

Page : 1 of 27

Issued date : March 22, 2018 FCC ID : WAZSKE11401

RADIO TEST REPORT

Test Report No.: 12095693H-B-R1

Applicant : Mitsubishi Electric Corporation Himeji works

Type of Equipment : Keyless System LFU

Model No. : SKE114-01

FCC ID : WAZSKE11401

Test regulation : FCC Part 15 Subpart C: 2018

Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. This report is a revised version of 12095693H-B. 12095693H-B is replaced with this report.

January 29 and 30, 2018

Representative test engineer:

Date of test:

laman

Loji Yamamoto Engineer

Consumer Technology Division

Approved by:

Motoya Imura Leader

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://japan.ul.com/resources/emc_accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12095693H-B-R1 Page : 2 of 27

Issued date : March 22, 2018 FCC ID : WAZSKE11401

REVISION HISTORY

Original Test Report No.: 12095693H-B

Revision	Test report No.	Date	Page revised	Contents
_	12095693H-B	March 13, 2018	revised -	-
(Original)	12093093П-Б	March 13, 2016	-	-
1	12095693H-B-R1	March 22, 2018	P.10	Correction of description for Hand unit
1	12095693H-B-R1	March 22, 2018	P.22	Addition of following sentence in APPENDIX 1; *It was confirmed that there were no differences in the bandwidth of EUT regardless of with or without transponder.
_				
_				
_				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.

: 12095693H-B-R1

Page Issued date FCC ID : 3 of 27

: March 22, 2018 : WAZSKE11401

CONTENTS	PAGE
SECTION 1: Customer information	
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Test specification, procedures & results	5
SECTION 4: Operation of E.U.T. during testing	8
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	10
SECTION 6: -26 dB Bandwidth	12
SECTION 7: 99 % Occupied Bandwidth	12
APPENDIX 1: Test data	13
Radiated Emission below 30MHz (Fundamental and Spurious Emission)	13
Radiated Emission above 30 MHz (Spurious Emission)	17
-26 dB Bandwidth and 99 % Occupied Bandwidth	20
APPENDIX 2: Test instruments	23
APPENDIX 3: Photographs of test setup	24
Radiated Emission	
Worst Case Position	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 4 of 27

Issued date : March 22, 2018 FCC ID : WAZSKE11401

SECTION 1: Customer information

Company Name : Mitsubishi Electric Corporation Himeji works Address : 840 Chiyoda-machi, Himeji Hyogo 670-8677 Japan

Telephone Number : +81-79-298-8994 Facsimile Number : +81-79-298-9929 Contact Person : Masashi Nojima

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Keyless System LFU

Model No. : SKE114-01

Serial No. : Refer to Clause 4.2

Rating : DC 12.0 V
Receipt Date of Sample : January 25, 2018
Country of Mass-production : Thailand / Mexico
Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: SKE114-01 (referred to as the EUT in this report) is the Keyless System LFU.

Radio Specification

Radio Type : Transmitter
Frequency of Operation : 125 kHz
Modulation : ASK
Method of Frequency Genenration : Crystal
Antenna type : Inductive
Duty Cycle : Very Low

Clock Frequency (maximum) : (CPU) 8 MHz, (RF-IC) Inner RC: 8 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12095693H-B-R1 Page : 5 of 27

Issued date : March 22, 2018 FCC ID : WAZSKE11401

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on February 2, 2018 and effective March 5, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted Emission

Section 15.209 Radiated emission limits, general requirements

3.2 Procedures and results

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	Conducted Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ic> RSS-Gen 8.8</ic></fcc>	<fcc> Section 15.207 <ic> RSS-Gen 8.8</ic></fcc>	-	N/A *1)	N/A	N/A
2	Electric Field Strength of Fundamental Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ic> RSS-Gen 6.4, 6.12</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 4.4 RSS-Gen 8.9</ic></fcc>	Radiated	N/A	3.0 dB 0.12500 MHz PK with Duty factor (ANT-C)	Complied
3	Electric Field Strength of Spurious Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ic> RSS-Gen 6.4, 6.13</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 4.4 RSS-Gen 8.9</ic></fcc>	Radiated	N/A	10.2 dB 55.625 MHz, Horizontal, QP (ANT-C)	Complied
4	-26dB Bandwidth	<fcc> ANSI C63.10:2013 6 Standard test methods <ic></ic></fcc>	<fcc> Reference data <ic></ic></fcc>	Radiated	N/A	N/A	N/A

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC 15.31 (e)

This test was performed with the New Battery (DC 12 V) and the constant voltage was supplied to this EUT during the tests. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The revision on February 2, 2018, does not affect the test specification applied to the EUT.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

Page : 6 of 27

Issued date : March 22, 2018 FCC ID : WAZSKE11401

3.3 Addition to standard

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	99 % Occupied	RSS-Gen 6.6	-	Radiated	N/A	N/A	N/A
	Band Width						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

	Radiated emission (Below 1 GHz)					
Polarity	(3 m	*)(+/-)	(10 m*)(+/-)			
•	30 MHz to 200 MHz	200 MHz to 1000 MHz	30 MHz to 200 MHz	200 MHz to 1000 MHz		
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB		
Vertical	5.0 dB	6.3 dB	4.9 dB	5.0 dB		

Radiated emission (Above 1 GHz)						
(3 m*)(+/-)		(1 n	(10 m*)(+/-)			
1 GHz to 6 GHz	6 GHz to 18 GHz	10 GHz to 26.5 GHz	26.5 GHz to 40 GHz	1 GHz to 18 GHz		
5.2 dB	5.5 dB	5.9 dB	5.9 dB	5.5 dB		

^{*} Measurement distance

Radiated emission test(3m)

[Electric Field Strength of Fundamental Emission]

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

[Electric Field Strength of Spurious Emission]

The data listed in this test report has enough margin, more than the site margin.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 27

Issued date : March 22, 2018 FCC ID : WAZSKE11401

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 m x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

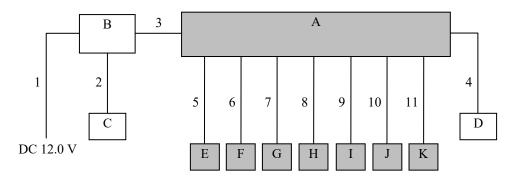
Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 27

Issued date : March 22, 2018 FCC ID : WAZSKE11401

SECTION 4: Operation of E.U.T. during testing


4.1 Operating Modes

Test mode	Remarks
1) Tx 125 kHz Mod on, ANT-FR	*1)
2) Tx 125 kHz Mod on, ANT-C	*2)
3) Tx 125 kHz Mod on, Antenna-Coil	-

^{*1)} As a result of preliminary test with ANT-FL and ANT-FR, the formal test was performed with ANT-FR, which had the maximum power.

Justification: The system was configured in typical fashion (as a customer would normally use it) for testing.

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} As a result of preliminary test with ANT-BP, ANT-F, ANT-R and ANT-C, the formal test was performed with ANT-C, because ANT-C had the maximum power.

Page : 9 of 27

Issued date : March 22, 2018 FCC ID : WAZSKE11401

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Keyless System	SKE114-01	20180124-L1	Mitsubishi Electric Corporation	EUT
	LFU		(No.1)	Himeji Works	
В	Control JIG	-	No.1	Mitsubishi Electric Corporation	-
				Himeji Works	
C	SW BOX	-	No.1	Mitsubishi Electric Corporation	-
				Himeji Works	
D	Keyless System	SKE115-01	20180124-R4	Mitsubishi Electric Corporation	-
	Receiver		(No.4)	Himeji Works	
Е	LF Antenna	ANT-FL	No.1	-	EUT
	(Door)				
F	LF Antenna	ANT-FR	No.1	-	EUT
	(Door)				
G	LF Antenna	ANT-BP	No.4	Mitsubishi Electric Corporation	EUT
	(Bumper)			Himeji Works	
Н	LF Antenna	ANT-F	No.4	Mitsubishi Electric Corporation	EUT
	(Room)			Himeji Works	
I	LF Antenna	ANT-R	No.4	Mitsubishi Electric Corporation	EUT
	(Room)			Himeji Works	
J	LF Antenna	ANT-C	No.4	Mitsubishi Electric Corporation	EUT
	(Room)			Himeji Works	
K	Antenna coil	-	No.21	-	EUT
	(Immobilizer)				

List of cables used

No.	Name	Length (m)	Shield		Remark
			Cable	Connector	
1	DC Cable	2.0	Unshielded	Unshielded	-
2	DC and Signal Cable	1.0	Unshielded	Unshielded	(No.1)
3	DC and Signal Cable	1.0	Unshielded	Unshielded	(No.1)
4	DC and Signal Cable	1.5	Unshielded	Unshielded	(No.1)
5	Antenna Cable	1.2	Unshielded	Unshielded	(No.1)
6	Antenna Cable	1.2	Unshielded	Unshielded	(No.1)
7	Antenna Cable	1.2	Unshielded	Unshielded	(No.1)
8	Antenna Cable	1.2	Unshielded	Unshielded	(No.1)
9	Antenna Cable	1.2	Unshielded	Unshielded	(No.1)
10	Antenna Cable	1.2	Unshielded	Unshielded	(No.1)
11	Antenna Cable	1.2	Unshielded	Unshielded	(No.1)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12095693H-B-R1

 Page
 : 10 of 27

 Issued date
 : March 22, 2018

 FCC ID
 : WAZSKE11401

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

Frequency: From 9 kHz to 30 MHz

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg.) and horizontal polarization.

Frequency: From 30 MHz to 1 GHz

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

The test was made with the detector (RBW / VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz
Antenna Type	Loop	Biconical	Logperiodic

Frequency	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz
Instrument used	130 KHZ		Test Receiver		
Detector	PK / AV	QP	PK / AV	QP	QP
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m

^{*1)} Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore the measured level of emissions may be higher than if measurements were made without a ground plane.

However test results were confirmed to pass against standard limit.

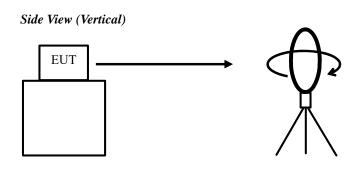
- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

This EUT has two modes which Hand Unit(transponder key) is inserted or not. The worst case was confirmed with and without Hand Unit(transponder key), as a result, the test without Hand Unit(transponder key) was the worst case. Therefore the test without Hand Unit(transponder key) was performed only.

Measurement range : 9 kHz - 1 GHz
Test data : APPENDIX
Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


^{*} Refer to Figure 1 about Direction of the Loop Antenna.

^{*2)} Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

^{*}The result is rounded off to the second decimal place, so some differences might be observed.

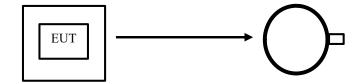
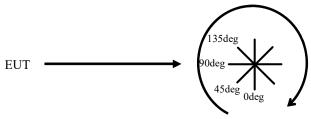

Test report No. : 12095693H-B-R1
Page : 11 of 27
Issued date : March 22, 2018
FCC ID : WAZSKE11401

Figure 1: Direction of the Loop Antenna

.....


Top View (Horizontal)

Antenna was not rotated.

.....

Top View (Vertical)

Front side: 0 deg.

Forward direction: clockwise

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12095693H-B-R1
Page : 12 of 27
Issued date : March 22, 2018
FCC ID : WAZSKE11401

SECTION 6: -26 dB Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-26 dB Bandwidth	100 kHz	1 kHz	3 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

Test data : APPENDIX 1

Test result : Pass

SECTION 7: 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
/	nent was performed with Pe	· · · · · · · · · · · · · · · · · · ·	x Hold since th	e duty cycle was not	100 %.		

Test data : APPENDIX 1

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12095693H-B-R1
Page : 13 of 27
Issued date : March 22, 2018
FCC ID : WAZSKE11401

APPENDIX 1: Test data

Radiated Emission below 30MHz (Fundamental and Spurious Emission) (ANT-FR)

Test place Ise EMC Lab. No.1 Semi Anechoic Chamber

Report No. 12095693H
Date January 29, 2018
Temperature/ Humidity 21 deg. C / 35 % RH
Engineer Koji Yamamoto

Mode Tx 125 kHz Mod on, ANT-FR

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
or				Factor			Factor				
Polarity [Hori/Vert	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	107.7	19.8	-74.0	32.2	-	21.3	45.6	24.3	Fundamental
0	0.25000	PK	76.2	19.7	-74.0	32.2	-	-10.3	39.6	49.9	
0	0.37500	PK	56.9	19.7	-73.9	32.2	-	-29.5	36.1	65.6	
0	0.50000	QP	38.9	19.7	-33.9	32.1	-	-7.4	33.6	41.0	
0	0.62500	QP	32.8	19.7	-33.9	32.2	-	-13.6	31.7	45.3	
0	0.75000	QP	32.3	19.7	-33.9	32.2	-	-14.1	30.1	44.2	
0	0.87500	QP	31.4	19.7	-33.9	32.2	-	-15.0	28.7	43.7	
0	1.00000	QP	31.9	19.7	-33.8	32.2	-	-14.4	27.6	42.0	
0	1.12500	QP	30.9	19.7	-33.8	32.2	-	-15.4	26.5	41.9	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

ſ	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
					Factor			Factor				
l		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	0	0.125	AV	107.7	19.8	-74.0	32.2	0.0	21.3	25.6	4.3	
ſ	0	0.250	AV	76.2	19.7	-74.0	32.2	0.0	-10.3	19.6	29.9	
	0	0.375	AV	56.9	19.7	-73.9	32.2	0.0	-29.5	16.1	45.6	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor *

Result of the fundamental emission at 3 m without Distance factor

PK

	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
					Factor			Factor				
		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ĺ	0	0.12500	PK	107.7	19.8	6.0	32.2	-	101.3	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable + Attenuator) - Gain(Amprifier)

All spurious emissions lower than this result.

* The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

Test report No. : 12095693H-B-R1
Page : 14 of 27
Issued date : March 22, 2018
FCC ID : WAZSKE11401

Radiated Emission below 30MHz (Fundamental and Spurious Emission) (ANT-C)

Test place Ise EMC Lab. No.1 Semi Anechoic Chamber

Report No. 12095693H

Date January 29, 2018

Temperature/ Humidity 21 deg. C / 35 % RH

Engineer Koji Yamamoto

Mode Tx 125 kHz Mod on, ANT-C

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
or				Factor			Factor				
Polarity [Hori/Vert	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	109.0	19.8	-74.0	32.2	-	22.6	45.6	23.0	Fundamental
0	0.25000	PK	79.2	19.7	-74.0	32.2	-	-7.3	39.6	46.9	
0	0.37500	PK	72.1	19.7	-73.9	32.2	-	-14.3	36.1	50.4	
0	0.50000	QP	52.8	19.7	-33.9	32.1	-	6.5	33.6	27.1	
0	0.62500	QP	41.0	19.7	-33.9	32.2	-	-5.4	31.7	37.1	
0	0.75000	QP	43.0	19.7	-33.9	32.2	-	-3.4	30.1	33.5	
0	0.87500	QP	36.7	19.7	-33.9	32.2	-	-9.7	28.7	38.4	
0	1.00000	QP	37.6	19.7	-33.8	32.2	-	-8.7	27.6	36.3	
0	1.12500	QP	32.9	19.7	-33.8	32.2	-	-13.4	26.5	39.9	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)$

PK with Duty factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.125	AV	109.0	19.8	-74.0	32.2	0.0	22.6	25.6	3.0	
0	0.250	AV	79.2	19.7	-74.0	32.2	0.0	-7.3	19.6	26.9	
0	0.375	AV	72.1	19.7	-73.9	32.2	0.0	-14.3	16.1	30.4	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor *

Result of the fundamental emission at 3 m without Distance factor

PK

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	109.0	19.8	6.0	32.2	-	102.6	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable + Attenuator) - Gain(Amprifier)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*} All spurious emissions lower than this result.

^{*} The test result is rounded off to one or two decimal places, so some differences might be observed.

Test report No. : 12095693H-B-R1
Page : 15 of 27
Issued date : March 22, 2018
FCC ID : WAZSKE11401

Radiated Emission below 30MHz (Fundamental and Spurious Emission) (Antenna-Coil)

Test place Ise EMC Lab. No.1 Semi Anechoic Chamber

Report No. 12095693H
Date January 29, 2018
Temperature/ Humidity 21 deg. C / 35 % RH
Engineer Koji Yamamoto

Mode Tx 125 kHz Mod on, Antenna-Coil

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
or				Factor			Factor				
Polarity [Hori/Vert	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	90.1	19.8	-74.0	32.2	-	3.7	45.6	41.9	Fundamental
0	0.25000	PK	45.3	19.7	-74.0	32.2	-	-41.2	39.6	80.8	
0	0.37500	PK	40.4	19.7	-73.9	32.2	1	-46.0	36.1	82.1	
0	0.50000	QP	33.0	19.7	-33.9	32.1	-	-13.3	33.6	46.9	
0	0.62500	QP	32.2	19.7	-33.9	32.2	1	-14.2	31.7	45.9	
0	0.75000	QP	31.8	19.7	-33.9	32.2	-	-14.6	30.1	44.7	
0	0.87500	QP	31.3	19.7	-33.9	32.2	-	-15.1	28.7	43.8	
0	1.00000	QP	31.5	19.7	-33.8	32.2	1	-14.8	27.6	42.4	
0	1.12500	QP	31.6	19.7	-33.8	32.2	-	-14.7	26.5	41.2	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)$

PK with Duty factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.125	AV	90.1	19.8	-74.0	32.2	0.0	3.7	25.6	21.9	
0	0.250	AV	45.3	19.7	-74.0	32.2	0.0	-41.2	19.6	60.8	
0	0.375	AV	40.4	19.7	-73.9	32.2	0.0	-46.0	16.1	62.1	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor *

Result of the fundamental emission at 3 m without Distance factor

PK

ĺ	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
					Factor			Factor				
		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	0	0.12500	PK	90.1	19.8	6.0	32.2	-	83.7	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable + Attenuator) - Gain(Amprifier)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

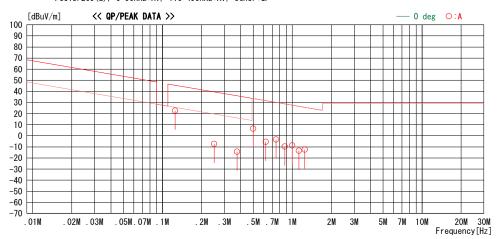
^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*} All spurious emissions lower than this result.

^{*} The test result is rounded off to one or two decimal places, so some differences might be observed.

Test report No. : 12095693H-B-R1
Page : 16 of 27
Issued date : March 22, 2018

Issued date : March 22, 2018 FCC ID : WAZSKE11401


Radiated Emission below 30 MHz (Fundamental and Spurious Emission) (Plot data, Worst case)

Test place Ise EMC Lab. No.1 Semi Anechoic Chamber

Report No. 12095693H
Date January 29, 2018
Temperature/ Humidity 21 deg. C / 35 % RH
Engineer Koji Yamamoto

Mode Tx 125 kHz Mod on, ANT-C

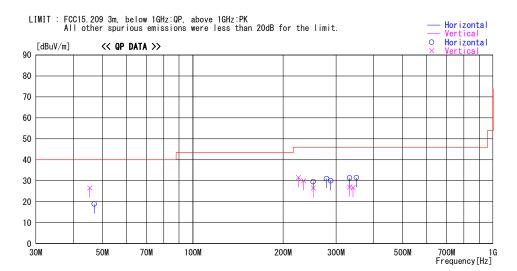
LIMIT : FCC15.209(a), 9-90kHz:PK, 110-490kHz:PK, other:QP FCC15.209(a), 9-90kHz:AV, 110-490kHz:AV, other:QP

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12095693H-B-R1 Page : 17 of 27

Issued date : March 22, 2018 FCC ID : WAZSKE11401


Radiated Emission above 30 MHz (Spurious Emission) (ANT-FR)

Report No. 12095693H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date January 30, 2018
Temperature / Humidity 21 deg. C / 32 % RH
Engineer Koji Yamamoto

Mode Tx 125 kHz Mod on, ANT-FR

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
45. 358	45. 4	QP	12. 3	-31. 1	26. 6		100	Vert.	40. 0	13. 4	
46. 954	38.3	QP	11.7	-31. 1	18. 9	212	300	Hori.	40. 0	21. 1	
224. 906	48.8	QP	11.6	-28. 9	31.5	46	100	Vert.	46. 0	14. 5	
233. 905	47.3	QP	11.6	-28. 9	30.0	64	100	Vert.	46. 0	16.0	
251. 901	43.5	QP	11.8	-28. 7	26. 6	267	100	Vert.	46. 0	19. 4	
251. 901	46.5	QP	11.8	-28. 7	29. 6	112	100	Hori.	46. 0	16. 4	
278. 891	46.8	QP	12.7	-28. 5	31.0	270	100	Hori.	46. 0	15. 0	
287. 888	45.3	QP	13. 1	-28. 4	30.0	251	100	Hori.	46. 0	16.0	
332. 871	40.6	QP	14. 2	-27. 8	27. 0	102	100	Vert.	46. 0	19. 0	
332. 871	45.0	QP	14. 2	-27. 8	31.4	285	100	Hori.	46. 0	14. 6	
341.867	40.1	QP	14. 4	-27. 8	26. 7	97	100	Vert.	46. 0	19. 3	
350. 865	44. 5	QP	14. 6	-27. 6	31.5	297	100	Hori.	46. 0	14. 5	

CHART: WITH FACTOR

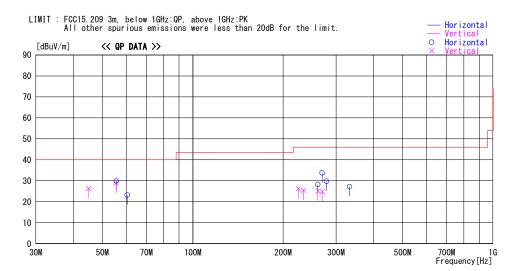
ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS & GAIN (CABLE + ATT - GAIN (AMP))

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test report No. : 12095693H-B-R1
Page : 18 of 27
Issued date : March 22, 2018
FCC ID : WAZSKE11401


Radiated Emission above 30 MHz (Spurious Emission) (ANT-C)

Report No. 12095693H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date January 30, 2018
Temperature / Humidity 21 deg. C / 32 % RH
Engineer Koji Yamamoto

Mode Tx 125 kHz Mod on, ANT-C

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]	52.	[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	001111101110
44. 988	45.0	QP	12. 4	-31. 1	26. 3		100	Vert.	40.0	13. 7	
55. 539	50.9	QP	8.8	-30. 9	28. 8	246	100	Vert.	40.0	11. 2	
55. 625	52.0	QP	8.7	-30. 9	29. 8	177	300	Hori.	40. 0	10. 2	
60. 474	46.6	QP	7.3	-30. 8	23. 1	179	300	Hori.	40. 0	16. 9	
224. 914	43.5	QP	11.6	-28. 9	26. 2	39	100	Vert.	46. 0	19.8	
233. 911	42.7	QP	11.6	-28. 9	25. 4	45	100	Vert.	46. 0	20. 6	
260. 896	44. 7	QP	12. 1	-28. 6	28. 2	248	100	Hori.	46. 0	17. 8	
260. 896	41.6	QP	12. 1	-28. 6	25. 1	0	100	Vert.	46. 0	20. 9	
269. 896	40.9	QP	12. 4	-28. 5	24. 8	0	100	Vert.	46. 0	21. 2	
269. 896	49.8	QP	12. 4	-28. 5	33. 7	234	100	Hori.	46. 0	12. 3	
278. 892	45. 5	QP	12. 7	-28. 5	29. 7	233	100	Hori.	46. 0	16. 3	
332. 878	40.8	QP	14. 2	-27. 8	27. 2	289	100	Hori.	46. 0	18. 8	
	1									1	

CHART: WITH FACTOR

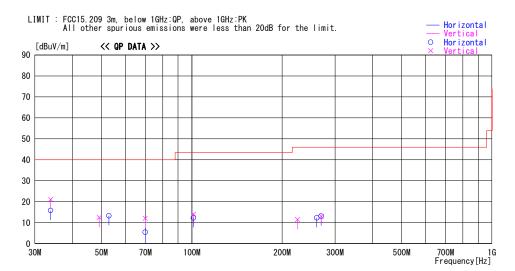
ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS & GAIN (CABLE + ATT - GAIN (AMP))

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test report No. : 12095693H-B-R1
Page : 19 of 27
Issued date : March 22, 2018
FCC ID : WAZSKE11401


Radiated Emission above 30 MHz (Spurious Emission) (Antenna-Coil)

Report No. 12095693H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date January 30, 2018
Temperature / Humidity 21 deg. C / 32 % RH
Engineer Koji Yamamoto

Mode Tx 125 kHz Mod on, Antenna-Coil

MHz (dBuV) (dBw/m) (dB) (dBuV/m) (Deg) (cm) (dBuV/m) (dB)	Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
33.877 36.1 QP 16.3 -31.3 21.1 126 100 Vert. 40.0 18.9 33.877 30.8 QP 16.3 -31.3 15.8 125 300 Hori. 40.0 24.2 49.161 32.6 QP 10.9 -31.0 12.5 201 100 Vert. 40.0 27.5 52.916 34.7 QP 9.6 -31.0 13.3 180 300 Hori. 40.0 26.7 69.923 30.1 QP 6.1 -30.7 5.5 0 300 Hori. 40.0 34.5 69.923 36.7 QP 6.1 -30.7 12.1 0 100 Vert. 40.0 27.9 101.303 32.5 QP 10.1 -30.3 12.3 0 300 Hori. 43.5 31.2 101.303 34.3 QP 10.1 -30.3 14.1 51 100 Vert. 43.5 29.4 224.914 28.8 QP 11.6 -28.9 11.5 0 100 Vert. 46.0 34.5 260.896 28.8 QP 12.1 -28.6 12.3 0 100 Hori. 46.0 33.7 269.875 29.2 QP 12.4 -28.5 13.1 0 100 Hori. 46.0 32.9	[MHz]	[dBuV]				[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
49. 161 32. 6 QP 10. 9 -31. 0 12. 5 201 100 Vert. 40. 0 27. 5 52. 916 34. 7 QP 9. 6 -31. 0 13. 3 180 300 Hori. 40. 0 26. 7 69. 923 36. 7 QP 6. 1 -30. 7 5. 5 0 300 Hori. 40. 0 27. 9 101. 303 32. 5 QP 10. 1 -30. 3 12. 3 0 300 Hori. 43. 5 31. 2 101. 303 34. 3 QP 10. 1 -30. 3 14. 1 51 100 Vert. 43. 5 31. 2 24. 914 28. 8 QP 11. 6 -28. 9 11. 5 0 100 Vert. 46. 0 34. 5 260. 896 28. 8 QP 12. 1 -28. 6 12. 3 0 100 Hori. 46. 0 33. 7 269. 875 29. 2 QP 12. 4 -28. 5 13. 1 0 <t< td=""><td>33. 877</td><td>36. 1</td><td>QP</td><td>16.3</td><td>-31. 3</td><td></td><td></td><td>100</td><td>Vert.</td><td>40. 0</td><td>18. 9</td><td></td></t<>	33. 877	36. 1	QP	16.3	-31. 3			100	Vert.	40. 0	18. 9	
52.916	33. 877	30.8	QP	16.3	-31. 3	15. 8	125	300	Hori.	40. 0	24. 2	
69.923 30.1 QP 6.1 -30.7 5.5 0 300 Hori. 40.0 34.5 69.923 36.7 QP 6.1 -30.7 12.1 0 100 Vert. 40.0 27.9 101.303 32.5 QP 10.1 -30.3 12.3 0 300 Hori. 43.5 31.2 101.303 34.3 QP 10.1 -30.3 14.1 51 100 Vert. 43.5 29.4 224.914 28.8 QP 11.6 -28.9 11.5 0 100 Vert. 46.0 34.5 260.896 28.8 QP 12.1 -28.6 12.3 0 100 Hori. 46.0 33.7 269.875 29.2 QP 12.4 -28.5 13.1 0 100 Hori. 46.0 32.9	49. 161	32.6	QP	10.9	-31.0	12. 5	201	100	Vert.	40. 0	27. 5	
69.923 36.7 QP 6.1 -30.7 12.1 0 100 Vert. 40.0 27.9 101.303 32.5 QP 10.1 -30.3 12.3 0 300 Hori. 43.5 31.2 101.303 34.3 QP 10.1 -30.3 14.1 51 100 Vert. 43.5 29.4 224.914 28.8 QP 11.6 -28.9 11.5 0 100 Vert. 46.0 34.5 26.896 28.8 QP 12.1 -28.6 12.3 0 100 Hori. 46.0 33.7 269.875 29.2 QP 12.4 -28.5 13.1 0 100 Hori. 46.0 32.9	52. 916	34.7	QP	9.6	-31.0	13. 3	180	300	Hori.	40. 0	26. 7	
101. 303 32. 5 QP 10. 1 -30. 3 12. 3 0 300 Hori. 43. 5 31. 2 101. 303 34. 3 QP 10. 1 -30. 3 14. 1 51 100 Vert. 43. 5 29. 4 224. 914 28. 8 QP 11. 6 -28. 9 11. 5 0 100 Vert. 46. 0 34. 5 260. 896 28. 8 QP 12. 1 -28. 6 12. 3 0 100 Hori. 46. 0 33. 7 269. 875 29. 2 QP 12. 4 -28. 5 13. 1 0 100 Hori. 46. 0 32. 9	69. 923		QP	6. 1	-30. 7	5. 5	0	300	Hori.	40. 0	34. 5	
101. 303	69. 923	36.7	QP	6. 1	-30. 7	12. 1	0	100	Vert.	40. 0	27. 9	
224.914	101. 303	32.5	QP	10.1	-30. 3	12. 3			Hori.	43. 5	31. 2	
260.896 28.8 QP 12.1 -28.6 12.3 0 100 Hori. 46.0 33.7 269.875 29.2 QP 12.4 -28.5 13.1 0 100 Hori. 46.0 32.9	101. 303	34. 3	QP	10.1	-30. 3	14. 1	51	100	Vert.	43. 5	29. 4	
269.875 29.2 QP 12.4 -28.5 13.1 0 100 Hori. 46.0 32.9	224. 914	28.8	QP	11.6	-28. 9	11.5	0	100	Vert.	46. 0	34. 5	
	260. 896	28.8	QP	12. 1	-28. 6	12. 3	0	100	Hori.	46. 0	33. 7	
269.896 29.2 QP 12.4 -28.5 13.1 0 100 Vert. 46.0 32.9		29. 2		12.4		13. 1	0	100	Hori.	46. 0	32. 9	
	269. 896	29. 2	QP	12. 4	-28. 5	13. 1	0	100	Vert.	46. 0	32. 9	

CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS & GAIN (CABLE + ATT - GAIN (AMP))

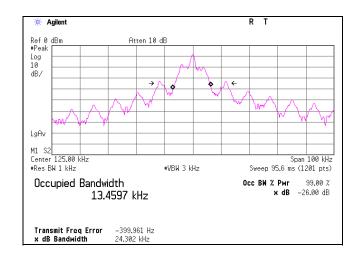
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test report No. : 12095693H-B-R1
Page : 20 of 27
Issued date : March 22, 2018
FCC ID : WAZSKE11401

<u>-26 dB Bandwidth and 99 % Occupied Bandwidth</u> (ANT-FR)


Report No. 12095693H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date January 30, 2018
Temperature / Humidity 21 deg. C / 32 % RH
Engineer Koji Yamamoto

Mode Tx 125 kHz Mod on, ANT-FR

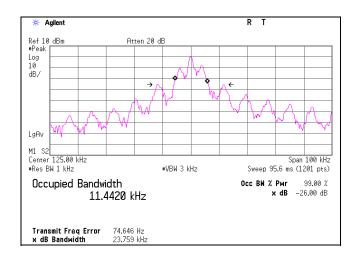
-26 dB Bandwidth	99 % Occupied Bandwidth			
[kHz]	[kHz]			
24.302	13.4597			

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12095693H-B-R1
Page : 21 of 27
Issued date : March 22, 2018

Issued date : March 22, 2018 FCC ID : WAZSKE11401

-26 dB Bandwidth and 99 % Occupied Bandwidth (ANT-C)


Report No. 12095693H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date January 30, 2018
Temperature / Humidity 21 deg. C / 32 % RH
Engineer Koji Yamamoto

Mode Tx 125 kHz Mod on, ANT-C

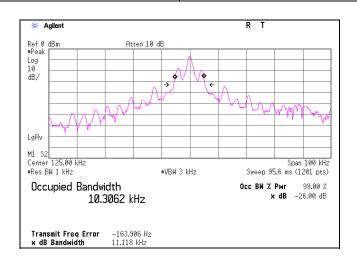
-26 dB Bandwidth	99 % Occupied Bandwidth			
[kHz]	[kHz]			
23.759	11.4420			

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12095693H-B-R1 Page : 22 of 27 Issued date : March 22, 2018

Issued date : March 22, 2018 FCC ID : WAZSKE11401

-26 dB Bandwidth and 99 % Occupied Bandwidth (Antenna-Coil)


Report No. 12095693H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date January 30, 2018
Temperature / Humidity 21 deg. C / 32 % RH
Engineer Koji Yamamoto

Mode Tx 125 kHz Mod on, Antenna-Coil

-26 dB Bandwidth	99 % Occupied Bandwidth			
[kHz]	[kHz]			
11.118	10.3062			

^{*}It was confirmed that there were no differences in the bandwidth of EUT regardless of with or without transponder.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12095693H-B-R1
Page : 23 of 27
Issued date : March 22, 2018

Issued date : March 22, 2018 FCC ID : WAZSKE11401

APPENDIX 2: Test instruments

EMI test equipment

Control No. Instrument		Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval (month)	
MAEC-01	Semi Anechoic Chamber(NSA)	TDK Semi Anechoic Chamber 10m		DA-06881	RE	2017/09/30 * 12	
MOS-27	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q26	RE	2018/01/24 * 12	
MJM-25	Measure	KOMELON	KMC-36	-	RE	-	
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-	
MTR-09	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	RE	2017/06/27 * 12	
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	RE	2017/10/11 * 12	
MCC-143	Coaxial Cable	UL Japan	-	-	RE	2017/06/12 * 12	
MCC-03	Coaxial Cable	J	5D-2W(20m)/3D- 2W(7.5m)/RG400u(1.5 m)/RFM- E421(Switcher)	-/01068 (Switcher)	RE	2017/06/26 * 12	
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2017/03/27 * 12	
MPA-14	Pre Amplifier	SONOMA INSTRUMENT	310	260833	RE	2017/03/27 * 12	
MAT-08	Attenuator(6dB)	Weinschel Corp	2	BK7971	RE	2017/11/14 * 12	
MMM-03	Digital Tester	Fluke	FLUKE 26-3	78030621	RE	2017/08/07 * 12	
KBA-05	Biconical Antenna	Schwarzbeck	BBA9106	2513	RE	2017/11/23 * 12	
MLA-21	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-190	RE	2017/12/10 * 12	
MCC-02	Coaxial Cable	Suhner/storm/Agilent /TSJ	-	-	RE	2017/09/26 * 12	
MPA-19	Pre Amplifier	MITEQ	MLA-10K01-B01-35	1237616	RE	2017/02/08 * 12	
MMM-03	Digital Tester	Fluke	FLUKE 26-3	78030621	RE	2017/08/07 * 12	
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	RE	2017/11/07 * 12	
MLPA-10	Loop Antenna	UL Japan	-	-	RE	Pre Check	

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Spurious emission

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN