

FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Cable-free, Radio-free, Autonomous Data Recorder

MODEL NUMBER: GSX-3

FCC ID: WAOGSXLC

IC: 7733A-GSXLC

REPORT NUMBER: 4788200403.1-3

ISSUE DATE: May 3, 2018

Prepared for Geospace Technologies Inc. 7007 Pinemont Houston, TX 77040.USA

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China Tel: +86 769 33817100 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
	05/03/2018	Initial Issue	

	Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results			
1	6dB Bandwidth and 99% Bandwidth	FCC 15.247 (a) (2) RSS-247 Clause 5.2 (a)	PASS			
2	Peak Conducted Output Power	FCC 15.247 (b) (3) RSS-247 Clause 5.4 €	PASS			
3	Power Spectral Density	FCC 15.247 € RSS-247 Clause 5.2 (b)	PASS			
4	Conducted Bandedge and Spurious Emission	FCC 15.247 (d) RSS-247 Clause 5.5	PASS			
5	Radiated Bandedge and Spurious Emission	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	PASS			
6	Conducted Emission Test For AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	PASS			
7	Antenna Requirement	FCC 15.203 RSS-GEN Clause 8.3	PASS			

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	6
2.	TES	ST METHODOLOGY	7
3.	FA	CILITIES AND ACCREDITATION	7
4.	СА	LIBRATION AND UNCERTAINTY	8
4.	.1.	MEASURING INSTRUMENT CALIBRATION	8
4.	.2.	MEASUREMENT UNCERTAINTY	8
5.	EQ	UIPMENT UNDER TEST	9
5.	.1.	DESCRIPTION OF EUT	9
5.	.2.	MAXIMUM OUTPUT POWER	9
5.	З.	CHANNEL LIST	9
5.	4.	TEST CHANNEL CONFIGURATION	9
5.	5.	THE WORSE CASE POWER SETTING PARAMETER	
5.	6.	DESCRIPTION OF AVAILABLE ANTENNAS	
5.	7.	TEST ENVIRONMENT	
5.	8.	DESCRIPTION OF TEST SETUP	
5.	.9.	MEASURING INSTRUMENT AND SOFTWARE USED	12
6.	ME	ASUREMENT METHODS	14
7.	AN	ITENNA PORT TEST RESULTS	15
7.	.1.	ON TIME AND DUTY CYCLE	15
7.	.2.	99% & 6 dB DTS BANDWIDTH	
7.	3.	PEAK CONDUCTED OUTPUT POWER	21
7.	4.	POWER SPECTRAL DENSITY	22
7.	5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	25
8.	RA	DIATED TEST RESULTS	29
8.	1.	RESTRICTED BANDEDGE	
8.	.2.	SPURIOUS EMISSIONS (1~18GHz)	
8.	3.	SPURIOUS EMISSIONS 18G ~ 26GHz	
8.	4.	SPURIOUS EMISSIONS 30M ~ 1 GHz	46
8.	.5.	SPURIOUS EMISSIONS BELOW 30M	48
9.	AC	POWER LINE CONDUCTED EMISSIONS	52

10. ANTENNA	REQUIREMENTS	54
-------------	--------------	----

ATTESTATION OF TEST RESULTS 1.

Applicant Information

Company Name: Address:	Geospace Technologies Inc. 7007 Pinemont Houston, TX 77040.USA		
Manufacturer Information			
Company Name:	Geospace Technologies Inc.		
Address:	7007 Pinemont Houston, TX 77040.USA		
EUT Description			
EUT Name:	Cable-free, Radio-free, Autonomous Data Recorder		
Model:	GSX-3		
Brand Name:	/		
Sample Status:	Normal		
Sample ID:	1230384		
Sample Received Date:	October 26, 2017		
Date of Tested:	November 15, 2017 ~ May 02, 2018		

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
FCC Part 15 Subpart C	PASS			
ISED RSS-247 Issue 2	PASS			
ISED RSS-GEN Issue 4	PASS			

Tested By:

Jon Bucu

Denny Huang Engineer Project Associate Approved By:

ephentus

Checked By:

henry been

Shawn Wen Laboratory Leader

Stephen Guo

Laboratory Manager

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB414788 D01 Radiated Test Site v01, ANSI C63.10-2013, 558074 D01 DTS Meas Guidance v04, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ISED RSS-247 Issue 2, ISED RSS-GEN Issue 4.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been assessed and proved to be in compliance with A2LA.
	IAS (Lab Code: TL-702)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has demonstrated compliance with ISO/IEC Standard 17025:2005,
	General requirements for the competence of testing and calibration
	laboratories
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
Accreditation	to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
Certificate	
	IC(Company No.: 21320)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been registered and fully described in a report filed with
	Industry Canada. The Company Number is 21320.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note:

- 1. All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
- The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OATS.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Uncertainty for Conduction emission test	2.90dB			
Uncertainty for Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB			
Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.52dB			
Uncertainty for Radiation Emission test	5.04dB(1-6GHz)			
(1GHz to 26GHz)(include Fundamental	5.30dB (6GHz-18Gz)			
emission)	5.23dB (18GHz-26Gz)			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Cable-free, Radio-free, Autonomous Data Recorder			
EUT Description	The EUT is a Data Recorder with ZigBee.		ee.	
Model	lodel GSX-3			
	Operation Frequency 2405 MH		z ~ 2475 MHz	
Product Description	Modulation Type		Data Rate	
	O-QPSK		250kbs	
Hardware Version	1A			
Software Version	4.39			
Rated Power	DC 16V by external battery			

5.2. MAXIMUM OUTPUT POWER

Mode	Frequency (MHz)	Channel Number	Max Output Power (dBm)
ZigBee	2405-2475	11-25 [15]	1.819

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
11	2405	15	2425	19	2445	23	2465
12	2410	16	2430	20	2450	24	2470
13	2415	17	2435	21	2455	25	2475
14	2420	18	2440	22	2460		

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
ZigBee	CH 11, CH 18, CH 25	2405MHz, 2440MHz, 2475MHz

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band									
Test Software GSRTester									
Modulation Type	Transmit Antenna		Test Channel						
	Number	CH 11	CH 18	CH 25					
O-QPSK	1	Full Power	Full Power	Full Power					

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2405-2475	PCB Antenna	3.3

Test Mode	Transmit and Receive Mode	Description
ZigBee	⊠1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.

5.7. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests					
Relative Humidity	55	5 ~ 65%				
Atmospheric Pressure:	1	025Pa				
Temperature	TN 23 ~ 28°C					
	VL	N/A				
Voltage :	VN	DC 16V				
	VH	N/A				

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage VH= Upper Extreme Test Voltage TN= Normal Temperature

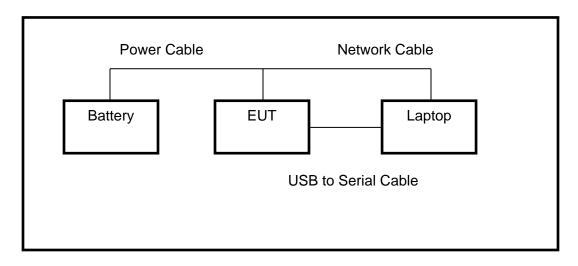
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	T460S	PB-4600Y 12/10
2	Power Cable (Combined With Network Cable)	GEOSPACE	N/A	N/A
3	USB to Serial Cable	N/A	N/A	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	Power	N/A	Unshielded	1.0	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	S/N
1	Battery	GEOSPACE	GEOSPACE BX Battery	00127530

TEST SETUP

The EUT can work in an engineer mode with software through a Laptop before the test.

SETUP DIAGRAM FOR TEST

5.9. MEASURING INSTRUMENT AND SOFTWARE USED

The previous calibrated time:

Conducted Emissions											
Instrument											
Used	Equipment	Manufacturer			No.	Serial	No.	Last Cal.	Next Cal.		
V	EMI Test Receiver	R&S	E	ESF	23	1019	61	Dec.20, 2016	Dec.19, 2017		
V	Two-Line V- Network	R&S	El	NV2	216	1019	83	Dec.20, 2016	Dec.19, 2017		
	Artificial Mains Networks	Schwarzbeck			8126	81264	465	Feb.10, 2017	Feb.10, 2018		
			Sof	ftwa	are						
Used	Des	cription			Manu	ufacture	er	Name	Version		
\checkmark	Test Software for C	Conducted distu	rbanc	e	F	arad		EZ-EMC	Ver. UL-3A1		
		Rad			nissio	ns					
			Insti	rum	ent	1					
Used	Equipment	Manufacturer	Мо	del	No.	Serial	No.	Last Cal.	Next Cal.		
	MXE EMI Receiver	KESIGHT	N	903	88A	MY564 036		Feb. 24, 2017	Feb. 24, 2018		
V	Hybrid Log Periodic Antenna	TDK	HLP-3003C			130960		Jan.09, 2016	Jan.09, 2019		
V	Preamplifier	HP	8	3447	7D	2944A090 99		Feb. 13, 2017	Feb. 13, 2018		
\checkmark	EMI Measurement Receiver	R&S	E	SR	26	101377		Dec. 20, 2016	Dec. 20, 2017		
\checkmark	Horn Antenna	TDK	HR	N-C)118	130939		Jan. 09, 2016	Jan. 09, 2019		
V	High Gain Horn Antenna	Schwarzbeck	BBł	HA-9	9170	691		Jan.06, 2016	Jan.06, 2019		
V	Preamplifier	TDK	PA-	02-	0118	TRS-3 0006		Jan. 14, 2017	Jan. 14, 2018		
	Preamplifier	TDK	P/	A-02	2-2	TRS-3 0000		Dec. 20, 2016	Dec. 20, 2017		
\checkmark	Loop antenna	Schwarzbeck	1	519	9B	0000)8	Mar. 26, 2016	Mar. 26, 2019		
			Sof	ftwa	are	•					
Used	Descr	iption		Ма	nufact	urer		Name	Version		
V	Test Software for Ra	adiated disturba	nce		Farac	1		EZ-EMC	Ver. UL-3A1		
		Oth	ner in	str	ument	ts					
Used	Equipment	Manufacturer	Model No.		No.	Serial	No.	Last Cal.	Next Cal.		
\checkmark	Spectrum Analyzer	Keysight	N903		60A	MY554 512	2	Dec. 20, 2016	Dec. 20, 2017		
V	Power Meter	Keysight	N	903	51A	MY554 024	1	Feb. 13, 2017	Feb. 13, 2018		
\checkmark	Power Sensor	Keysight	N	932	3A	MY554 013		Feb. 13, 2017	Feb. 13, 2018		

The last calibrated time:

	Conducted Emissions										
			Inst	rum	ent						
Used	Equipment	Manufacturer	Model No.			Seri	al No.	Last Cal.	Next Cal.		
\checkmark	EMI Test Receiver	R&S	E	ESF	3	101	1961	Dec.12,2017	Dec.11,2018		
V	Two-Line V- Network	R&S	E	NV2	216	10	1983	Dec.12,2017	Dec.11,2018		
V	Artificial Mains Networks	Schwarzbeck	NS	LK 8	8126	812	6465	Dec.12,2017	Dec.11,2018		
	F		So	ftwa	are						
Used	Des	cription			Mai	nufactu	urer	Name	Version		
\checkmark	Test Software for C	Conducted distu	rband	e		Farad		EZ-EMC	Ver. UL-3A1		
		Rad	iated	l En	nissi	ions					
			Inst	rum	ent						
Used	Equipment	Manufacturer	Мс	bdel	No.	Seri	al No.	Last Cal.	Next Cal.		
V	MXE EMI Receiver	KESIGHT	N	903	8A		56400 36	Dec.12,2017	Dec.11,2018		
V	Hybrid Log Periodic Antenna	TDK	HLF	HLP-3003C		130	0960	Jan.09, 2016	Jan.09, 2019		
V	Preamplifier	HP	8	8447D		2944A090 99		Dec.12,2017	Dec.11,2018		
V	EMI Measurement Receiver	R&S	E	SR	26	5 101377		Dec.12,2017	Dec.11,2018		
\checkmark	Horn Antenna	TDK	HR	RN-0118		130	0939	Jan. 09, 2016	Jan. 09, 2019		
V	High Gain Horn Antenna	Schwarzbeck	BBI	HA-9	9170) 6	91	Jan.06, 2016	Jan.06, 2019		
V	Preamplifier	TDK	PA-	02-	0118		6-305- 066	Dec.12,2017	Dec.11,2018		
V	Preamplifier	TDK	P	A-02	2-2		-307- 003	Dec.12,2017	Dec.11,2018		
\checkmark	Loop antenna	Schwarzbeck	1	519	9B	00	800	Mar. 26, 2016	Mar. 25, 2019		
			So	ftwa	are						
Used	Descr	iption		Ма	nufa	cturer		Name	Version		
	Test Software for Ra	adiated disturba	ince		Fara	ad		EZ-EMC	Ver. UL-3A1		
		Oth	ner in	str	ume	nts					
Used	Equipment	Manufacturer	Mod	el N	lo.	Serial	No.	Last Cal.	Next Cal.		
V	Spectrum Analyzer	Keysight	N90)30/	A N	/ IY5541	10512	Dec.12,2017	Dec.11,2018		
V	Power Meter	Keysight	N19	911/	A M	/ IY5541	16024	Dec.12,2017	Dec.11,2018		
V	Power Sensor	Keysight	N19	921/	A N	/IY5110	00041	Dec.12,2017	Dec.11,2018		

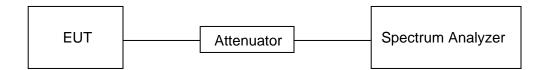
6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6 dB Bandwidth	KDB 558074 D01 DTS Meas Guidance v04	8.0
2	Peak Output Power	KDB 558074 D01 DTS Meas Guidance v04	9.1.1
3	Power Spectral Density	KDB 558074 D01 DTS Meas Guidance v04	10.2
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 DTS Meas Guidance v04	11.0
5	Out-of-band emissions in restricted bands	KDB 558074 D01 DTS Meas Guidance v04	12.1
6	Band-edge	KDB 558074 D01 DTS Meas Guidance v04	13.3.2
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	7.3

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)
ZigBee	133.1	133.1	1	100	0	0.01

Note: Duty Cycle Correction Factor=10log(1/x).

Where: x is Duty Cycle(Linear)

Where: T is On Time (transmit duration)

ON TIME AND DUTY CYCLE HIGH CH

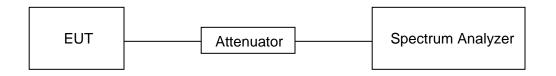
Keysight Sp	ectrum Analyzer -		711),0,									
X/L Center F	rea 2.475	000000	GHz		SENSE	#/	Avg Typ		TR	PM Apr 25, 2018 ACE 1 2 3 4 5		Frequency
Contor I	109 2.470	NFE	PNO: Fast IFGain:Lov		Trig: Free R #Atten: 30 d		vgHold	: 1/1	т		Ń	A
10 dB/div	Ref 20.0	0 dBm								133.1 ms 0.000 dE		Auto Tun
10.0	<mark>2</mark>									3∆2 —	24	Center Fre
-10.0									_			
-20.0											2.4	Start Fre 75000000 G⊦
-50.0												Stop Fre
-70.0									-		2.4	75000000 GH
Res BW			#\	/BW	50 MHz			-	166.4 ms	Span 0 Hz (8001 pts		CF Ste 8.000000 MF Ma
MKR MODE T 1 Δ2 2 N	1 t (Δ)	X	133.1 ms 16.62 ms	(Δ)	0.000 dB -0.124 dBm	FUNCTION	FU	CTION WDT	'H FUNC'	TION VALUE		
3 ∆2 4 5	1 t 1 t (Δ)		133.1 ms	(Δ)	-0.124 dBm 0.000 dB					E		Freq Offs 0 H
6 7 8 9												Scale Typ
10 11											Log	L
<					m	_		STAT		•		

99% & 6 dB DTS BANDWIDTH 7.2.

LIMITS

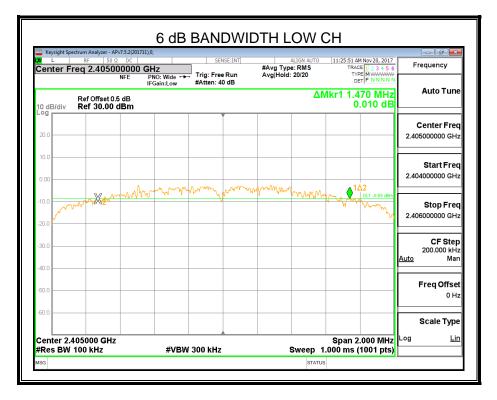
FCC Part15 (15.247) Subpart C RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.247(a)(2) RSS-247 5.1 (a)	6 dB Bandwidth	>= 500KHz	2400-2483.5
RSS-Gen Clause 6.6	99% Bandwidth	For reporting purposes only.	2400-2483.5

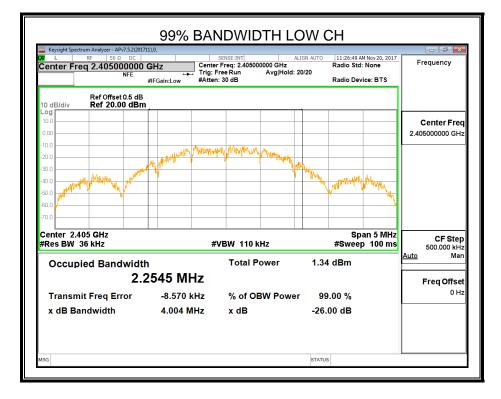
TEST PROCEDURE

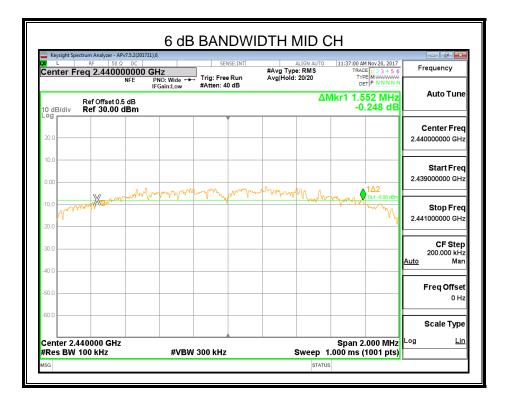

Connect the UUT to the	spectrum analyser and use the following settings:
Center Frequency	The centre frequency of the channel under test
Detector	Peak
IRR///	For 6dB Bandwidth :100K For 99% Bandwidth :1% to 5% of the occupied bandwidth
IV BWV	For 6dB Bandwidth : ≥3 × RBW For 99% Bandwidth : approximately 3×RBW
Trace	Max hold
VBW	For 99% Bandwidth :1% to 5% of the occupied bandwidth For 6dB Bandwidth : ≥3 × RBW For 99% Bandwidth : approximately 3×RBW

Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

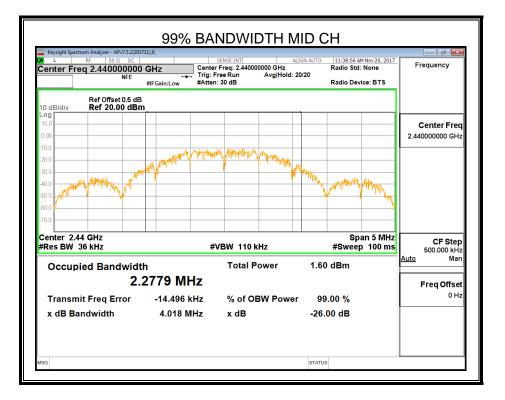

TEST SETUP

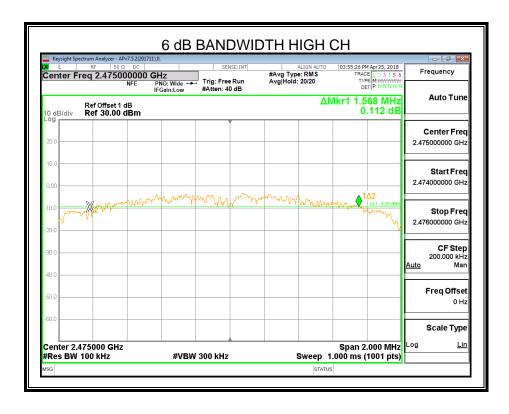

Sweep

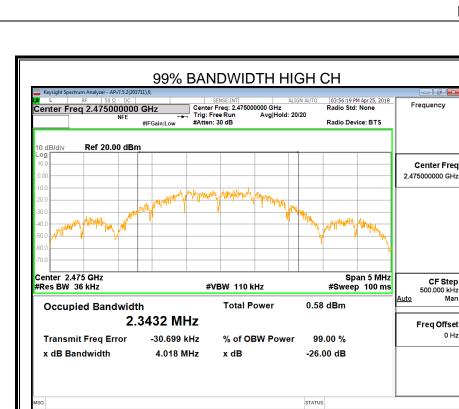


RESULTS

Channel	Frequency (MHz)	6dB bandwidth (MHz)	99% Bandwidth (MHz)	Limit (kHz)	Result
Low	2405	1.470	2.2545	500	Pass
Middle	2440	1.552	2.2779	500	Pass
High	2475	1.568	2.3432	500	Pass





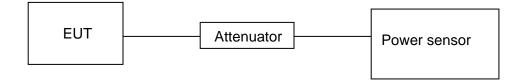


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

FCC Part15 (15.247) Subpart C RSS-247 ISSUE 2			
Section Test Item		Limit	Frequency Range (MHz)
FCC 15.247(b)(3) RSS-247 5.4 (e)	Peak Output Power	1 watt or 30dBm	2400-2483.5


TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

TEST SETUP

RESULTS

Test Channel	Frequency	Maximum Conducted Output Power(PK)	LIMIT
	(MHz)	(dBm)	dBm
Low	2405	1.819	30
Middle	2440	1.499	30
High	2475	0.886	30

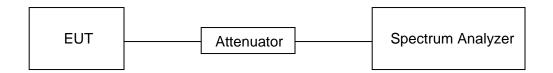
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

FCC Part15 (15.247) Subpart C RSS-247 ISSUE 2			
		Limit	Frequency Range (MHz)
FCC §15.247 (e) RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

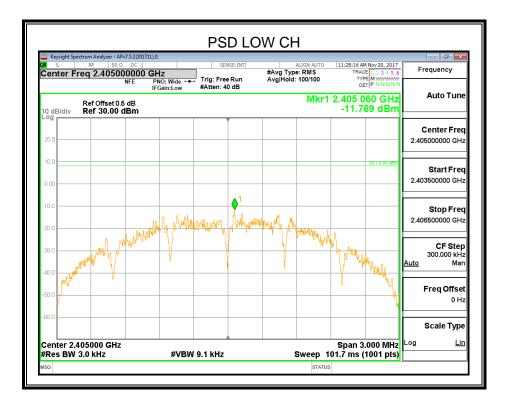
TEST PROCEDURE

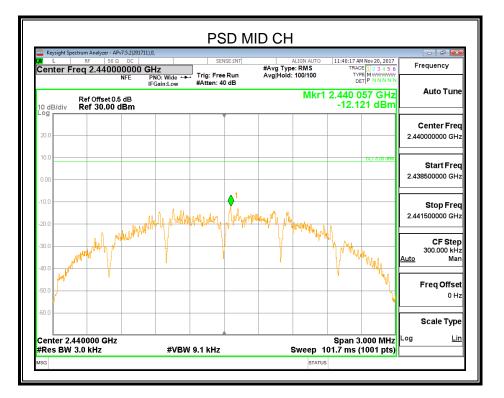

Connect the UUT to the spectrum analyser and use the following settings:

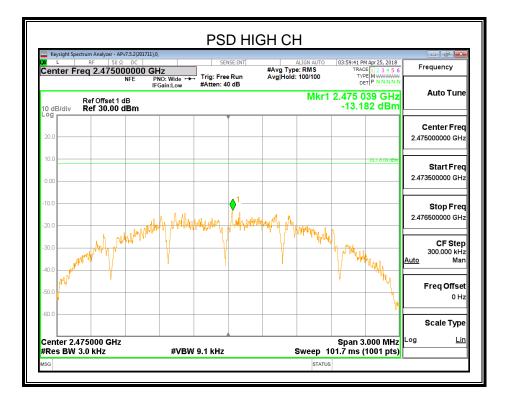
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	$3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


TEST SETUP




RESULTS

Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2405 MHz	-11.769	8	PASS
2440 MHz	-12.121	8	PASS
2475 MHz	-13.182	8	PASS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

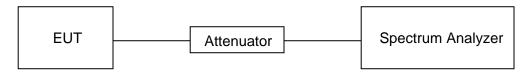
7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

		15.247) Subpart C -247 ISSUE 2
Section	Test Item	Limit
FCC §15.247 (d) RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

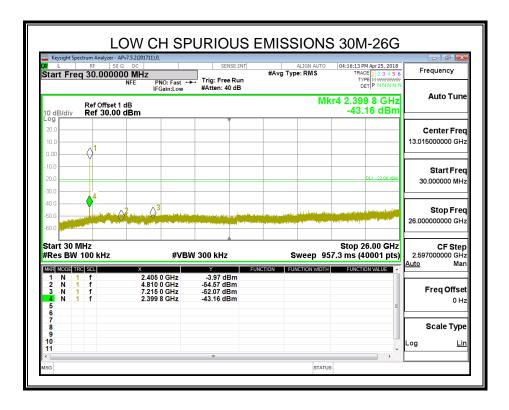

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum PSD level.

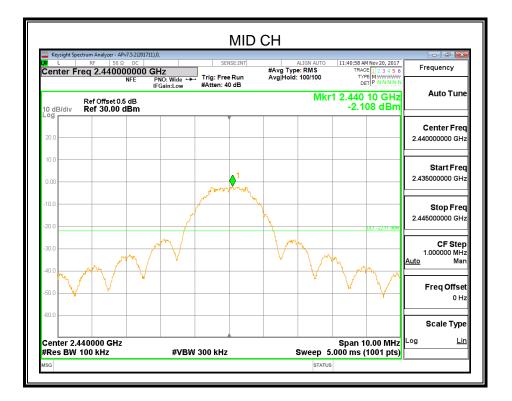
Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

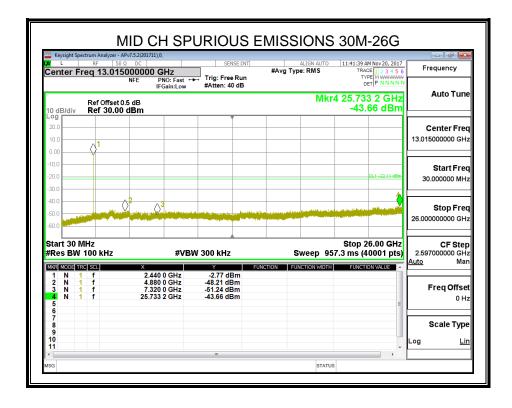
Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

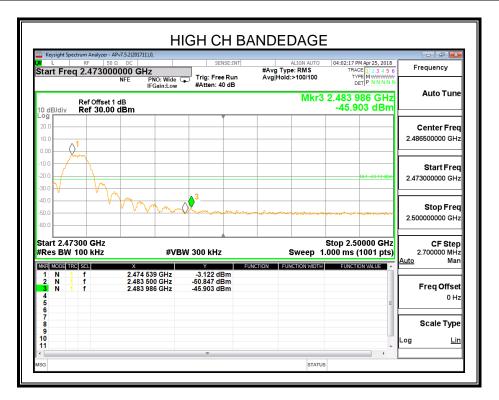


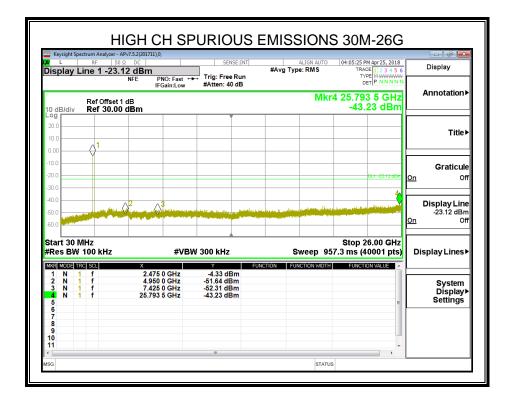
RESULTS


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



Marker	04:15:18 PM Apr 25, 2018 TRACE 1 2 3 4 5 6 TYPE M	ALIGN AUTO Avg Type: RMS vg Hold:>100/100	SENSE:INT		DC	Spectrum Analyzer - A RF 50 3 2.4000000	L
Select Marker 3	r3 2.400 0 GHz -41.878 dBm			#Atten: 4	IFGain:Low	Ref Offset 1 Ref 30.00	0 dB/di
Norma							og 20.0
Delta	DL1-22.06 dBm						0.00 10.0 20.0 30.0
Fixed			-	to ce marchare	elaterra en elaterra en aren	territury grown and	40.0
01	Stop 2.41000 GHz .733 ms (1001 pts)	Sweep 3.7		W 300 kHz	#VE	31000 GHz V 100 kHz	tart 2. Res B
Properties	FUNCTION VALUE	FUNCTION WIDTH	dBm	-2.062 d -50.455 d -41.878 d	x 2.405 1 GHz 2.390 0 GHz 2.400 0 GHz	TRC SCL 1 f 1 f 1 f 1 f	KR MODE 1 N 2 N 3 N 4 5 6
Mor 1 of							6 7 8 9 10





8. RADIATED TEST RESULTS

LIMITS

Please refer to FCC §15.205 and §15.209

Please refer to RSS-GEN Clause 8.9 (Transmitter)

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
960~1000	500	3		

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

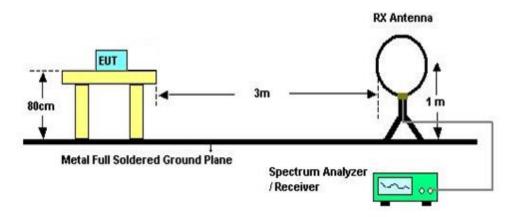
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Radiation Disturbance Test Limit for FCC (Above 1G)

	dB(uV/m) (at 3 meters)		
Frequency (MHz)	Peak	Average	
Above 1000	74	54	

Restricted bands of operation

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-61 <mark>4</mark>	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7- <mark>1</mark> 56.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				


Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyzer

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

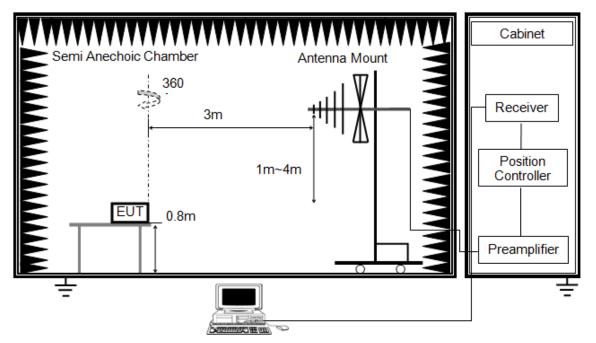
1. The testing follows the guidelines in ANSI C63.10-2013 and 414788 D01 Radiated Test Site v01.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

7. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Below 1G and above 30MHz

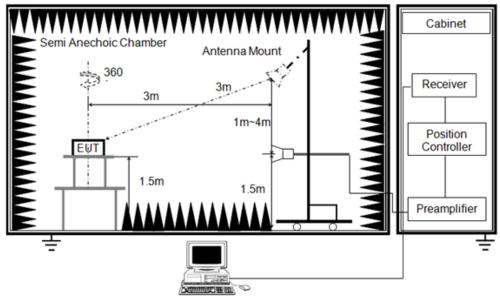
The setting of the spectrum analyzer

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8m above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Above 1G

The setting of the spectrum analyzer

RBW	1M
IV BWV	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

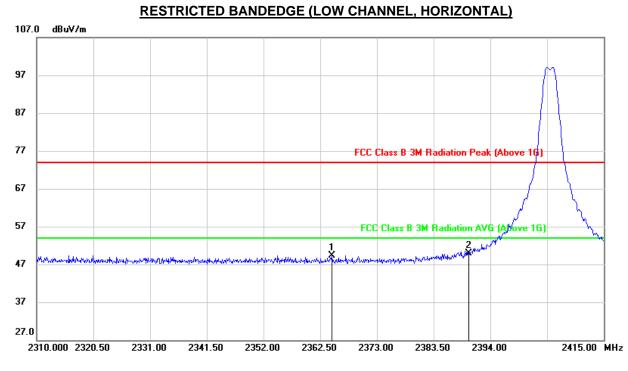
1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

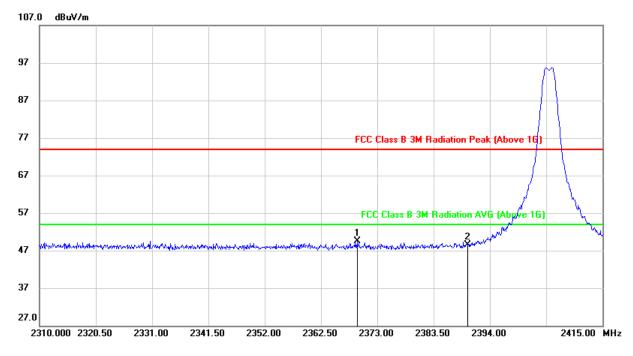

6. For average power measurement, set the Detector to RMS, the detector and averaging type may be set for linear voltage averaging, while maintaining all of the other instrument settings, if the duty cycle of the EUT is less than 98%, the Duty Cycle Correction Factor shall be added to the measured emission levels. For the Duty Cycle and Correction Factor please refer to clause 7.1.ON TIME AND DUTY CYCLE.

Note: For all radiated measurements, EUT was worked in stand-alone mode(with external battery) but it can simulated the communication between PC and the accessories through software.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

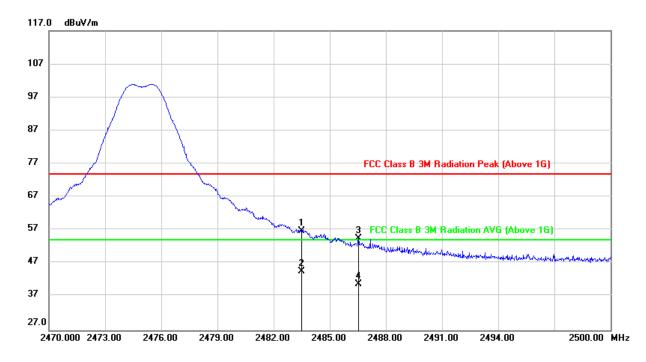
8.1. RESTRICTED BANDEDGE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2364.705	16.06	33.32	49.38	74.00	-24.62	peak
2	2390.000	16.76	33.14	49.90	74.00	-24.10	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

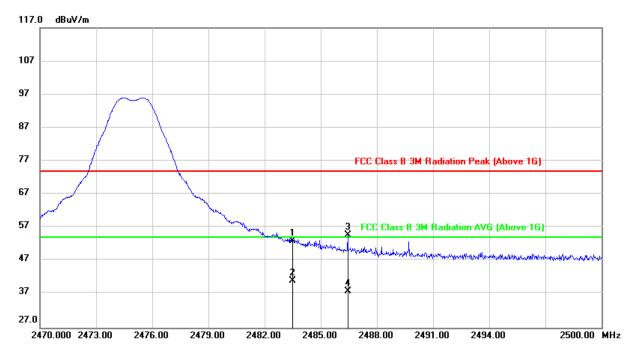

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2369.220	16.14	33.40	49.54	74.00	-24.46	peak
2	2390.000	15.23	33.24	48.47	74.00	-25.53	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

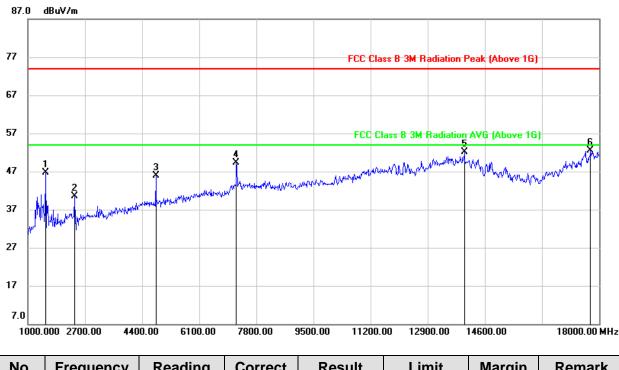
3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	24.11	32.78	56.89	74.00	-17.11	peak
2	2483.500	11.82	32.78	44.60	54.00	-9.40	AVG
3	2486.530	21.66	32.79	54.45	74.00	-19.55	peak
4	2486.530	7.95	32.79	40.74	54.00	-13.26	AVG


Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: RMS detector, the detector and averaging type may be set for linear voltage averaging.

3. Peak: Peak detector.

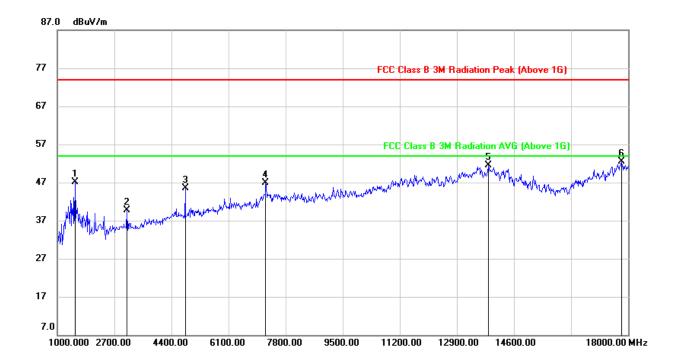

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	20.16	32.88	53.04	74.00	-20.96	peak
2	2483.500	8.18	32.88	41.06	54.00	-12.94	AVG
3	2486.440	21.80	32.89	54.69	74.00	-19.31	peak
4	2486.440	4.94	32.89	37.83	54.00	-16.17	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. AVG: RMS detector, the detector and averaging type may be set for linear voltage averaging.

8.2. SPURIOUS EMISSIONS (1~18GHz)

HARMONICS AND SPURIOUS EMISSIONS	(LOW CHANNEL HORIZONTAL


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	1527.000	59.58	-12.80	46.78	74.00	-27.22	peak
2	2394.000	49.36	-8.94	40.42	74.00	-33.58	peak
3	4808.000	47.61	-1.73	45.88	74.00	-28.12	peak
4	7205.000	43.43	5.82	49.25	74.00	-24.75	peak
5	13988.000	33.19	18.89	52.08	74.00	-21.92	peak
6	17745.000	27.32	25.16	52.48	74.00	-21.52	peak

Note: 1. Measurement = Reading Level + Correct Factor.

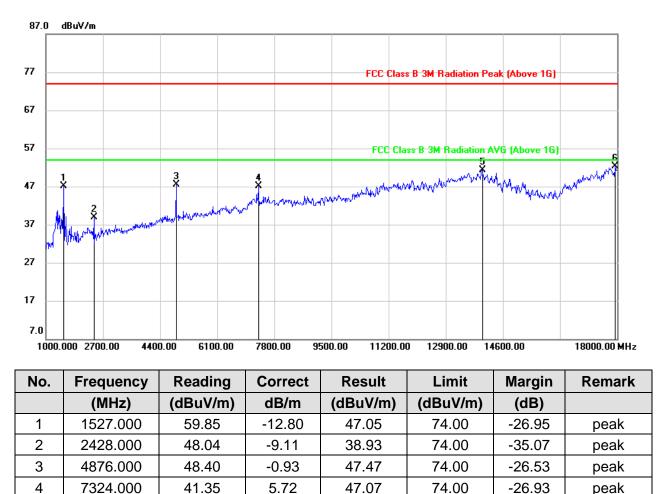
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	1527.000	59.96	-12.79	47.17	74.00	-26.83	peak
2	3074.000	46.48	-6.85	39.63	74.00	-34.37	peak
3	4808.000	47.06	-1.64	45.42	74.00	-28.58	peak
4	7205.000	40.96	5.90	46.86	74.00	-27.14	peak
5	13835.000	32.18	19.30	51.48	74.00	-22.52	peak
6	17796.000	26.17	26.24	52.41	74.00	-21.59	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.



5

6

13988.000

17949.000

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

32.33

25.66

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
Peak: Peak detector.

51.22

52.23

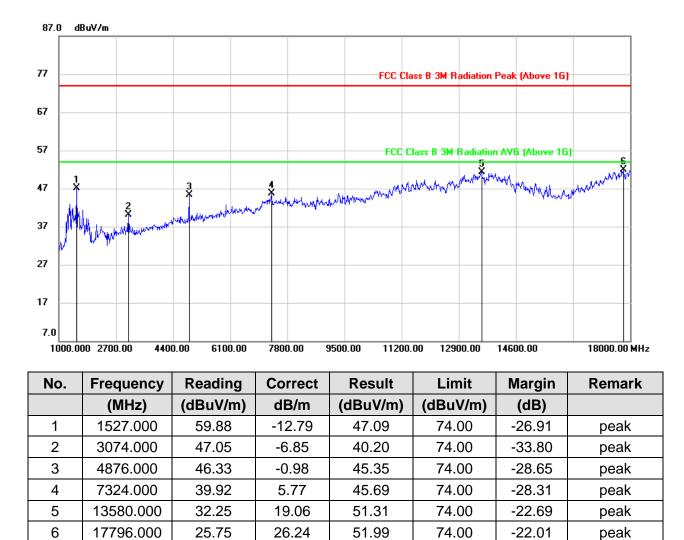
74.00

74.00

-22.78

-21.77

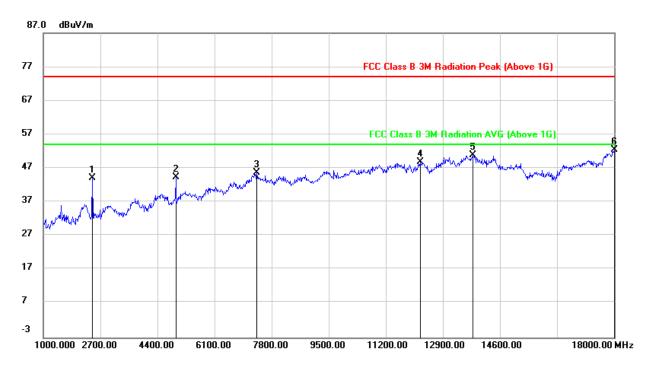
peak


peak

18.89

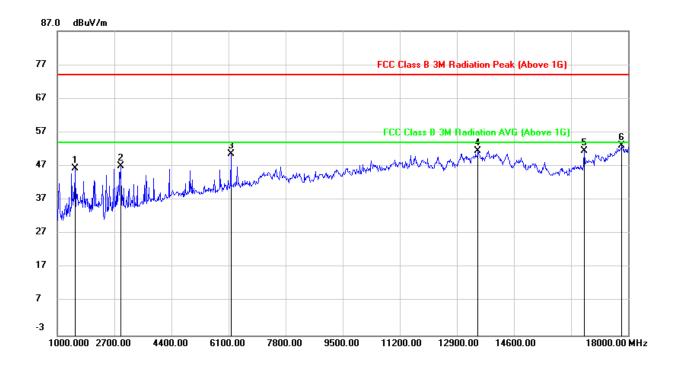
26.57

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2462.000	53.45	-9.26	44.19	74.00	-29.81	peak
2	4944.000	45.08	-0.77	44.31	74.00	-29.69	peak
3	7358.000	39.85	5.87	45.72	74.00	-28.28	peak
4	12220.000	34.58	14.29	48.87	74.00	-25.13	peak
5	13801.000	32.42	18.54	50.96	74.00	-23.04	peak
6	18000.000	27.60	24.81	52.41	74.00	-21.59	peak

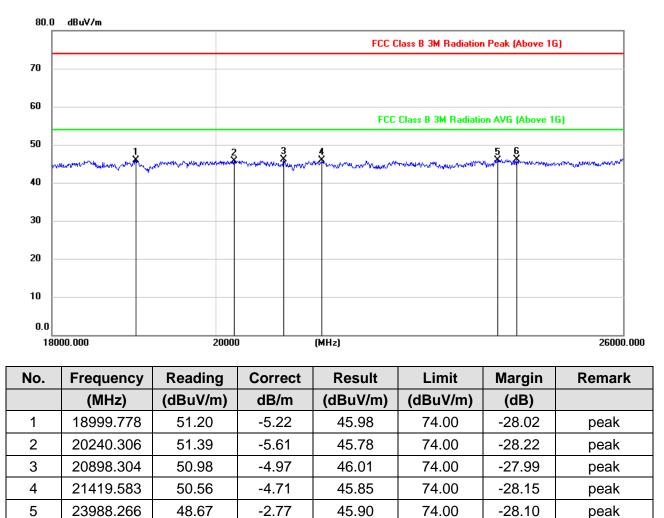
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	1527.000	59.17	-12.74	46.43	74.00	-27.57	peak
2	2887.000	54.28	-7.33	46.95	74.00	-27.05	peak
3	6168.000	48.08	2.66	50.74	74.00	-23.26	peak
4	13529.000	32.79	18.75	51.54	74.00	-22.46	peak
5	16691.000	32.96	18.61	51.57	74.00	-22.43	peak
6	17813.000	28.78	24.44	53.22	74.00	-20.78	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.



6

24281.135

8.3. SPURIOUS EMISSIONS 18G ~ 26GHz

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

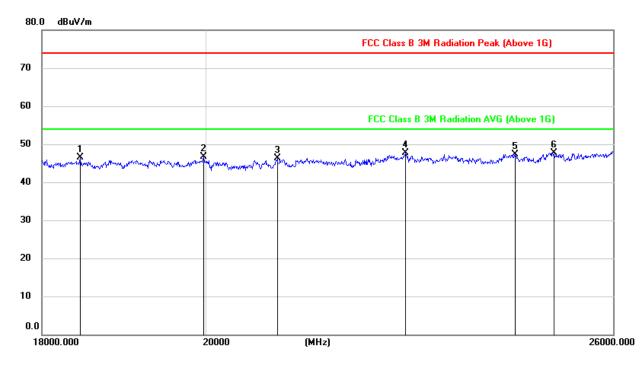
Note: 1. Measurement = Reading Level + Correct Factor.

48.82

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

46.05

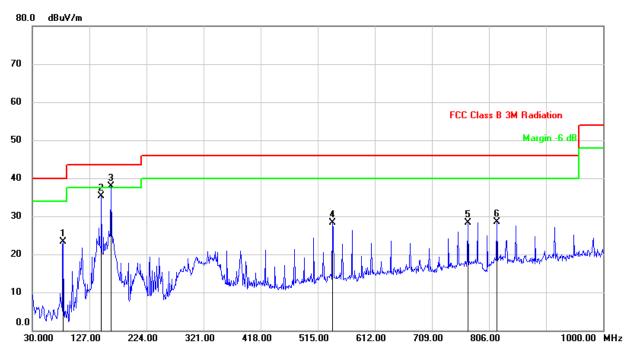
-2.77


74.00

-27.95

peak

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	18448.984	51.77	-5.32	46.45	74.00	-27.55	peak
2	19974.129	52.20	-5.42	46.78	74.00	-27.22	peak
3	20944.464	51.24	-4.93	46.31	74.00	-27.69	peak
4	22751.076	51.37	-3.69	47.68	74.00	-26.32	peak
5	24415.437	49.86	-2.50	47.36	74.00	-26.64	peak
6	25033.649	49.82	-2.04	47.78	74.00	-26.22	peak

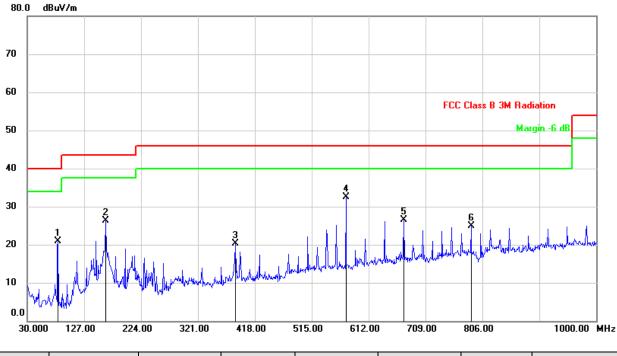
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

8.4. SPURIOUS EMISSIONS 30M ~ 1 GHz

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	82.3800	55.75	-32.43	23.32	40.00	-16.68	QP
2	147.3700	64.57	-29.19	35.38	43.50	-8.12	QP
3	163.8600	66.44	-28.63	37.81	43.50	-5.69	QP
4	540.2199	49.59	-21.34	28.25	46.00	-17.75	QP
5	770.1100	46.36	-18.13	28.23	46.00	-17.77	QP
6	819.5800	45.21	-16.77	28.44	46.00	-17.56	QP

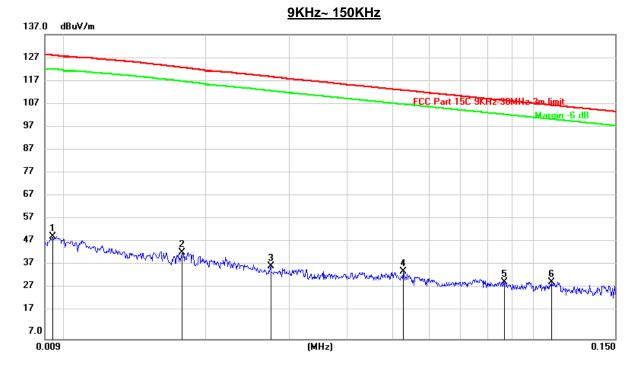

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

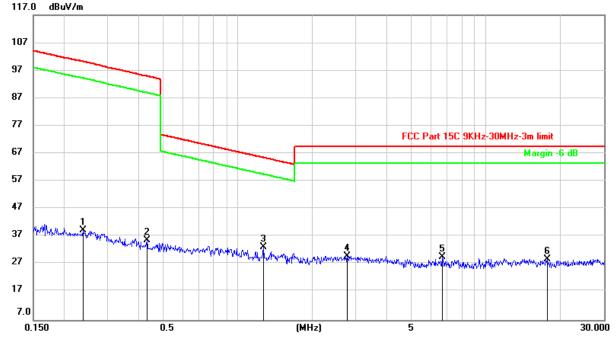
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	82.3800	53.36	-32.43	20.93	40.00	-19.07	QP
2	163.8600	54.90	-28.63	26.27	43.50	-17.23	QP
3	385.0200	45.56	-25.21	20.35	46.00	-25.65	QP
4	573.2000	53.70	-21.25	32.45	46.00	-13.55	QP
5	672.1400	45.95	-19.50	26.45	46.00	-19.55	QP
6	786.6000	42.73	-17.85	24.88	46.00	-21.12	QP


Note: 1. Result Level = Read Level + Correct Factor.

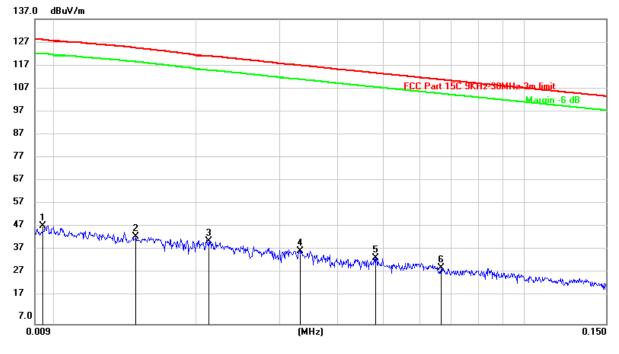
- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

8.5. SPURIOUS EMISSIONS BELOW 30M


SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

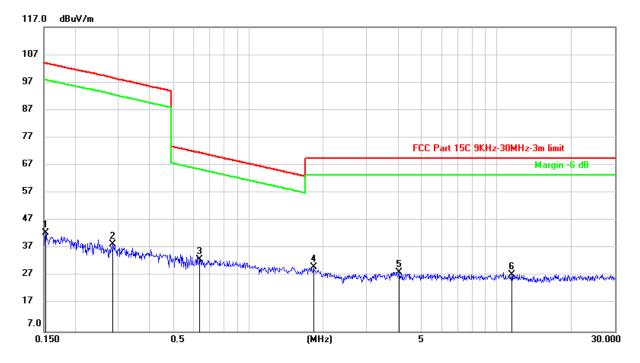
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(KHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0094	30.40	20.26	50.66	128.06	-77.40	peak
2	0.0177	23.46	20.29	43.75	122.96	-79.21	peak
3	0.0274	17.60	20.31	37.91	118.98	-81.07	peak
4	0.0526	15.33	20.31	35.64	113.21	-77.57	peak
5	0.0869	11.10	20.26	31.36	108.84	-77.48	peak
6	0.1095	11.11	20.26	31.37	106.82	-75.45	peak

Note: 1. Measurement = Reading Level + Correct Factor.


<u> 150KHz ~ 30M</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.2378	18.85	20.33	39.18	100.25	-61.07	peak
2	0.4304	15.43	20.27	35.70	94.97	-59.27	peak
3	1.2681	12.69	20.47	33.16	65.55	-32.39	peak
4	2.7648	9.11	20.86	29.97	69.54	-39.57	peak
5	6.6623	8.71	20.90	29.61	69.54	-39.93	peak
6	17.6611	7.77	20.99	28.76	69.54	-40.78	peak

Note: 1. Measurement = Reading Level + Correct Factor.



<u>9KHz~ 150KHz</u>

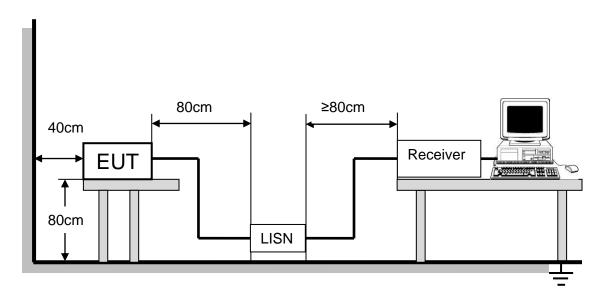
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(KHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0094	28.49	20.26	48.75	128.06	-79.31	peak
2	0.0148	24.07	20.26	44.33	124.71	-80.38	peak
3	0.0212	21.84	20.31	42.15	121.16	-79.01	peak
4	0.0331	17.83	20.31	38.14	117.28	-79.14	peak
5	0.0483	14.90	20.31	35.21	113.95	-78.74	peak
6	0.0665	10.54	20.31	30.85	111.17	-80.32	peak

Note: 1. Measurement = Reading Level + Correct Factor.

<u>150KHz ~ 30M</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1524	22.16	20.42	42.58	103.95	-61.37	peak
2	0.2847	18.23	20.32	38.55	98.60	-60.05	peak
3	0.6338	12.66	20.30	32.96	71.59	-38.63	peak
4	1.8286	9.64	20.67	30.31	69.54	-39.23	peak
5	4.0486	7.26	21.05	28.31	69.54	-41.23	peak
6	11.4983	6.50	21.02	27.52	69.54	-42.02	peak

Note: 1. Measurement = Reading Level + Correct Factor.


9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

Please refer to FCC §15.207 (a) and RSS-Gen Clause 8.8.

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 -5.0	73.00	60.00	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 0.8m high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.). An EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz. The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS

Not Applicable

Note: The EUT was power by external battery.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

10. ANTENNA REQUIREMENTS

Applicable requirements

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector

EUT has a PCB antenna without antenna connector.

Antenna Gain

The antenna gain of EUT is 3.3 dBi.

END OF REPORT

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.