

RF Exposure Evaluation Declaration

Product Name: BLE 256KB Module with Bluetooth 4.2 Radio

Model No. : CY8CKIT-143A, CY5676A

FCC ID : WAP-CY5676A

Applicant: Cypress Semiconductor

Address : 198 Champion Ct, San Jose, California 95134 United States

Date of Receipt: May. 18, 2016

Test Date : May. 19, 2016~ May 30, 2016

Issued Date : Jun. 17, 2016

Report No. : 1652071R-RF-US- P20V01

Report Version: V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by CNAS, TAF or any agency of the government. The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Jun. 17, 2016

Report No.: 1632087R-RF-US-P20V01

Product Name : BLE 256KB Module with Bluetooth 4.2 Radio

Applicant : Cypress Semiconductor

Address : 198 Champion Ct, San Jose, California 95134 United

States

Manufacturer : Wujiang Sigmatron Electronics Co., Ltd

Address : 386 Huahong Rd, Wujiang, Suzhou, Jiangsu, China

Model No. : CY8CKIT-143A, CY5676A

FCC ID : WAP-CY5676A EUT Voltage : DC 1.9V to 5.5V

Applicable Standard : KDB 447498D01V06

FCC Part1.1310(b)

Test Result : Complied

Performed Location : Quietek Corporation - Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou,

215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392

Documented By : Kathy Feng

(Adm. Specialist: Kathy Feng)

Reviewed By : Frank he

(Senior Engineer: Frank He)

Approved By : Harry Than

(Engineering Manager: Harry Zhao)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC, TAF

USA : FCC
Japan : VCCI
China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://www.quietek.com/english/about/certificates.aspx?bval=5
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/index_en.aspx

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.

Suzhou Testing Laboratory:

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1652071R -RF-US-P20V01	V1.0	Initial Issued Report	Jun. 17, 2016

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (Minutes)			
(A) Limits for ((A) Limits for Occupational/ Control Exposures						
300-1500			F/300	6			
1500-100,000			5	6			
(B) Limits for General Population/ Uncontrolled Exposures							
300-1500			F/1500	6			
1500-100,000			1	30			

F= Frequency in MHz

Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18° C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	BLE 256KB Module with Bluetooth 4.2 Radio
Test Item	:	RF Exposure Evaluation
Test Site	:	AC-6

Model No.	N/A				
Antenna manufacturer	N//A				
Antenna Delivery	\boxtimes	1*TX+1*RX		☐ 2*TX+2*RX ☐ 3*TX+3*RX	
Antenna technology	\boxtimes	SISO			
				Basic	
		MIMO		CDD	
				Beam-forming	
Antenna Type		External		Dipole	
				PIFA	
		Internal	\boxtimes	PCB	
				Ceramic Chip Antenna	
				Metal plate type F antenna	
Antenna Gain	1.6d	Bi			

• Output Power into Antenna & RF Exposure Evaluation Distance:

Test Mode	Frequency Band (MHz)	Maximum Output Power to Antenna (dBm)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)
BLE	2402 - 2480	2.44	1.6	0.000504

So according to transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$ and the power density limit according to KDB 447498D01V06 and FCC Part1.1310(b), the limit is $1mW/cm^2$

Safety Distance Calculation Formula:

The power flux:

$$S = \frac{P^*G_{(\theta,\phi)}}{4^*\pi^*r^2}$$

So safety distance as following:

$$r = \sqrt{\frac{P*G}{4*\pi*S}}$$

P = input power of the antenna

G = antenna gain relative to an isotropic antenna

 θ , Φ = elevation and azimuth angles.

r = distance from the antenna to the point of investigation

Test Mode	Frequency Range (MHz)	Maximum EIRP (dBm)	Limit of Power Density S(mW/cm²)	Safety Distance r(cm)
BLE	2402 - 2480	4.04	1	0.45

Note: The safety distance is 0.45 cm for the router without any other radio equipment.

———— The End	<u> </u>