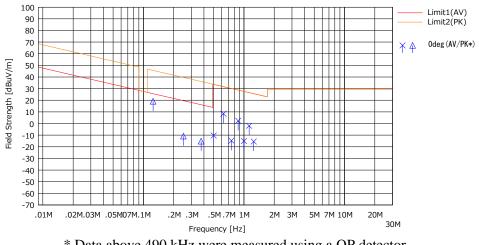
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	32.718	QP	24.3	17.5	7.2	32.2	16.7	40.0	23.3	
Hori.	37.055	QP	23.5	15.9	7.2	32.2	14.5	40.0	25.5	
Hori.	45.605	QP	23.1	12.8	7.4	32.2	11.2	40.0	28.8	
Hori.	162.124	QP	23.7	15.6	8.9	32.1	16.1	43.5	27.4	
Hori.	375.192	QP	23.5	15.1	10.6	32.0	17.2	46.0	28.8	
Hori.	710.111	QP	23.7	19.8	12.6	31.9	24.2	46.0	21.8	
Vert.	32.718	QP	33.3	17.5	7.2	32.2	25.7	40.0	14.3	
Vert.	37.055	QP	28.2	15.9	7.2	32.2	19.2	40.0	20.8	
Vert.	45.605	QP	25.4	12.8	7.4	32.2	13.5	40.0	26.5	
Vert.	162.124	QP	24.0	15.6	8.9	32.1	16.4	43.5	27.1	
Vert.	375.192	QP	22.7	15.1	10.6	32.0	16.4	46.0	29.6	
Vert.	710.111	QP	22.6	19.8	12.6	31.9	23.1	46.0	22.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amplifier)

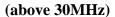
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*The test result is rounded off to one or two decimal places, so some differences might be observed.

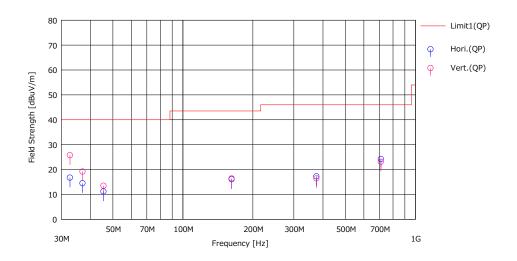
Test report No.	: 13584430H-A-R1
Page	: 16 of 20
Issued date	: December 25, 2020
FCC ID	: WAZSKE45A03


Radiated Emission Plot data, Worst case

13584430H Report No. Test place Ise EMC Lab. Semi Anechoic Chamber No.3 Date November 11, 2020 Temperature / Humidity 22 deg. C / 41 % RH Engineer Ken Fujita Mode Mode 1

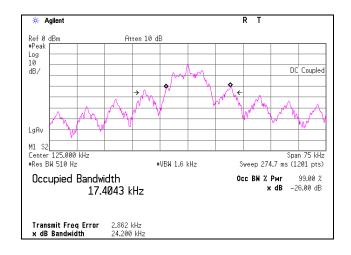

(below 30MHz)

FCC15.209(a), 9-90kHz:PK, 110-490kHz:PK, other:QP Limit :


Limit : FCC15.209(a), 9-90kHz:PK, 110-490kHz:PK, other:QP

* Data above 490 kHz were measured using a QP detector.

Limit : FCC15.209 3 m, below 1 GHz:QP, above 1 GHz:AV/PK


*These plots data contains sufficient number to show the trend of characteristic features for EUT.

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN : +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

-26 dB Bandwidth & 99 % Occupied Bandwidth

Report No.	13584430H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.3
Date	December 23, 2020
Temperature / Humidity	21 deg. C / 38 % RH
Engineer	Akihiko Maeda
Mode	Mode 1

-26 dB Bandwidth	99 % Occupied Bandwidth			
[kHz]	[kHz]			
24.200	17.4043			

Test report No.	: 13584430H-A-R1
Page	: 18 of 20
Issued date	: December 25, 2020
FCC ID	: WAZSKE45A03

APPENDIX 2: Test instruments

Test equipment

Test Item		LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-03		AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2020	24
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/07/2020	12
RE	MMM-08	141532	DIGITAL HITESTER	Hioki	3805	51201197	01/06/2020	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
RE	MAT-95	142314	Attenuator	Pasternack	PE7390-6	D/C 1504	06/17/2020	12
RE	MBA-03	141424	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103+BBA9106	1915	08/13/2020	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	07/06/2020	12
RE	MLA-22		Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-191	08/13/2020	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/10/2020	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	03/10/2020	12
RE	MCC-112	141216	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM14/ sucoform141-PE/ 421-010/RFM-E321(SW)	-/00640	07/06/2020	12
RE	MLPA-02	142152	Loop Antenna	Rohde & Schwarz	HFH2-Z2	836553/009	11/25/2019	12
RE	MCC-219	159670	Coaxial Cable	UL Japan Inc.	-	-	11/17/2020	12
RE	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	12/18/2020	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Spurious emission