

FCC RADIO TEST REPORT

FCC ID	:	WAP-CYSBSYS-RP01
Equipment	:	Wifi 802.11b/g/n/ac + BT/BLE
Brand Name	:	Cypress
Model Name	:	CYSBSYS-RP01
Applicant	:	Cypress Semiconductor, Inc.
		198 Champion Court San Jose, CA 95134
Manufacturer	:	Cypress Semiconductor, Inc. 198 Champion Court San Jose, CA 95134
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Dec. 08, 2020 and testing was started from Dec. 08, 2020 and completed on Feb. 10, 2021. We, Sporton International (USA) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (USA) Inc., the test report shall not be reproduced except in full.

Nil Kao

Approved by: Neil Kao

Sporton International (USA) Inc. 1175 Montague Expressway, Milpitas, CA 95035

Page Number: 1 of 34Issued Date: Mar. 03, 2021Report Version: 01

Table of Contents

His	tory o	f this test report	3
Sur	nmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	5
2	Test	Configuration of Equipment Under Test	6
	2.1	Carrier Frequency Channel	6
	2.2	Test Mode	7
	2.3	Connection Diagram of Test System	8
	2.4	Support Unit used in test configuration and system	8
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	9
3	Test	Result	10
	3.1	6dB and 99% Bandwidth Measurement	10
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	16
	3.4	Conducted Band Edges and Spurious Emission Measurement	21
	3.5	Radiated Band Edges and Spurious Emission Measurement	26
	3.6	AC Conducted Emission Measurement	30
	3.7	Antenna Requirements	32
4	List c	of Measuring Equipment	33
5	Unce	rtainty of Evaluation	34
Арј	oendix	A. Conducted Test Results	
Арј	oendix	B. AC Conducted Emission Test Result	
Арј	oendix	C. Radiated Spurious Emission	
Ap	oendix	CD. Radiated Spurious Emission Plots	
-			

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR201216001B	01	Initial issue of report	Mar. 03, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	Under limit 6.47 dB at 2355.465 MHz
3.6	15.207	AC Conducted Emission	Pass	Under limit 12.53 dB at 0.396 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

TEL : 408 9043300	Page Number	: 4 of 34
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Issued Date	: Mar. 03, 2021
	Report Version	: 01

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac

Product Specification subjective to this standard			
Antenna Type	WLAN: Chip Antenna Bluetooth: Chip Antenna		
Antenna information			
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi) 0.8		

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International (USA) Inc.	
Test Site Location1175 Montague Expressway, Milpitas, CA 95035 TEL : 408 9043300		
Test Site No.	Sporton Site No.	
	TH01-CA, CO01-CA, 03CH02-CA	

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

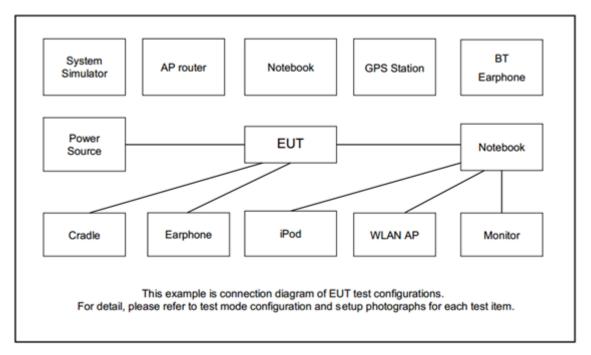
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases
Test Item	Data Rate / Modulation
	Bluetooth – LE / GFSK
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
	Mode 1: WLAN (2.4GHz) Link + Jig 1 (Fixture) + Jig 1-1 (Fixture) + Jig 1-1
AC Conducted Emission	Adapter Mode 2: WLAN (5GHz) Link + Jig 1 (Fixture) + Jig 1-1 (Fixture) + Jig 1-1 Adapter
LIIISSIOI	Mode 3: Bluetooth Link + Jig1 (Fixture) + Jig 1-2 (Fixture) + Jig 1-2 Adapter
Remark: The wo	orst case of conducted emission is mode 1; only the test data of it was reported.

TEL: 408 9043300	Page Number	: 7 of 34
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Issued Date	: Mar. 03, 2021
	Report Version	: 01

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Altos PS548 Series	82600085033	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
2.	WLAN AP	NetGear	R6080	PY316400359	N/A	N/A
3.	Jig 1 (Fixture)	Cypress	RP01	N/A	N/A	N/A
4.	Jig 1-1 (Fixture)	Cypress	CYW9SDIOAD_2	N/A	N/A	N/A
5.	Jig 1-1 Adapter	SCEPTRE POWER	ATS036T-A050	N/A	N/A	Unshielded 1.8m
6.	Jig 1-2 (Fixture)	GB-Bxi7-4500	1419631173	N/A	N/A	N/A
7.	Jig 1-2 Adapter	FSP	FSP065-REBN2	N/A	N/A	Unshielded, 1.8m

2.5 EUT Operation Test Setup

The RF test items, utility "PuTTY & Release 0.70" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 **Test Result**

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

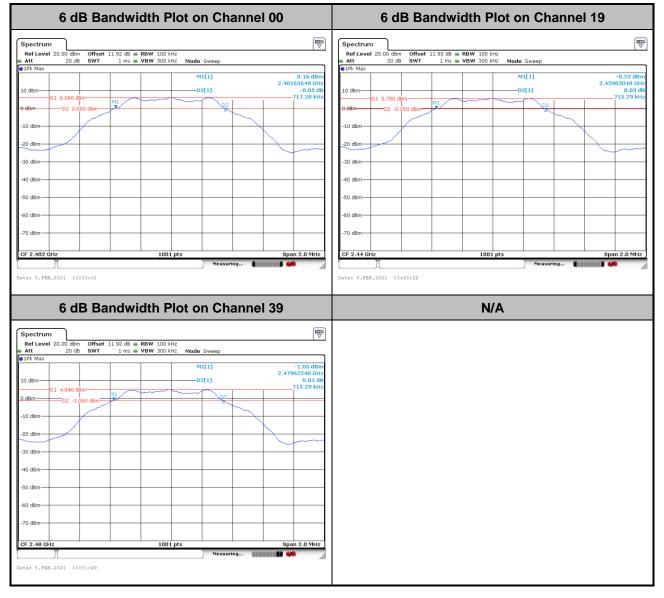
3.1.3 Test Procedures

- The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW). 1.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously. 3.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 5. 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

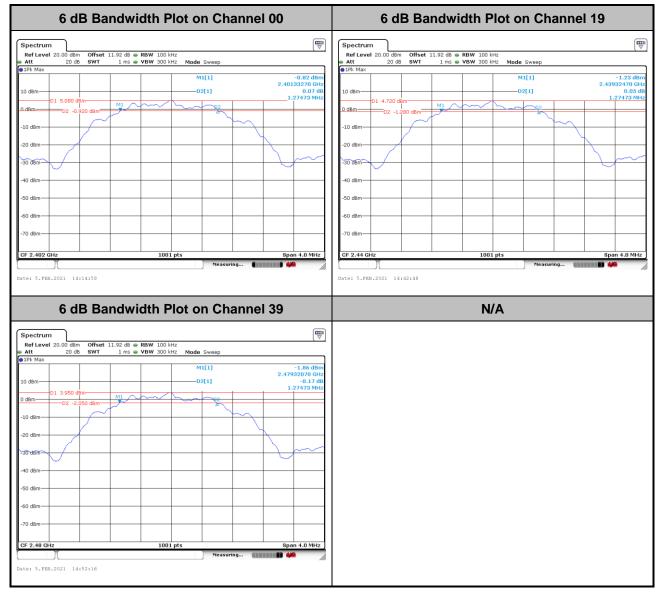
3.1.4 Test Setup

EUT

Spectrum Analyzer

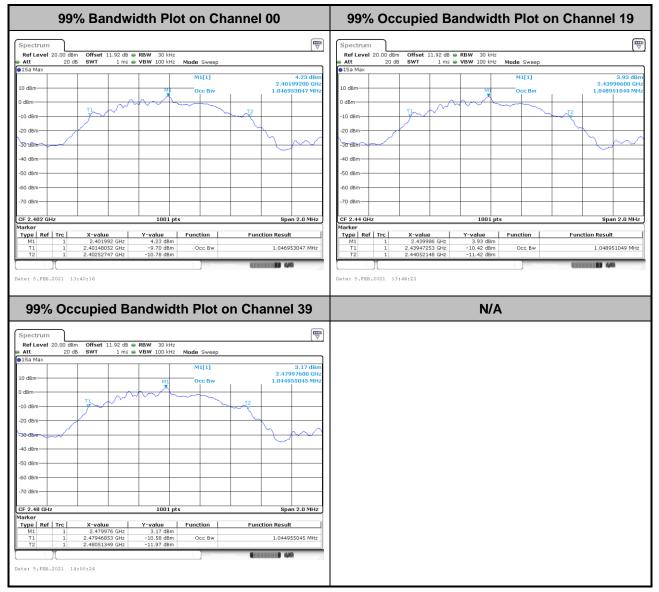


3.1.5 Test Result of 6dB Bandwidth


Please refer to Appendix A.

<1Mbps>

<2Mbps>



3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL : 408 9043300	Page Number	: 13 of 34
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Issued Date	: Mar. 03, 2021
	Report Version	: 01

<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 3. The path loss was compensated to the results for each measurement.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

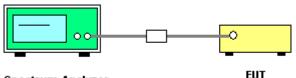
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

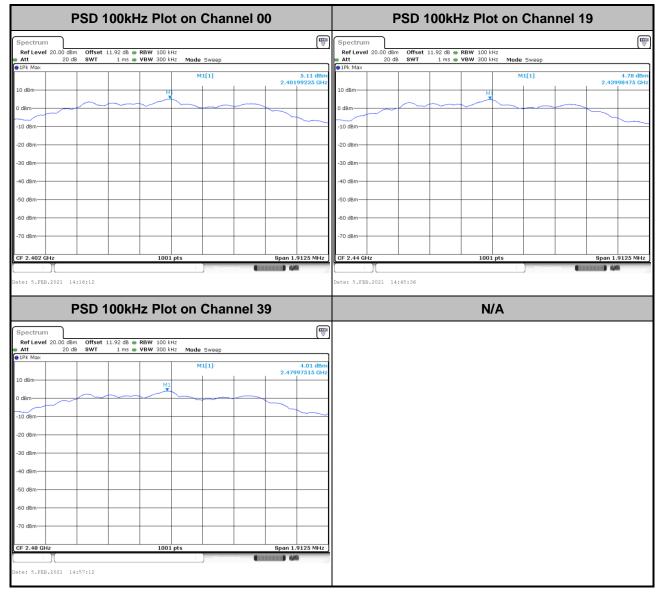
- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

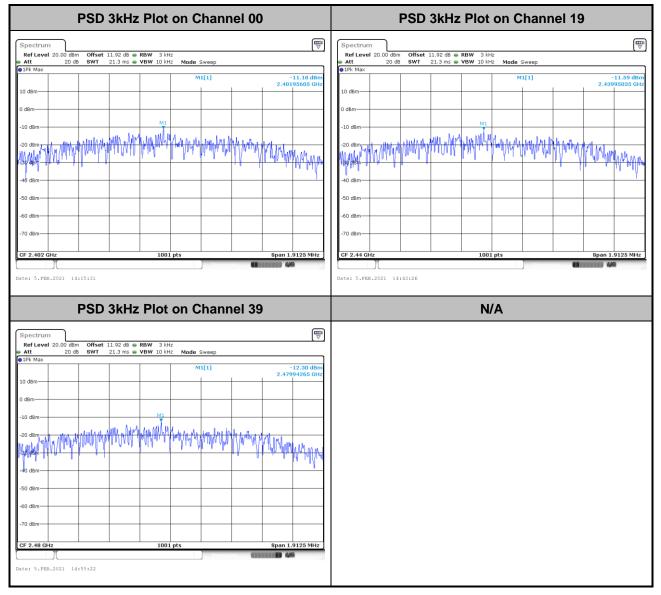
Please refer to Appendix A.


3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>

PSD 10	PSD 100kHz Plot on Channel 00			PSD 100kH	Iz Plot on Cha	annel 19	
Spectrum Ref Level 20.00 dBm Offset 11.92 Att 20 dB SWT 1	2 dB ● RBW 100 kHz .ms ● VBW 300 kHz Mode Sweep	(₩) ▼	Spectrum Ref Level 20.00 dB Att 20 c	m Offset 11.92 dB 👄 B SWT 1 ms 👄	RBW 100 kHz VBW 300 kHz Mode Sweep)	₽
● 1Pk Max	M1[1]	6.06 dBm 2.40199895 GHz	● 1Pk Max 10 dBm		M1[1]		6 dBm 55 GHz
0 dBm			0 dBm				
-10 dBm			-10 dBm				
-30 dBm			-30 dBm				
-50 dBm			-50 dBm				
-70 dBm			-70 dBm				
CF 2.402 GHz	1001 pts Measuring	Span 1.0755 MHz	CF 2.44 GHz	3:44:21	1001 pts	Span 1.0725	5 MHz
PSD 10	0kHz Plot on Channel	39			N/A		
Att 20 dB SWT 1	2 dB 🖷 RBW 100 kHz ms 🖶 VBW 300 kHz 🛛 Mode Sweep						
IPk Max I0 dBm O dBm	M1[1]	4.94 dBm 2.47998715 GHz					
-10 dBm							
-30 dBm							
-50 dBm							
-70 dBm							
CF 2.48 GHz	1001 pts	Span 1.0725 MHz					
Date: 5.FEB.2021 13:53:11							

<2Mbps>


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

<1Mbps>

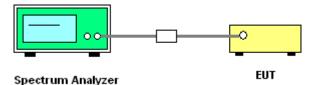
PSD 3kHz Plot on Channel 00	PSD 3kHz Plot on Channel 19
Spectrum Image: Constraint of the sector of th	Spectrum Image: Constraint of the system Image: Constand of the system
• IPK Max -7.51 dbm • 0 dbm -7.51 db	• JPK Max -7.04 dbm 10 dbm -7.04 dbm 10 dbm -7.04 dbm 0 dbm -7.04 dbm -10 dbm -7.04 dbm -20 dbm -7.04 dbm -30 dbm -7.04 dbm -30 dbm -7.04 dbm -30 dbm -7.04 dbm -50 dbm -7.04 dbm -50 dbm -7.04 dbm -7.04 dbm -7.04 dbm -9.04 dbm
PSD 3kHz Plot on Channel 39	N/A
Spectrum Image: Constraint of the second secon	

<2Mbps>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

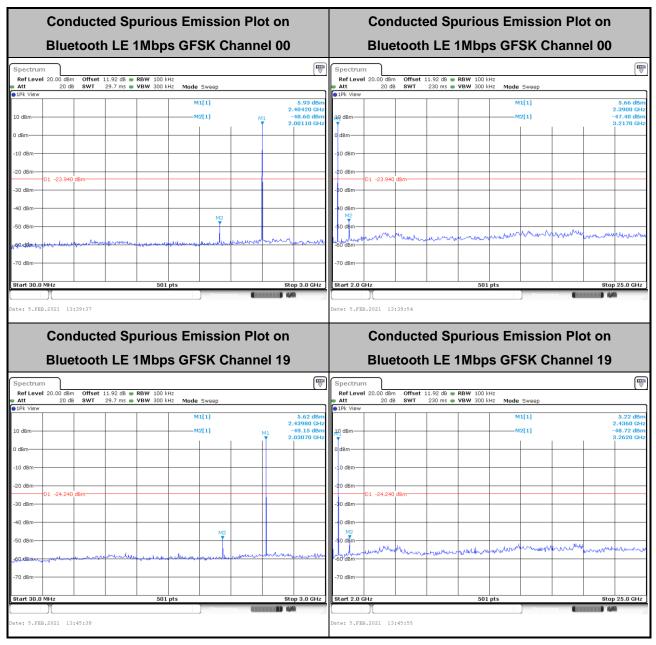
3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

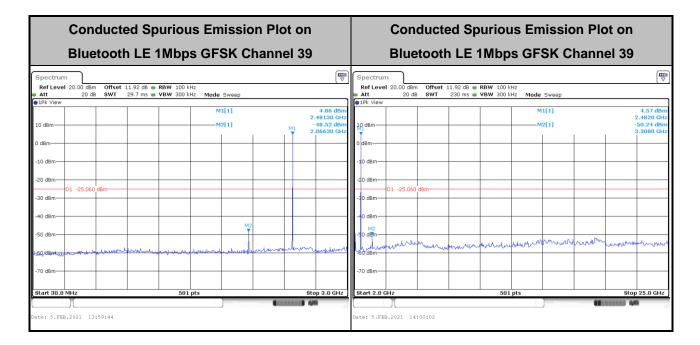
3.4.5 Test Result of Conducted Band Edges Plots

<1Mbps>


Low Band Edge	Plot on Chann	el 00	Hig	gh Band E	dge Plot o	on Channe	el 39
Spectrum Ref Level 20.00 dBm Offset 11.92 dB RBW 100 Att 20 dB SWT 8 ms VBW 300 IPk Max	kHz Mode Sweep		Spectrum Ref Level 20.00 dBm Att 20 dE		VBW 300 kHz Mod		() ()
10 dBm	M1[1]	-53.98 dBm 2.99998130 GHz	10 dBm	013			55.75 dBm 2.48373830 CHz
Start 2.375 GHz 80	D1 pts	Stop 2.405 GHz	Start 2.475 GHz	1 1	8001 pts	Measuring	Stop 2.505 GHz
Date: 5.FEB.2021 13:36:03			Date: 5.FEB.2021 13	:58:44			

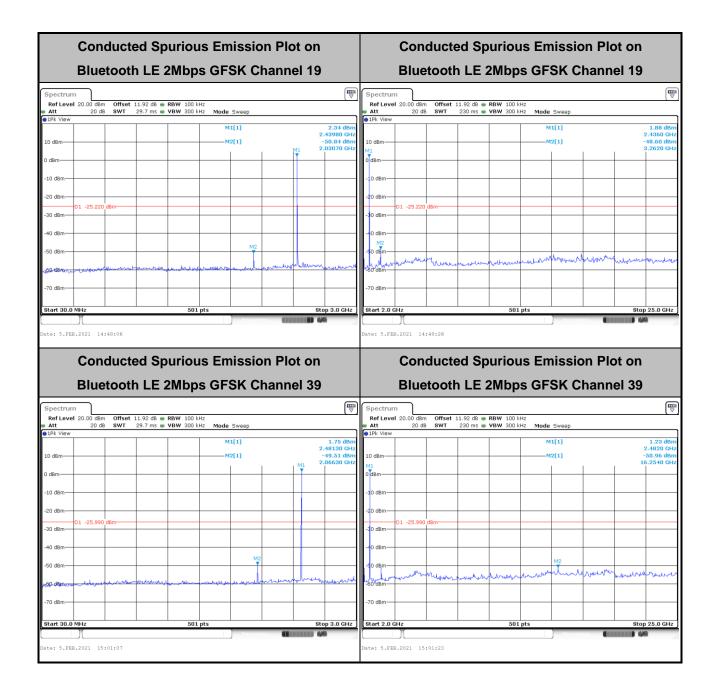
<2Mbps>

Low Band	d Edge Plot on Cha	annel 00	High	Band Edge Plot	t on Chann	el 39
Att 20 dB SWT 8 IPk Max	2 dB • RBW 100 HHz ms • VBW 300 kHz Mode Sweep M1[1]	-26.60 dBm 2.39999250 GHz	Att 20 dB St 1Pk Max	ffset 11.92 dB ● RBW 100 kHz WT 8 ms ● VBW 300 kHz 1	Mode Sweep M1[1]	-55.90 dBm 2.50469440 GHz
10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm			10 dBm 0 dBm -10 dBm -20 dBm 0 1 -25,990 dBm -30 dBm -40 dBm -50 dBm -50 dBm			
-70 dBm	8001 pts	F1 Stop 2.405 GHz	-70 dBm	F1 8001 pts		Stop 2.505 GHz
Date: 5.FEB.2021 14:17:35	Measur	ing (IIIIII) (A	Date: 5.FEB.2021 14:58:5	50	Measuring	(11111) 499


TEL: 408 9043300	Page Number	: 22 of 34
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Issued Date	: Mar. 03, 2021
	Report Version	: 01

3.4.6 Test Result of Conducted Spurious Emission Plots

TEL : 408 9043300	Page Number	: 23 of 34
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Issued Date	: Mar. 03, 2021
	Report Version	: 01



Conducted Sp	Conducted Spurious Emission Plot on			l Spurious Emissio	on Plot on
Bluetooth LE 2	2Mbps GFSK Ch	nannel 00	Bluetooth	LE 2Mbps GFSK C	hannel 00
Spectrum Ref Level 20.00 dBm Offset 11.92 dB Att 20 dB SWT 29.7 ms IPk View IPk View IPk View IPk View	RBW 100 kHz VBW 300 kHz Mode Sweep M1[1]	(₩) 5.43 dBm		22 dB	(₩ ♥) 5,42 dBm
10 dBm	M2[1]	2.40420 GHz M1 -48.28 dBm ▼ 2.00110 GHz	140 dBm	M2[1]	2.3900 GH2 -47.53 dBm 3.2170 GH2
-20 dBm-01 -24.890 dBm-			-20 dBm 01 -24.890 dBm		
-40 dBm	M2	www.manauna	+0 dBm M2 -50 dBm -60 dBm	unannumana	human
-70 dBm	501 pts	Stop 3.0 GHz	-70 dBm	501 pts	Stop 25.0 GHz
Date: 5.FEB.2021 14:27:25	ourpes		Date: 5.FEB.2021 14:28:35	ou pts	

TEL : 408 9043300	Page Number	: 24 of 34
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Issued Date	: Mar. 03, 2021
	Report Version	: 01

3.5 Radiated Band Edges and Spurious Emission Measurement

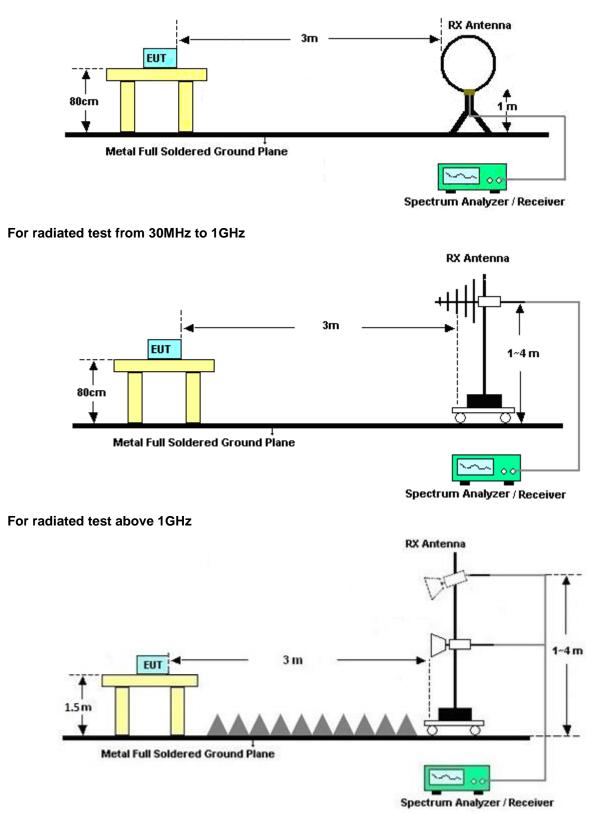
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

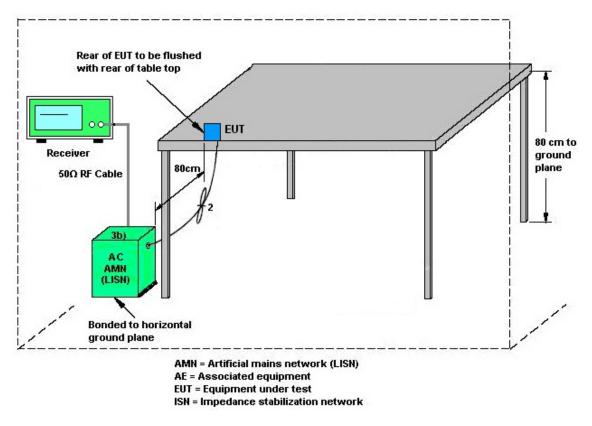
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of omission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
LISN	TESEQ	NNB51	47407	N/A	Jul. 06, 2020	Jan. 09, 2021	Jul. 05, 2021	Conduction (CO01-CA)
EMI Test Receiver	R&S	ESR7	102177	9KHz~7GHz	Jul. 16, 2020	Jan. 09, 2021	Jul. 15, 2021	Conduction (CO01-CA)
Pulse limiter with 10dB attenuation	R&S	VTSD 9561-F N	9561-F- N00412	N/A	Jul. 08, 2020	Jan. 09, 2021	Jul. 07, 2021	Conduction (CO01-CA)
Test Software	R&S	EMC32 V10.30.0	N/A	N/A	N/A	Jan. 09, 2021	N/A	Conduction (CO01-CA)
Bilog Antenna	TESEQ	6111D	50392	30MHz~1GHz	Jul. 29, 2020	Dec. 08, 2020~ Feb. 03, 2021	Jul. 28, 2021	Radiation (03CH02-CA)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	01895	1GHz~18GHz	Aug. 28, 2020	Dec. 08, 2020~ Feb. 03, 2021	Aug. 27, 2021	Radiation (03CH02-CA)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00842	18GHz~40GHz	Jul. 27, 2020	Dec. 08, 2020~ Feb. 03, 2021	Jul. 26, 2021	Radiation (03CH02-CA)
Amplifier	SONOMA	310N	372240	N/A	Aug. 12, 2020	Dec. 08, 2020~ Feb. 03, 2021	Aug. 11, 2021	Radiation (03CH02-CA)
Preamplifier	Keysight	83017A	MY53270321	1GHz~26.5GHz	Jul. 28, 2020	Dec. 08, 2020~ Feb. 03, 2021	Jul. 27, 2021	Radiation (03CH02-CA)
Preamplifier	EMEC	EMC18G40 G	060725	18G-40G	Aug. 07, 2020	Dec. 08, 2020~ Feb. 03, 2021	Aug. 06, 2021	Radiation (03CH02-CA)
Preamplifier	E-instrument	ERA-100M-1 8G-56-01-A7 0	EC1900251	1GHz~18GHz	Nov. 26, 2019	Dec. 08, 2020~ Feb. 03, 2021	Nov. 25, 2021	Radiation (03CH02-CA)
EMI Test Receiver	Rohde & Schwarz	ESU26	100049	20Hz~26.5GHz	Aug. 11, 2020	Dec. 08, 2020~ Feb. 03, 2021	Aug. 10, 2021	Radiation (03CH02-CA)
Spectrum Analyzer	Keysight	N9010A	MY57420221	10Hz~44GHz	Sep. 11, 2020	Dec. 08, 2020~ Feb. 03, 2021	Sep. 10, 2021	Radiation (03CH02-CA)
Filter	Wainwright	Whkx8-5872 .5-6750-180 00-40ST	SN8	6.75G Highpass	Jul. 24, 2020	Dec. 08, 2020~ Feb. 03, 2021	Jul. 23, 2021	Radiation (03CH02-CA)
Filter	Wainwright	WHKX12-27 00-3000-180 00-60ST	SN10	3G Highpass	Jul. 24, 2020	Dec. 08, 2020~ Feb. 03, 2021	Jul. 23, 2021	Radiation (03CH02-CA)
Filter	Wainwright	WLK12-1200 -1272-11000 -40SS	SN2	1.2G Low Pass	Jul. 24, 2020	Dec. 08, 2020~ Feb. 03, 2021	Jul. 23, 2021	Radiation (03CH02-CA)
Hygrometer	TESEO	608-H1	45142602	N/A	Aug. 05, 2020	Dec. 08, 2020~ Feb. 03, 2021	Aug. 04, 2021	Radiation (03CH02-CA)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Dec. 08, 2020~ Feb. 03, 2021	N/A	Radiation (03CH02-CA)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Dec. 08, 2020~ Feb. 03, 2021	N/A	Radiation (03CH02-CA)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Dec. 08, 2020~ Feb. 03, 2021	N/A	Radiation (03CH02-CA)
Software	Audix	E3	N/A	N/A	N/A	Dec. 08, 2020~ Feb. 03, 2021	N/A	Radiation (03CH02-CA)
Hygrometer	Testo	608-H1	45142595	N/A	Aug. 05, 2020	Dec. 24, 2020~ Feb. 10, 2021	Aug. 04, 2021	Conducted (TH01-CA)
Power Sensor	DARE!!	RPR3006W	RPR6W-190 1026	10MHz-6GHz	Jun. 24, 2020	Dec. 24, 2020~ Feb. 10, 2021	Jun. 23, 2021	Conducted (TH01-CA)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101089	10Hz-40GHz	Sep. 14, 2020	Dec. 24, 2020~ Feb. 10, 2021	Sep. 13, 2021	Conducted (TH01-CA)
Coupler	WOKEN	20dB 30W Coupler	CAT7AKW1A 1	0.5-18GHz	Calibration from System	Dec. 24, 2020~ Feb. 10, 2021	Calibration from System	Conducted (TH01-CA)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	Ζ.Ζ

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.5
of 95% (U = 2Uc(y))	4.5

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	6.1
of 95% (U = 2Uc(y))	6.1

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	6.5
of 95% (U = 2Uc(y))	0.5

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Andy Kao	Temperature:	15.1~19.4	°C
Test Date:	2020/12/24-2021/2/10	Relative Humidity:	33.2~54.3	%

						<u>RESULTS</u> ge Power				
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	7.12	30.00	0.80	7.92	36.00	Pass
BLE	1Mbps	1	19	2440	6.72	30.00	0.80	7.52	36.00	Pass
BLE	1Mbps	1	39	2480	5.92	30.00	0.80	6.72	36.00	Pass

TEST RESULTS DATA
Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	6.06	-7.61	0.80	8.00	Pass
BLE	1Mbps	1	19	2440	5.76	-7.94	0.80	8.00	Pass
BLE	1Mbps	1	39	2480	4.94	-8.75	0.80	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

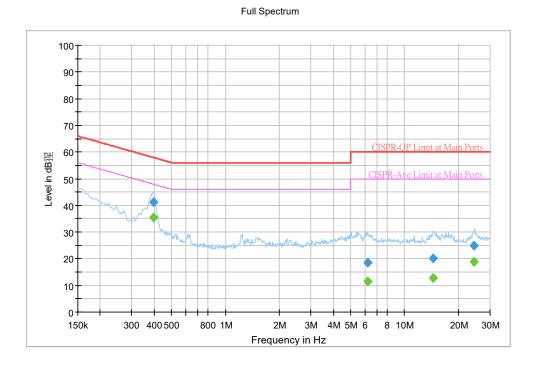
TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	6.92	30.00	0.80	7.72	36.00	Pass
BLE	2Mbps	1	19	2440	6.52	30.00	0.80	7.32	36.00	Pass
BLE	2Mbps	1	39	2480	5.82	30.00	0.80	6.62	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	5.11	-11.18	0.80	8.00	Pass
BLE	2Mbps	1	19	2440	4.78	-11.59	0.80	8.00	Pass
BLE	2Mbps	1	39	2480	4.01	-12.30	0.80	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

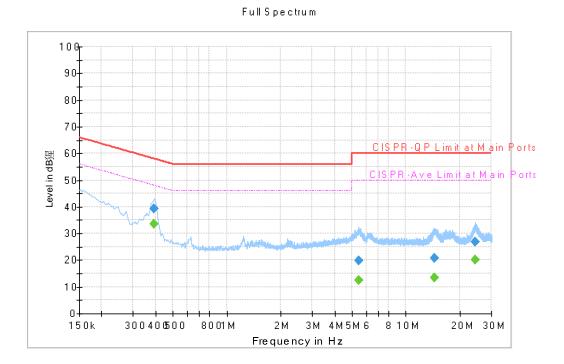

Appendix B. AC Conducted Emission Test Results

Toot Engineer	Janagan Wangao	Temperature :	18~21 ℃
rest Engineer.	Janssen Wongso	Relative Humidity :	30.6~34.8%

EUT Information

Test Site : Mode : Test Voltage : Project : CO01-CA

1 120Vac/60Hz Cypress CYSBSYS Line


Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.395610		35.42	47.95	12.53	L1	OFF	20.0
0.395610	41.09		57.95	16.86	L1	OFF	20.0
6.209250		11.64	50.00	38.36	L1	OFF	20.1
6.209250	18.49		60.00	41.51	L1	OFF	20.1
14.469000		12.91	50.00	37.09	L1	OFF	20.3
14.469000	20.17		60.00	39.83	L1	OFF	20.3
24.349560		18.92	50.00	31.08	L1	OFF	20.6
24.349560	24.91		60.00	35.09	L1	OFF	20.6

EUT Information

Test Site : Mode : Test Voltage : Project : CO01-CA

1 120Vac/60Hz Cypress CYSBSYS Neutral

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.393990		33.46	47.98	14.52	Ν	OFF	20.0
0.393990	39.20		57.98	18.78	Ν	OFF	20.0
5.444250		12.35	50.00	37.65	Ν	OFF	20.1
5.444250	19.94		60.00	40.06	Ν	OFF	20.1
14.482500		13.27	50.00	36.73	Ν	OFF	20.3
14.482500	20.65		60.00	39.35	Ν	OFF	20.3
24.349290		20.00	50.00	30.00	Ν	OFF	20.6
24.349290	26.78		60.00	33.22	Ν	OFF	20.6

Appendix C. Radiated Spurious Emission

Test Engineer	Calvin Wu	Temperature :	18~22°C
Test Engineer :		Relative Humidity :	46~52%

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2338.665	55.42	-18.58	74	41.75	27.77	17.31	31.41	103	52	Ρ	Н
		2348.85	43.66	-10.34	54	30.02	27.72	17.33	31.41	103	52	А	Н
	*	2402	102.43	-	-	88.76	27.61	17.42	31.36	103	52	Ρ	Н
BLE	*	2402	101.69	-	-	88.02	27.61	17.42	31.36	103	52	А	Н
CH 00													н
2402MHz		2385.705	55.18	-18.82	74	41.51	27.64	17.4	31.37	361	320	Ρ	V
240211112		2350.53	43.76	-10.24	54	30.03	27.81	17.33	31.41	361	320	А	V
	*	2402	104.41	-	-	90.78	27.57	17.42	31.36	361	320	Ρ	V
	*	2402	103.66	-	-	90.03	27.57	17.42	31.36	361	320	А	V
													V
		2372.88	55.49	-18.51	74	41.83	27.67	17.38	31.39	100	63	Ρ	Н
		2348.88	43.5	-10.5	54	29.86	27.72	17.33	31.41	100	63	А	Н
	*	2440	102.42	-	-	88.71	27.59	17.48	31.36	100	63	Ρ	Н
	*	2440	101.79	-	-	88.08	27.59	17.48	31.36	100	63	А	Н
		2487.52	55.08	-18.92	74	41.29	27.56	17.57	31.34	100	63	Ρ	Н
BLE CH 19		2497.2	43.6	-10.4	54	29.8	27.56	17.58	31.34	100	63	А	Н
2440MHz		2320.88	54.75	-19.25	74	41.06	27.83	17.28	31.42	400	325	Ρ	V
244010112		2350.48	43.63	-10.37	54	29.9	27.81	17.33	31.41	400	325	А	V
	*	2440	105.76	-	-	92.19	27.45	17.48	31.36	400	325	Ρ	V
	*	2440	105.07	-	-	91.5	27.45	17.48	31.36	400	325	А	V
		2487.28	54.26	-19.74	74	40.65	27.39	17.57	31.35	400	325	Ρ	V
		2494.64	43.48	-10.52	54	29.85	27.39	17.58	31.34	400	325	А	V

	*	2480	101.8	-	-	88.03	27.57	17.55	31.35	101	65	Р	Н
	*	2480	101.19	-	-	87.42	27.57	17.55	31.35	101	65	А	Н
		2497.68	54.67	-19.33	74	40.88	27.55	17.58	31.34	101	65	Ρ	Н
		2483.92	43.77	-10.23	54	30	27.56	17.56	31.35	101	65	А	н
													Н
BLE													н
CH 39 2480MHz	*	2480	107.4	-	-	93.8	27.4	17.55	31.35	336	318	Ρ	V
240010172	*	2480	106.5	-	-	92.9	27.4	17.55	31.35	336	318	А	V
		2492.4	55.05	-18.95	74	41.43	27.39	17.57	31.34	336	318	Ρ	V
		2483.56	43.84	-10.16	54	30.24	27.39	17.56	31.35	336	318	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lin	nit line.							

2.4GHz 2400~2483.5MHz

							-		_	_			
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table		Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	41.89	-32.11	74	65.52	31.38	11.28	66.29		(37	P	H H
													Н
													н
BLE													Н
CH 00		4804	42.01	-31.99	74	65.63	31.39	11.28	66.29	100	0	Р	V
2402MHz			12.01	01.00		00.00	01100	11.20	00.20	100			V
													V
													V
		4000	41.04	-32.76	74	64.6	31.35	11 10	66.14	100	0	Р	V H
		4880	41.24		74	64.6		11.43	66.14	100	0		
		7320	45.87	-28.13	74	61.48	36.36	13.89	65.86	100	0	Р	H
BLE													H
CH 19													Н
2440MHz		4880	41.21	-32.79	74	64.64	31.28	11.43	66.14	100	0	Р	V
		7320	44.89	-29.11	74	60.44	36.42	13.89	65.86	100	0	Р	V
													V
													V
		4960	41.97	-32.03	74	64.89	31.47	11.59	65.98	100	0	Р	Н
		7440	46.79	-27.21	74	62.14	36.51	14.03	65.89	100	0	Ρ	Н
BLE													Н
CH 39													Н
2480MHz		4960	42.37	-31.63	74	65.34	31.42	11.59	65.98	100	0	Ρ	V
210011112		7440	46.3	-27.7	74	61.68	36.48	14.03	65.89	100	0	Р	V
													V
													V
	1 No	o other spurious	a found	•		•				•			
Remark		results are PA		Peak and	Average lim	it line							
	<u>-</u> . All				i vorage illi	it in it.							

BLE (Harmonic @ 3m)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2386.23	55.02	-18.98	74	41.35	27.64	17.4	31.37	103	49	Ρ	Н
		2355.465	47.53	-6.47	54	33.89	27.7	17.34	31.4	103	49	А	Н
	*	2402	89.03	-	-	75.36	27.61	17.42	31.36	103	49	Р	Н
	*	2402	87.91	-	-	74.24	27.61	17.42	31.36	103	49	А	Н
BLE													Н
CH 00													Н
2402MHz		2385.705	55.77	-18.23	74	42.1	27.64	17.4	31.37	400	316	Р	V
		2354.73	47.5	-6.5	54	33.78	27.79	17.34	31.41	400	316	А	V
	*	2402	90.2	-	-	76.57	27.57	17.42	31.36	400	316	Ρ	V
	*	2402	89.06	-	-	75.43	27.57	17.42	31.36	400	316	А	V
													V
													V
		2383.08	54.57	-19.43	74	40.92	27.64	17.39	31.38	100	48	Р	Н
		2345.7	47.28	-6.72	54	33.64	27.73	17.32	31.41	100	48	А	Н
	*	2440	87.51	-	-	73.8	27.59	17.48	31.36	100	48	Р	Н
	*	2440	86.36	-	-	72.65	27.59	17.48	31.36	100	48	А	Н
		2488.38	54.8	-19.2	74	41.01	27.56	17.57	31.34	100	48	Р	Н
BLE CH 19		2496.71	47.27	-6.73	54	33.47	27.56	17.58	31.34	100	48	А	Н
2440MHz		2339.12	54.43	-19.57	74	40.71	27.82	17.31	31.41	398	316	Р	V
2-7701012		2375.24	47.44	-6.56	54	33.75	27.69	17.38	31.38	398	316	А	V
	*	2440	91.79	-	-	78.22	27.45	17.48	31.36	398	316	Ρ	V
	*	2440	90.64	-	-	77.07	27.45	17.48	31.36	398	316	А	V
		2490.83	54.6	-19.4	74	40.98	27.39	17.57	31.34	398	316	Р	V
		2485.3	46.89	-7.11	54	33.29	27.39	17.56	31.35	398	316	А	V

	*	2480	86.2	-	-	72.43	27.57	17.55	31.35	100	59	Р	Н
	*	2480	84.99	-	-	71.22	27.57	17.55	31.35	100	59	А	н
		2486.92	54.51	-19.49	74	40.74	27.56	17.56	31.35	100	59	Р	Н
		2493.44	47.35	-6.65	54	33.56	27.56	17.57	31.34	100	59	А	н
													Н
BLE													Н
CH 39 2480MHz	*	2480	92.05	-	-	78.45	27.4	17.55	31.35	338	318	Р	V
240010172	*	2480	90.97	-	-	77.37	27.4	17.55	31.35	338	318	А	V
		2483.96	55.11	-18.89	74	41.51	27.39	17.56	31.35	338	318	Ρ	V
		2495.64	47.45	-6.55	54	33.82	27.39	17.58	31.34	338	318	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lir	nit line.							

Emission below 1GHz

	(MHz) 30.97 105.66 145.43 244.37	(dBµV/m) 21.73 30.06 27.42	Limit (dB) -18.27 -13.44	Line (dBµV/m) 40	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
	30.97 105.66 145.43	21.73 30.06	-18.27			(dB/m)	(dB)	(dB)	(cm)	(ded)	(P/Δ)	
	105.66 145.43	30.06		40		o 4 = 4						
	145.43		-13.44		28.56	24.71	0.9	32.44	-	-	P	Н
		27.42		43.5	44.21	16.57	1.7	32.42	100	0	Р	Н
	244.37		-16.08	43.5	40.55	17.3	1.98	32.41	-	-	Р	Н
		26.68	-19.32	46	38.7	17.84	2.55	32.41	-	-	Р	Н
	294.81	28.8	-17.2	46	39.26	19.18	2.79	32.43	-	-	Р	Н
	746.83	31.96	-14.04	46	31.8	28	4.6	32.44	-	-	Р	Н
												Н
												Н
												Н
												н
												Н
2.4GHz												Н
BLE	33.88	31.68	-8.32	40	40.11	23.06	0.95	32.44	100	0	Р	V
LF —	105.66	30.94	-12.56	43.5	45.09	16.57	1.7	32.42	-	-	Ρ	V
	129.91	25.44	-18.06	43.5	38.32	17.7	1.83	32.41	-	-	Ρ	V
	397.63	24.75	-21.25	46	32.02	21.76	3.47	32.5	-	-	Р	V
	746.83	30.69	-15.31	46	30.53	28	4.6	32.44	-	-	Р	V
	953.44	33.08	-12.92	46	28.21	30.91	5.19	31.23	-	-	Р	V
												V
												V
												V
												V
												V
												V
											<u> </u>	

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

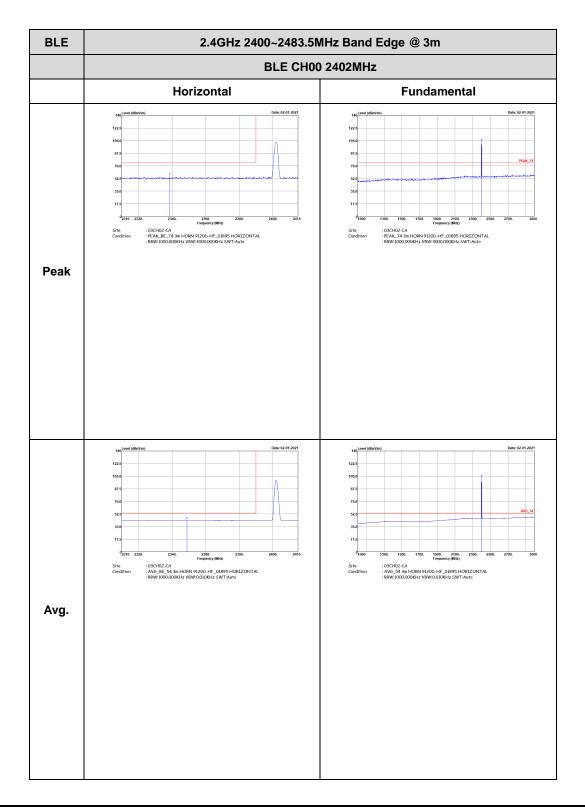
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

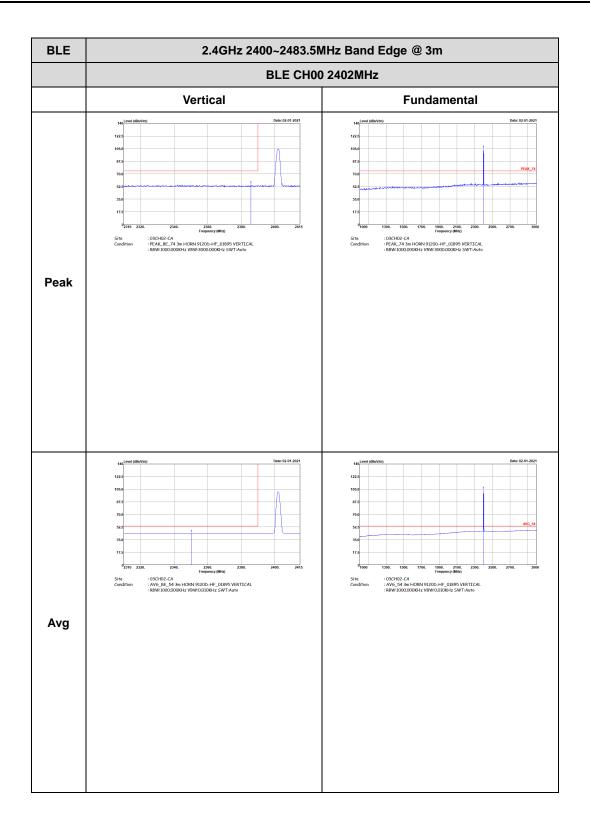
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

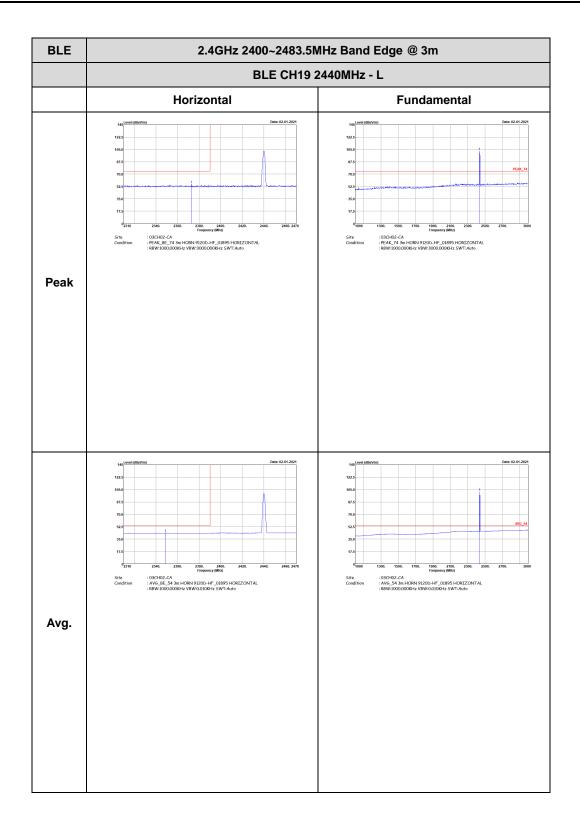
Test Engineer :	Calvin Wu	Temperature :	18~22°C
		Relative Humidity :	46~52%

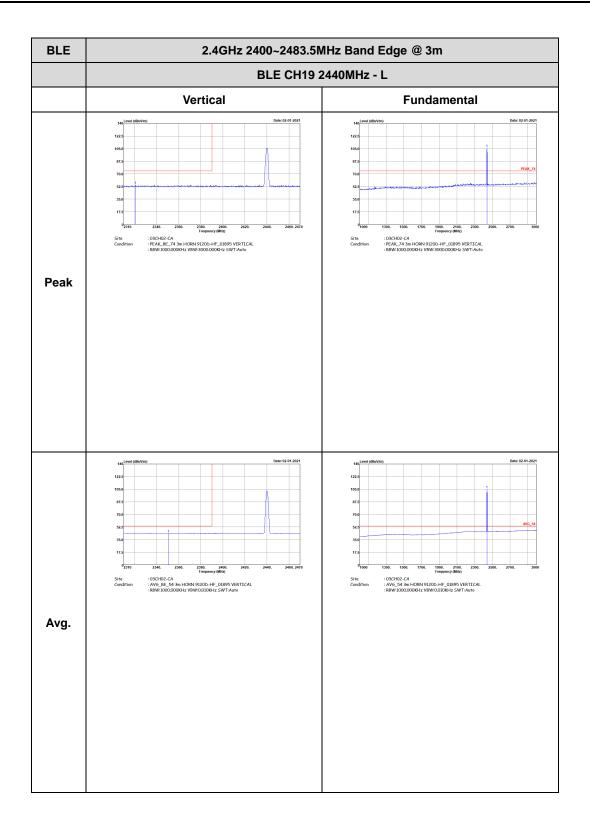
Note symbol


-L	Low channel location
-R	High channel location

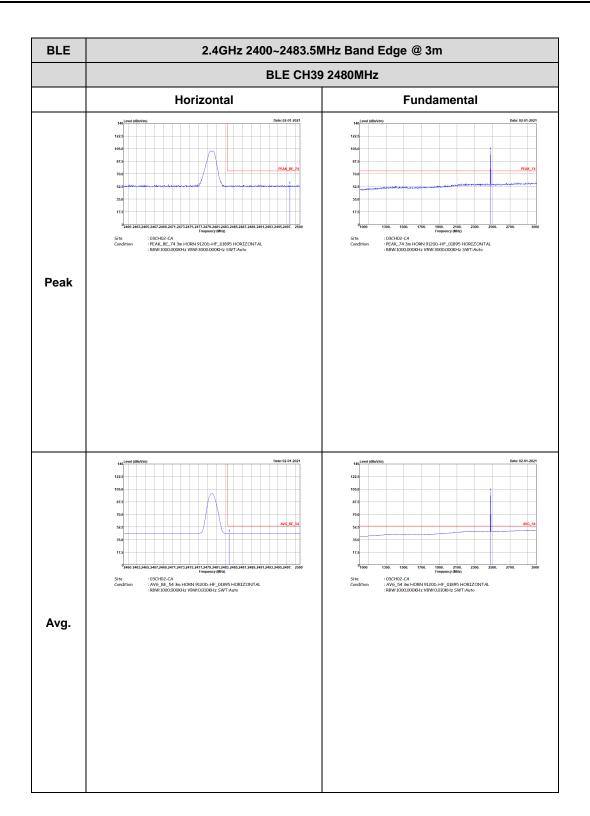


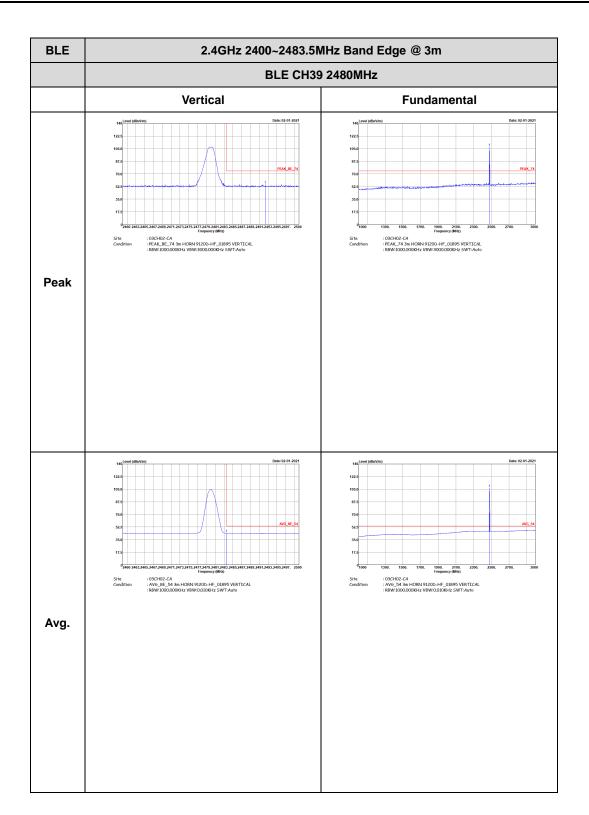
<1Mbps>


2.4GHz 2400~2483.5MHz

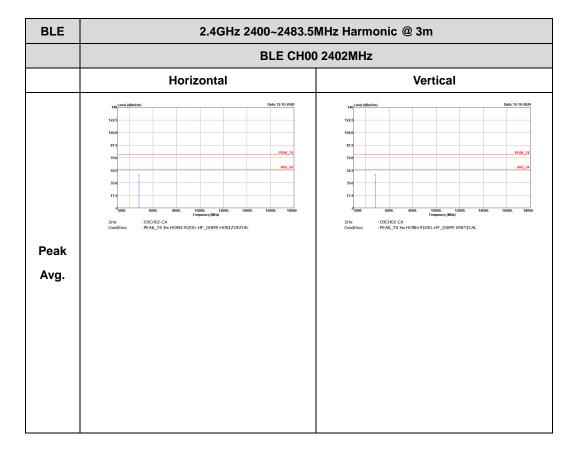


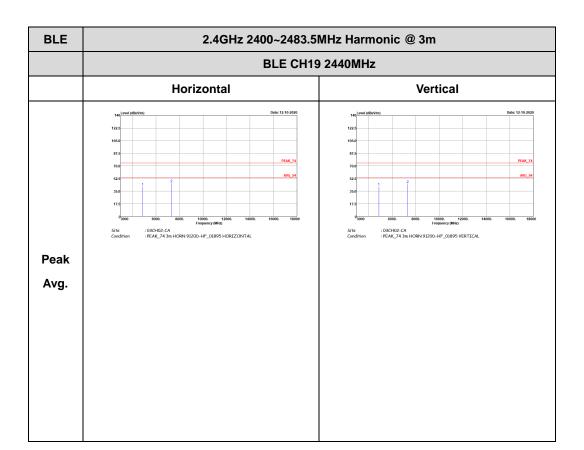
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m		
	BLE CH19 2	2440MHz - R	
	Horizontal	Fundamental	
Peak	Image: Contract of the second seco	Left blank	
Avg.	Image:	Left blank	



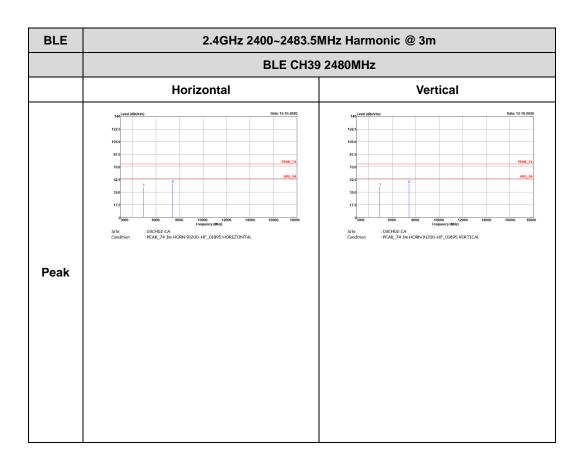


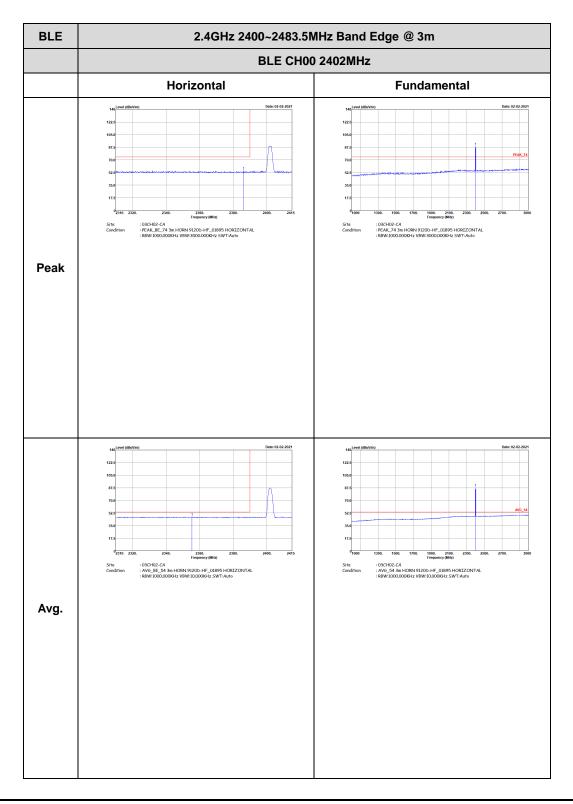
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m		
	BLE CH19 2	2440MHz - R	
	Vertical	Fundamental	
Peak	<pre>implementary implementary implementary</pre>	Left blank	
Avg.	Image: constraint of the second sec	Left blank	

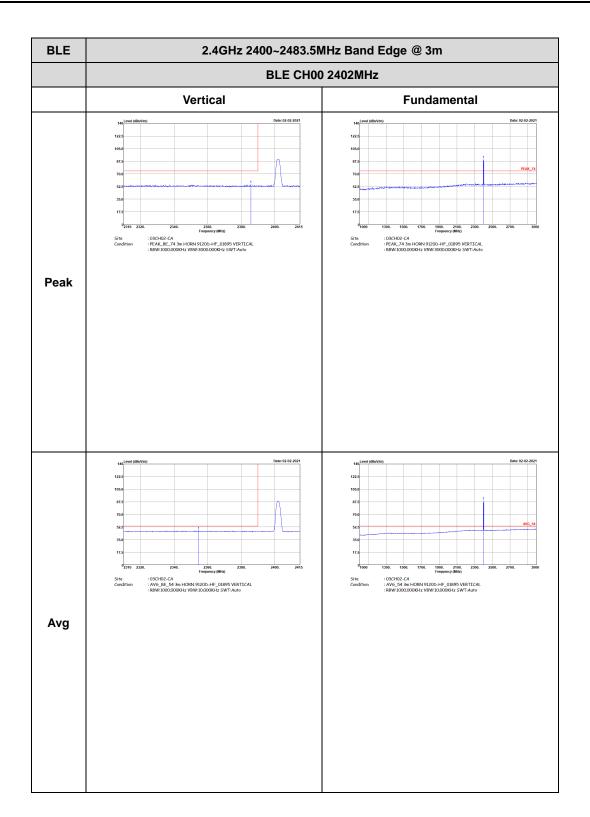




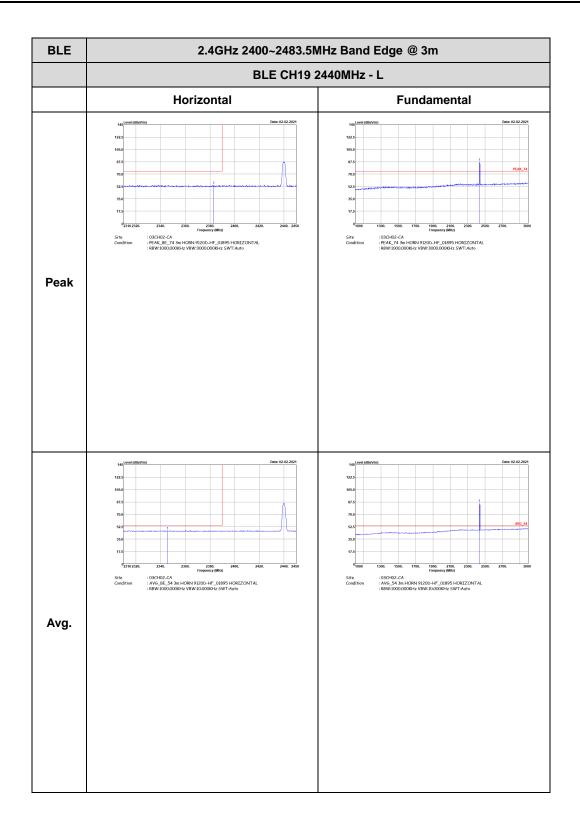
2.4GHz 2400~2483.5MHz

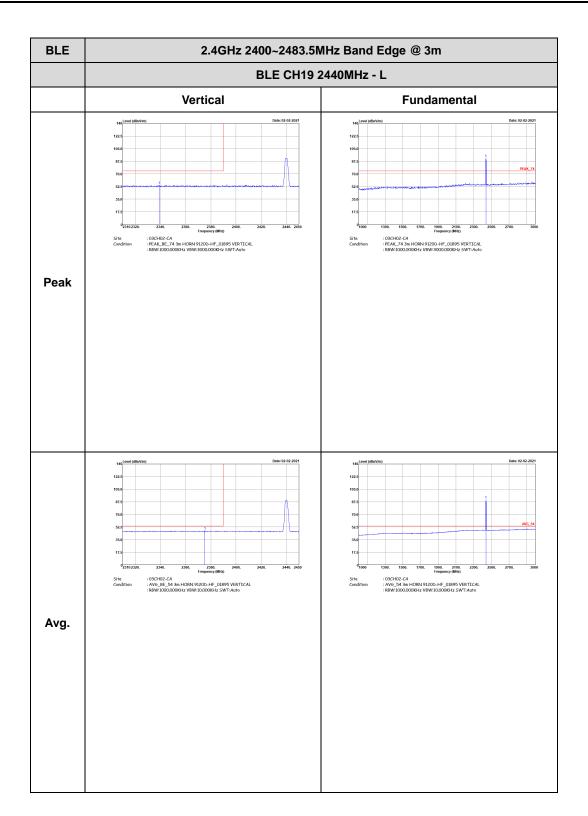

BLE (Harmonic @ 3m)



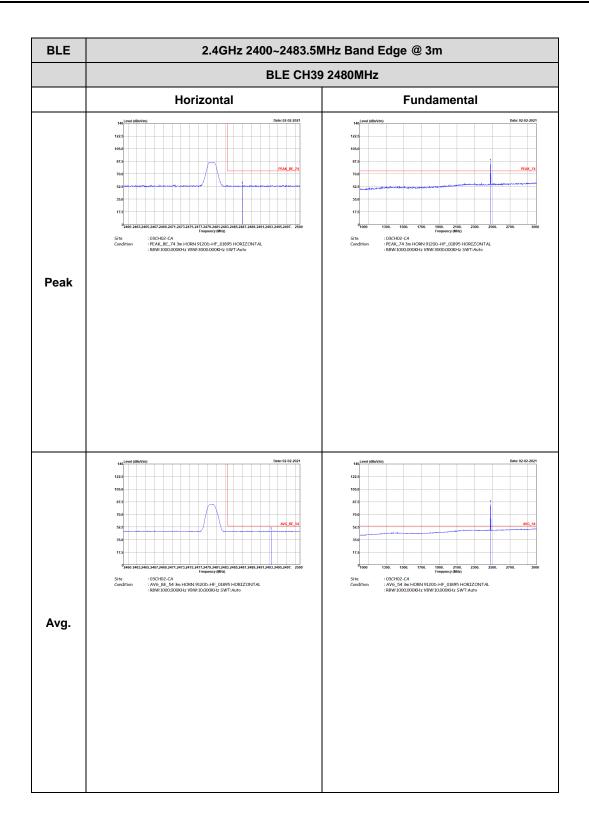


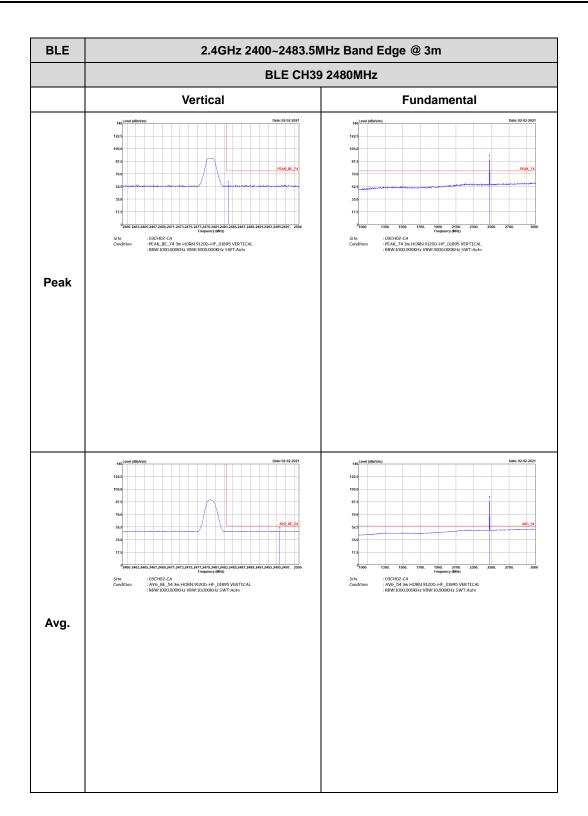
<2Mbps>


2.4GHz 2400~2483.5MHz

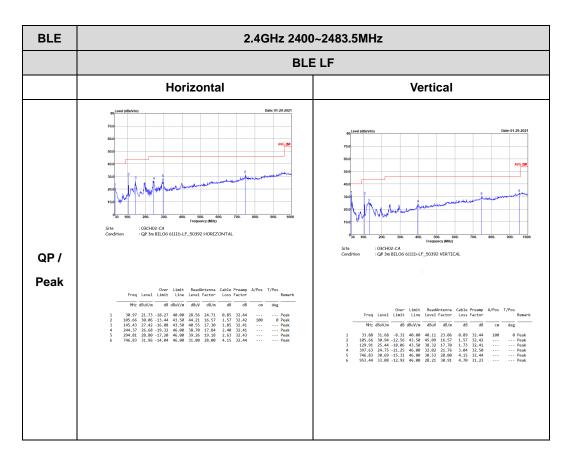


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m		
	BLE CH19 2	2440MHz - R	
	Horizontal	Fundamental	
Peak	<pre>indextraction in the second seco</pre>	Left blank	
Avg.	Intervention	Left blank	





BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m		
	BLE CH19 2	E CH19 2440MHz - R	
	Vertical	Fundamental	
Peak	be 2022 The control of the control	Left blank	
Avg.	The set of th	Left blank	



Emission below 1GHz

2.4GHz BLE (LF)

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
Bluetooth –LE for 1Mbps	62.3	390	2.56	3kHz	2.06
Bluetooth –LE for 2Mbps	30.67	192	5.21	10kHz	5.13

pectrum	
peccuin	Spectrum
RefLevel 20.00 dBm Offset 11.92 dB ● RBW 10 MHz Att 20 dB ● SWT 2 ms ● VBW 10 MHz GL	RefLevel 20.00 dBm Offset 11.92 dB RBW 10 MHz Att 20 dB SWT 2 ms VBW 10 MHz SGL SGL 3 3 3 3 3 3
JPK Max M1[1] 0.68 dbs J dBm M1 780.00 g J dBm 0.19 dbs 0.19 dbs J dBm 0.01 dbs 390.00 g O dBm 0 dbs 0.01 dbs O dBm 0 dbs 0 dbs	• IPk Max M1 02 • 0.73 • 0.73 • 0.73 • 0.73 • 0.1 • 0.3 • 0.1 • 0.3 • 0.1 • 0.2
А (\$90)	-50 ประกาศ สารีเสรียญการมา -50 ประกาศ -50 ประกาศ -50 ประกาศ
F 2.402 GHz 1001 pts 200.0 µs/	CF 2.402 GHz 1001 pts 200.0
Interface Trc X-value Y-value Function Function Result M1 1 760.0 μs 6.68 dBm 6.69 dBm	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 856.0 μs 6.73 dBm 0.05 dB 0.15 dB 0.05 dB